dWs
~—

HCSS 2025

Verification-Guided _
Development of the Cedar
Authorization Language

Kesha Hietala (she/her)

Applied Scientist
Amazon Web Services



VERIFICATION-GUIDED DEVELOPMENT OF CEDAR

Premise

- Authorization answers the question “who has access to what"?

Can user “alice”

view the file e
“flower.jpg"? Yes
photo 229
sharing “policy-as-code”
:' Policies / .
! describing ! Authorization
““““ I permissions 'l slighinis

-——————————_

. At Amazon we've been building @ CEDAR, a language for writing
authorization policies and an engine for evaluating those policies.

aws

N >) © 2023, Amazon Web Services, Inc. or its affiliates.



VERIFICATION-GUIDED DEVELOPMENT OF CEDAR

Verification-guided development

- Cedar is tasked with authorizing security-sensitive requests. How
can we gain confidence that it does so correctly?

Dafny Formalize in a
[\ verification-aware secccecesecccccscscsceccccscscanns » Prove correctness

language

Requirements
v/ Executable
X Fast enough to run in production
X Maintainable by developers
X Supports utilities like parsing and file 1/0



VERIFICATION-GUIDED DEVELOPMENT OF CEDAR

Verification-guided development

- Cedar is tasked with authorizing security-sensitive requests.

can we gain confidence that it does so correctly?

Dafny Formalize in a
f verification-aware .- R AL AL AL LR AL R > Prove correctness

language

> Differentially test

The Rust Write production .- Unit testing,
Programming codeinasafe @ ‘eees 835 eeccesscsscossssscsssses > property-based

Language language testing, etc.

How



VERIFICATION-GUIDED DEVELOPMENT OF CEDAR

Outline

What is Cedar?
Verification-guided development
Formalization in Dafny
Differential random testing

Wrapping up



VERIFICATION-GUIDED DEVELOPMENT OF CEDAR

Example: Authorization with Cedar

jane john  bob alice
§Aﬁo@¢

team | |family

\ 4

friends

\ 4

trips

/\

conference | |vacation art
a

O000OaD0 O00O0OaD0
receipt.jpg flower.jpg
private nature *

O000ao O000ao

entities
aws

N >) © 2023, Amazon Web Services, Inc. or its affiliates.

photo
sharing

app

REQUEST

©o
[ ]
<o

ALLOW / DENY

// Jane’s friends can view
// everything in her trips album.

permit (
principal in Group::”jane/friends”,
action == Action::"view”,

resource in Album::”jane/trips”);

// A user can’t perform any action
// on a private resource that they
// don’t own.

forbid(principal, action, resource)

when {
resource.tags.contains(“private”)
&& !(resource in principal.account)

};

policy set




VERIFICATION-GUIDED DEVELOPMENT OF CEDAR

Example: Authorization with Cedar

jane

/ john  bob
EABQ@

alice

& -

team | |family

A\ 4

trips

/\

\ 4

friends

conference | |vacation ! art‘ 4
a

O000a0o O000a0o

receipt.jpg flower.jpg
private nature *

O000ao O000ao

g

entities
aws

N >) © 2023, Amazon Web Services, Inc. or its affiliates.

sharing
app

(User::"alice”,
Action::"view”,
Photo::"flower.jpg”)

e
[ ]
000
-

ALLOW

// Jane’s friends can view
// everything in her trips album.

permit (
principal in Group::”jane/friends”,
action == Action::”view”,

resource in Album::”jane/trips”);

// A user can’t perform any action
// on a private resource that they
// don’t own.

forbid(principal, action, resource)

when {
resource.tags.contains(“private”)
&& !(resource in principal.account)

};

policy set




VERIFICATION-GUIDED DEVELOPMENT OF CEDAR

Example: Authorization with Cedar

jane

/ john  bob alice
@ o @ é . (User::"alice”,
< * Action::"view”,
A ®e . Photo::"receipt.jpg”)
v v
team | |family
1 ©e0
» friends
N photo -
‘0 ’1 . <o
trips g snar ’ng
®
N app
conference vacgtion art
S ‘
== N=]= ===
receipt.jpg flower.jpg
private nature *
Ooooool |0 ooaao forbid overrides permit
entities

aws

N >) © 2023, Amazon Web Services, Inc. or its affiliates.

