
VehicleForge.mil

Jack Zentner
Senior Research Engineer

Georgia Tech Research Institute
Atlanta, GA 30332

jack.zentner@gtri.gatech.edu

Nick Bollweg
Research Scientist

Georgia Tech Research Institute
Atlanta, GA 30332

nicholas.bollweg@gtri.gatech.edu

John Scott
Senior Systems Engineer

RadiantBlue Technologies
Chantilly, VA 20151

jscott@radiantblue.com

Gunnar Hellekson
Chief Technology Strategist

Red Hat
Raleigh, NC 27606

gunnar.hellekson@redhat.com

A distributed, semantically-aware framework

 to support the needs of the open hardware community

The Hardware Design Vision

The needs of open source hardware
• Design of cyber-electro-mechanical systems vs the

design of software

• Ensuring data provenance while enabling sharing

• Concurrent design and how to ensure design intent
across distributed design teams with versioning

• Semantic search, discovery, introspection and linking of
design artifacts

• IP-rights and varying governance models

• Multi-classification level enclaves

Hardware vs Software Design
• Hardware designers are not software developers

o What does synthesis and sizing mean for software?
o Formal design languages such as SysML only now

beginning to be leveraged in Hardware design
• Hardware systems are not the same as software

systems
o Hardware designs are merely abstractions of the

system
• Different tools, different artifacts, different needs

Ensuring data provenance while enabling
sharing
• Data provenance is a key enabler to help ensure

IP rights
• Knowing the provenance of the artifacts and data

associated with any project enables better reuse
metrics

• Strong data provenance and version control
supports the verification stages of systems
design

Concurrent design and how to ensure
design intent?
• Software developers use integrated unit testing

to ensure design intent in collaborative
development

• Integrated unit testing for hardware design
would, in general, require automated execution
of engineering codes

• Ideally each designer would be able to use a
different suite of tools

Semantic search, discovery, introspection
and linking of design artifacts
• Interface oriented design for hardware

development is not generally supported in code
integration tools

• Semantic linking of codes/artifacts enables tool
agnostic design and development

• Semantic search and discovery enables better
re-use and faster differentiation across possible
solutions

IP-rights and varying governance models
• Why IP-rights and governance is Important

o Well-understood ground rules make it easier to gain participants
in the short term.

o A vibrant collaborative hardware community reduces costs and
eases maintenance for everyone.

o Limit confusion and liability.
• Hardware IP management is different than software

o Hardware governed by patents
o Software by copyrights
o Open source hardware usually not patented

Multi-classification level enclaves
• Open -> Proprietary -> ITAR Controlled ->

Classified
o Ideally information/designs would seamlessly flow

from low to high but have strict controls in the other
direction

o How to ensure US citizen status for open yet ITAR
controlled projects?

• The whole goal of the AVM project is to enable a
5x reduction in time to develop military vehicles

What is VehicleForge?
• A web-centric framework to enable collaborative

hardware design
• Built on the enterprise-grade, open source technology

stack used on 30k projects by 300k users on
SourceForge.net

• Bootstrapped by $1.4M in DARPA funding to support the
Adaptive Vehicle Make program and accredited to subset
of NIST 800-53

• Open source (MIT License variant) and fully extensible
and customizable

Required Software Components

Basic Data Ontology
Semantic Triple Store

Semantic Search

Component Interoperability

App Engine
Hook Script Engine

Extensibility
Web Server Stack
DVCS & WebDAV

Cryptographic Services
Indexing Engine

Index Search

Core Services

Wiki with Forums
Integrated Chat Client

Tasking App

Designer Collaboration

SysML App
AADL App

Modelica App

META Integration

What does VehicleForge Do?
1. Revision control: git, mercurial, rug, svn, ...
2. Federated search: forge-to-forge, global, project
3. Change tracking: ticketing, branching, merging,

artifact/asset diff
4. Collaboration: wiki, discussion, design review
5. Context-awareness: syntax hi-lite, CAD view
6. Access control: roles, permissions
7. Notification: check-ins, comments, tickets, ...
8. One-click project provisioning

How we use VehicleForge to Develop
VehicleForge
• VehicleForge used for all development tasking, tracking

and version control

• VehicleForge development workflow:

o Two month AVM development cycle
o SysML to determine use cases, requirements, development

activities and subsystems needed to fulfill a given
behavioral\functional feature

o SysML functional architecture mapped to lettuce scenarios\BDD unit
tests and linked to VFl tasking

o Results of BDD units tests linked back to SysML requirements
and features to determine requirements coverage

How VehicleForge Supports Technology
Transfer
• VehicleForge is the embodiment of

technology transfer
• The crowdsourcing vision of AVM relies on

technology transfer to achieve its 5x goals
• VehicleForge is built all on open source

software and is itself open source

