
VERIFICATION-GUIDED DEVELOPMENT OF CEDAR

© 2023, Amazon Web Services, Inc. or its affiliates. © 2023, Amazon Web Services, Inc. or its affiliates.

Kesha Hietala (she/her)
Applied Scientist
Amazon Web Services

Verification-Guided
Development of the Cedar
Authorization Language

H C S S 2 0 2 3

VERIFICATION-GUIDED DEVELOPMENT OF CEDAR

© 2023, Amazon Web Services, Inc. or its affiliates.

Premise

• Authorization answers the question “who has access to what”?

Can user “alice”
view the file
“flower.jpg”? Yes

photo
sharing

app
Authorization

engine

• At Amazon we’ve been building , a language for writing
authorization policies and an engine for evaluating those policies.

“policy-as-code”

Policies
describing

permissions

VERIFICATION-GUIDED DEVELOPMENT OF CEDAR

© 2023, Amazon Web Services, Inc. or its affiliates.

Verification-guided development

3

• Cedar is tasked with authorizing security-sensitive requests. How
can we gain confidence that it does so correctly?

GOAL:
Formalize in a

verification-aware
language

Prove correctness

Requirements
• Executable
• Fast enough to run in production
• Maintainable by developers
• Supports utilities like parsing and file I/O

VERIFICATION-GUIDED DEVELOPMENT OF CEDAR

© 2023, Amazon Web Services, Inc. or its affiliates.

Verification-guided development

4

• Cedar is tasked with authorizing security-sensitive requests. How
can we gain confidence that it does so correctly?

GOAL:
Formalize in a

verification-aware
language

Prove correctness

Unit testing,
property-based

testing, etc.

Differentially test

Write production
code in a safe

language

VERIFICATION-GUIDED DEVELOPMENT OF CEDAR

© 2023, Amazon Web Services, Inc. or its affiliates.

Outline

What is Cedar?

Verification-guided development

Formalization in Dafny

Differential random testing

Wrapping up

5

VERIFICATION-GUIDED DEVELOPMENT OF CEDAR

© 2023, Amazon Web Services, Inc. or its affiliates.

photo
sharing

app

👩🦳🧔 🧑🦱

family

friends

team

john bob alice

private nature
receipt.jpg flower.jpg

trips

vacationconference art

private nature

jane

👱

Example: Authorization with Cedar

7

entities

// A user can’t perform any action
// on a private resource that they
// don’t own.

forbid(principal, action, resource)
when {

resource.tags.contains(“private”)
&& !(resource in principal.account)

};

// Jane’s friends can view
// everything in her trips album.

permit(
principal in Group::”jane/friends”,
action == Action::”view”,
resource in Album::”jane/trips”);

Jane’s friends can view
everything in her trips album.

policy set

ALLOW / DENY

REQUEST

VERIFICATION-GUIDED DEVELOPMENT OF CEDAR

© 2023, Amazon Web Services, Inc. or its affiliates.

// A user can’t perform any action
// on a private resource that they
// don’t own.

forbid(principal, action, resource)
when {

resource.tags.contains(“private”)
&& !(resource in principal.account)

};

// Jane’s friends can view
// everything in her trips album.

permit(
principal in Group::”jane/friends”,
action == Action::”view”,
resource in Album::”jane/trips”);

Jane’s friends can view
everything in her trips album.

ALLOW

⟨User::”alice”,
Ac-on::”view”,
Photo::”flower.jpg”⟩

👩🦳🧔 🧑🦱

family

friends

team

john bob alice

private nature
receipt.jpg flower.jpg

trips

vacationconference art

private nature

jane

👱

Example: Authorization with Cedar

8

photo
sharing

app

entities

policy set

VERIFICATION-GUIDED DEVELOPMENT OF CEDAR

© 2023, Amazon Web Services, Inc. or its affiliates.

// A user can’t perform any action
// on a private resource that they
// don’t own.

forbid(principal, action, resource)
when {

resource.tags.contains(“private”)
&& !(resource in principal.account)

};

// Jane’s friends can view
// everything in her trips album.

permit(
principal in Group::”jane/friends”,
action == Action::”view”,
resource in Album::”jane/trips”);

Jane’s friends can view
everything in her trips album.