// Jane’s friends can view
// everything in her trips album.

permit (
principal in Group::”jane/friends”,
action == Action::”view”,

resource in Album::”jane/trips”);

// A user can’t perform any action
// on a private resource that they
// don’t own.

forbid(principal, action, resource)

when {
resource.tags.contains(“private”)
&& !(resource in principal.account)

};

policy set




VERIFICATION-GUIDED DEVELOPMENT OF CEDAR

Preventing errors with policy validation

When a policy contains an error, it is ignored during evaluation

Policy validation checks that a permit ( Group
policy is consistent with a user- principal 1n Atbuf::"jane/friends”,
C| C| hem action == Action::"view”,
provided scnemd resource in Atbem::”jane/trips”);
Album

The schema describes the types of
entities used in the application

aws

N 2) © 2023, Amazon Web Services, Inc. or its affiliates. 10



VERIFICATION-GUIDED DEVELOPMENT OF CEDAR

Preventing errors with policy validation

When a policy contains an error, it is ignored during evaluation

Policy validation checks that a permit (
policy is consistent with a user- priiedigat. L Grelps - jEie/ I Enes
. action == Action::"view”,
pl’OVIdEd schema resource in Album::"”jane/trips”)
. when {
The schema describes the types of i cioa1.jobLevel > 452
entities used in the application }; 5

Theorem: If the policy set is valid according to the schema, and
the schema is consistent with the entities and request, then
evaluating the request will produce no type errors

11



) @ o~ < > © @ https://aws.amazon.com/verified-permissions/| ¢ h + O

aWS Contact Us Supportv Englishv My Accountv  SignIn Create an AWS Account
v‘,

Products Solutions Pricing Documentation Learn Partner Network AWS Marketplace Customer Enablement Events Explore More Q

Amazon Verified Permissions Overview Features FAQs

Free AWS Training | Advance your career with AWS Cloud Practitioner Essentials—a free, six-hour, foundational course »

« Security, Identity & Compliance

Cedar powers

Amazon Verified Permissions (Preview)

* Cloud-hosted Cedar policy store
« Authorizes access requests on
behalf of applications

Manage fine-grained permissions and authorization within custom
applications

Sign up for the preview

Accelerate application Save time and resources Simplify compliance Build applications that

development by with centralized audits at scale using support Zero Trust

decoupling authorization permissions and policy automated analysis to architectures with

from business logic. lifecycle management. confirm that permissions dynamic real-time
work as intended. authorization decisions.




O v (< © @ nttps://aws.amazon.com/verified-access/ &

aWS Contact Us Supportv Englishv My Accountv  Signin Create an AWS Account
v‘,

Products Solutions Pricing Documentation Learn Partner Network AWS Marketplace Customer Enablement Events Explore More Q

AWS Verified Access Overview Features Pricing Partners Customers

Free AWS Training | Advance your career with AWS Cloud Practitioner Essentials—a free, six-hour, foundational course »

s Cedar powers

AWS Verified Access .
» Cedar policies used to assess
Provide secure access to corporate applications without a VPN application-level network API calls

Get started with Verified Access

Improve security posture by Deliver a seamless user experience Define a unique access policy for each
evaluating each access request in real through virtual access to corporate application, with conditions based on
time against predefined requirements. applications without a VPN. identity data and device posture.




VERIFICATION-GUIDED DEVELOPMENT OF CEDAR

Outline

What is Cedar?
Verification-guided development
Formalization in Dafny
Differential random testing

Wrapping up

aws

N 2) © 2023, Amazon Web Services, Inc. or its affiliates.

14



VERIFICATION-GUIDED DEVELOPMENT OF CEDAR

Verification-guided development

this talk will cover -

Rule out subtle errors and corner
cases

Formal proof
Formalize feature in _

Dafny @

) @

Find differences between the

e -::# Differential testin production code and simpler spec
Deeply understand ' é)))
expected behavior
¢ Property-based Generate interesting cases that
CEPCTIA . : ldn’t write by hand
- testing @ you wou y
Implement feature ...
in Rust @ """
T N Uiifig esiing Detect simple bugs early in design

aws

N 2) © 2023, Amazon Web Services, Inc. or its affiliates.



VERIFICATION-GUIDED DEVELOPMENT OF CEDAR

Outline

What is Cedar?
Verification-quided development
Formalization in Dafny
Differential random testing

Wrapping up

aws

N 2) © 2023, Amazon Web Services, Inc. or its affiliates.

16



VERIFICATION-GUIDED DEVELOPMENT OF CEDAR

Step 1: Define reference model

concise
specification

‘/’— datatype Authorizer = Authorizer(request : Request, store:

function evaluate(pid: PolicyID): Result<value>

{ ... 1}

function forbids(): set<PolicyID> {
set pid | evaluate(pid) == Ok(value.True) &&
store.policies.policies[pid].effect == Forbid

}

function permits(): set<PolicyID> {
set pid | evaluate(pid) == Ok(value.True) &&
store.policies.policies[pid].effect == Permit

}

function isAuthorized(): Response {
var f := forbids();
var p := permits();
if £ == {} & p !'= {} then
Response(Allow, p)
else
Response(Deny, f)

Store) {

The authorizer
is ~200 LOC

In total our spec
is ~2800 LOC

17



VERIFICATION-GUIDED DEVELOPMENT OF CEDAR

Step 2: Prove properties

r’.1emma ForbidoverridesPermit(request: Request, store: Store)
requires
exists f ::
f in store.policies.policies.Keys &&
store.policies.policies[f].effect == Forbid ::

Authorizer(request, store).evaluate(f) == 0k(True)
ensures
Authorizer(request, store).isAuthorized().decision == Deny

Our proofs are

~2700 LOC

formal proofs of )
key properties<

lemma TypeSoundness(pid: PolicyID, request : Request,
store: Store, schema: Schema)
requires pid in store.policies.policies.Keys
requires SatisfiesSchema(request, store.entities, schema)
requires typecheck(pid, store.policies, schema).0k?

ensures
var res := Authorizer(request, store).evaluate(pid);
res != Err(TypeError)

18



VERIFICATION-GUIDED DEVELOPMENT OF CEDAR

Outline

What is Cedar?
Verification-quided development
Formalization in Dafny
Differential random testing

Wrapping up

aws

N 2) © 2023, Amazon Web Services, Inc. or its affiliates.

19



VERIFICATION-GUIDED DEVELOPMENT OF CEDAR

Differential testing architecture

Enables proofs of
design properties

Reference model

repeat x1,000,000 ~2.8K LOC Allow/Deny
Authorizer: 1.6K Diagnostics
Validator: 1.2K D
Inout * request
npu entities
generator :
policy set

Production engine

~17.2K LOC Allow/Deny
Authorizer: 7.9K Diagnostics
Validator: 5.5K @

Parser: 3.8K

AWS Production-ready

N 2) © 2023, Amazon Web Services, Inc. or its affiliates.

Evidence that
implementation
matches the
specification

yes

no

2%
gLy

20



VERIFICATION-GUIDED DEVELOPMENT OF CEDAR

Input generation

We use custom generators to produce random

repeat x1,000,000 (but well-formed) inputs & use coverage-guided

mutations
REu . reduest For some targets, we weight the generators to
* endtues . .
generator .t | Produce well-typed inputs to achieve better
coverage

We run differential testing nightly for 6 hours,
and generate on the order of T00M tests

N 2) © 2023, Amazon Web Services, Inc. or its affiliates. 21



VERIFICATION-GUIDED DEVELOPMENT OF CEDAR

Outline

What is Cedar?
Verification-quided development
Formalization in Dafny
Differential random testing

Wrapping up

aws

N 2) © 2023, Amazon Web Services, Inc. or its affiliates.

22



VERIFICATION-GUIDED DEVELOPMENT OF CEDAR

Summary

@ CEDAR isalanguage for writing authorization policies, and an
engine for evaluating those policies.

We use verification-guided development to provide a high assurance
implementation for the Cedar language.

et > Formal proof

Formalize featurein .- :
Dafny

Property-based
testing

Implement feature "“...;,'.':.-"'
in Rust

aws ‘ L > Unit testing
N 2) © 2023, Amazon Web Services, Inc. or its affiliates.

23



VERIFICATION-GUIDED DEVELOPMENT OF CEDAR

Results: Bugs found and fixed

B * Also found by testing, months later
( Y e 4 )
g FBMEL el The typechecker returns an

Formalize featurein | ....- incorrect result if an entity was
Dafny e o = missing from the store
& / N J
f "::4» Differential testing
The typechecker failed to Several discrepancies between our
terminate on certain inputs spec IP addr.ess parser and the
; { Property-based Rust IP library we used
o testing
Implement feature "".:-;,‘..--’
in Rust

Some escapes in string literals
were dropped during parsing

aws 24

N 2) © 2023, Amazon Web Services, Inc. or its affiliates.

""""" > Unit testing



O Product v Solutions ¥ Open Source v Pricing Signin  Sign up

¥a3 cedar-policy

() Overview [ Repositories 6 ] Projects @ Packages 2 People

Q Type ~ Language ~

Public

513 Apache-2.0 ig'?O ﬁ 1 @ 0] I‘l 0 Updated 6 minutes ago

Cedariis

Public L4

@ Rust 515 Apache-2.0 Qg? 1 L'\( 1 @ 0] Il 0] Updated 9 minutes ago

Public

@ Rust 515 Apache-2.0 Y3 7 12 @? §90 Updated 1 hour ago

Public

Dafny spec +
DRT code $232 o Qo %0

Forked from amzn/.github

Updated 2 hours ago

Public

@ Rust 513 Apache-2.0 30 'if? 3 @ 0 I'l 0 Updated 5 hours ago

Public

@ Java {8 Apache-2.0 %0 70 Go m Updated 17 hours ago


https://github.com/cedar-policy

dWS

\./‘7

Thank you!

The Cedar Language Team
https://www.cedarpolicy.com/
https://github.com/cedar-policy

Craig Disselkoen John Kastner
Aaron Eline Anwar Mamat
Shaobo He Matt McCutchen
Kesha Hietala Emina Torlak
Mike Hicks Andrew Wells

© 2023, Amazon Web Services, Inc. or its affiliates.



https://www.cedarpolicy.com/
https://github.com/cedar-policy