DENY

👩🦳🧔 🧑🦱

family

friends

team

john bob alice

private nature
receipt.jpg flower.jpg

trips

vacationconference art

private nature

jane

👱

Example: Authorization with Cedar
⟨User::”alice”,

Ac-on::”view”,
Photo::”receipt.jpg”⟩

forbid overrides permit

9

photo
sharing

app

entities

policy set

VERIFICATION-GUIDED DEVELOPMENT OF CEDAR

© 2023, Amazon Web Services, Inc. or its affiliates.

When a policy contains an error, it is ignored during evaluation

Preventing errors with policy validation

permit(
principal in Album::”jane/friends”,
action == Action::”view”,
resource in Albom::”jane/trips”);

Group

Album

10

Policy validation checks that a
policy is consistent with a user-
provided schema

The schema describes the types of
entities used in the application

VERIFICATION-GUIDED DEVELOPMENT OF CEDAR

© 2023, Amazon Web Services, Inc. or its affiliates.

permit(
principal in Group::”jane/friends”,
action == Action::”view”,
resource in Album::”jane/trips”)

when {
principal.jobLevel > “5”

};

When a policy contains an error, it is ignored during evaluation

Preventing errors with policy validation

11

Policy validation checks that a
policy is consistent with a user-
provided schema

The schema describes the types of
entities used in the application 5

Theorem: If the policy set is valid according to the schema, and
the schema is consistent with the entities and request, then
evaluating the request will produce no type errors

VERIFICATION-GUIDED DEVELOPMENT OF CEDAR

© 2023, Amazon Web Services, Inc. or its affiliates. 12

Cedar powers Amazon
Verified Permissions
• Cloud-hosted Cedar policy store
• Authorizes access requests on

behalf of applications

VERIFICATION-GUIDED DEVELOPMENT OF CEDAR

© 2023, Amazon Web Services, Inc. or its affiliates. 13

Cedar powers AWS Verified
Access
• Cedar policies used to assess

application-level network API calls

VERIFICATION-GUIDED DEVELOPMENT OF CEDAR

© 2023, Amazon Web Services, Inc. or its affiliates.

Outline

What is Cedar?

Verification-guided development

Formalization in Dafny

Differential random testing

Wrapping up

14

VERIFICATION-GUIDED DEVELOPMENT OF CEDAR

© 2023, Amazon Web Services, Inc. or its affiliates.

Verification-guided development

15

Implement feature
in Rust

Formalize feature in
Dafny

Unit testing

Property-based
testing

Differential testing

Formal proof

1

2

3

4

5

6

this talk will cover

Deeply understand
expected behavior

Detect simple bugs early in design

Generate interesting cases that
you wouldn’t write by hand

Find differences between the
production code and simpler spec

Rule out subtle errors and corner
cases

VERIFICATION-GUIDED DEVELOPMENT OF CEDAR

© 2023, Amazon Web Services, Inc. or its affiliates.

Outline

What is Cedar?

Verification-guided development

Formalization in Dafny

Differential random testing

Wrapping up

16

VERIFICATION-GUIDED DEVELOPMENT OF CEDAR

© 2023, Amazon Web Services, Inc. or its affiliates.

Step 1: Define reference model

17

datatype Authorizer = Authorizer(request : Request, store: Store) {

function evaluate(pid: PolicyID): Result<Value>
{ ... }

function forbids(): set<PolicyID> {
set pid | evaluate(pid) == Ok(Value.True) &&
store.policies.policies[pid].effect == Forbid

}

function permits(): set<PolicyID> {
set pid | evaluate(pid) == Ok(Value.True) &&
store.policies.policies[pid].effect == Permit

}

function isAuthorized(): Response {
var f := forbids();
var p := permits();
if f == {} && p != {} then
Response(Allow, p)

else
Response(Deny, f)

}
}

concise
specification

The authorizer
is ~200 LOC

In total our spec
is ~2800 LOC

VERIFICATION-GUIDED DEVELOPMENT OF CEDAR

© 2023, Amazon Web Services, Inc. or its affiliates.

Step 2: Prove properties

18

lemma ForbidOverridesPermit(request: Request, store: Store)
requires // If some forbid policy evaluates to true, then
exists f ::
f in store.policies.policies.Keys &&
store.policies.policies[f].effect == Forbid ::
Authorizer(request, store).evaluate(f) == Ok(True)

ensures // the request is denied.
Authorizer(request, store).isAuthorized().decision == Deny

{ }formal proofs of
key properties

lemma TypeSoundness(pid: PolicyID, request : Request,
store: Store, schema: Schema)

requires pid in store.policies.policies.Keys
requires SatisfiesSchema(request, store.entities, schema)
requires typecheck(pid, store.policies, schema).Ok?
ensures
var res := Authorizer(request, store).evaluate(pid);
res != Err(TypeError)

{ ... }

Our proofs are
~2700 LOC

VERIFICATION-GUIDED DEVELOPMENT OF CEDAR

© 2023, Amazon Web Services, Inc. or its affiliates.

Outline

What is Cedar?

Verification-guided development

Formalization in Dafny

Differential random testing

Wrapping up

19

VERIFICATION-GUIDED DEVELOPMENT OF CEDAR

© 2023, Amazon Web Services, Inc. or its affiliates.

Differential testing architecture

20

Enables proofs of
design properties

Production-ready

Production engine

Reference model
repeat x1,000,000

Input
generator

Allow/Deny
Diagnostics

Allow/Deny
Diagnostics

=?
• request
• entities
• policy set

~2.8K LOC
Authorizer: 1.6K
Validator: 1.2K

~17.2K LOC
Authorizer: 7.9K
Validator: 5.5K

Parser: 3.8K

no

Evidence that
implementation

matches the
specification

yes

VERIFICATION-GUIDED DEVELOPMENT OF CEDAR

© 2023, Amazon Web Services, Inc. or its affiliates.

Input generation

We use custom generators to produce random
(but well-formed) inputs & use coverage-guided
mutations

For some targets, we weight the generators to
produce well-typed inputs to achieve better
coverage

We run differential testing nightly for 6 hours,
and generate on the order of 100M tests

21

repeat x1,000,000

Input
generator

• request
• entities
• policy set

VERIFICATION-GUIDED DEVELOPMENT OF CEDAR

© 2023, Amazon Web Services, Inc. or its affiliates.

Outline

What is Cedar?

Verification-guided development

Formalization in Dafny

Differential random testing

Wrapping up

22

VERIFICATION-GUIDED DEVELOPMENT OF CEDAR

© 2023, Amazon Web Services, Inc. or its affiliates.

Summary

is a language for writing authorization policies, and an
engine for evaluating those policies.

23

We use verification-guided development to provide a high assurance
implementation for the Cedar language.

VERIFICATION-GUIDED DEVELOPMENT OF CEDAR

© 2023, Amazon Web Services, Inc. or its affiliates.

Results: Bugs found and fixed

24

Implement feature
in Rust

Formalize feature in
Dafny

Unit testing

Property-based
testing

Differential testing

Formal proof
* Also found by testing, months later

The typechecker failed to
terminate on certain inputs

The typechecker returns an
incorrect result if an entity was

missing from the store

Several discrepancies between our
spec IP address parser and the

Rust IP library we used

Some escapes in string literals
were dropped during parsing

VERIFICATION-GUIDED DEVELOPMENT OF CEDAR

© 2023, Amazon Web Services, Inc. or its affiliates. 25

Cedar is open source
• https://github.com/cedar-policy

Dafny spec +
DRT code

https://github.com/cedar-policy

VERIFICATION-GUIDED DEVELOPMENT OF CEDAR

© 2023, Amazon Web Services, Inc. or its affiliates.

Thank you!

© 2023, Amazon Web Services, Inc. or its affiliates.

The Cedar Language Team
https://www.cedarpolicy.com/
https://github.com/cedar-policy

John Kastner
Anwar Mamat
Matt McCutchen
Emina Torlak
Andrew Wells

Craig Disselkoen
Aaron Eline
Shaobo He
Kesha Hietala
Mike Hicks

https://www.cedarpolicy.com/
https://github.com/cedar-policy

