
Verification of Concurrent Software in the Context of

Weak Memory

Jade Alglave
with Daniel Kroening, Vincent Nimal and Michael Tautschnig

May 9, 2013



Sequential Consistency

A comfortable model for concurrent programming would be Sequential
Consistency (SC), as defined by Leslie Lamport in 1979:

The result of any execution is the same as if the operations of all

the processors were executed in some sequential order, and the

operations of each individual processor appear in this sequence in

the order specified by its program.

Jade Alglave Verification of Concurrent Software in the Context of WM May 9, 2013 2 / 25



Example

Consider the following example, where initially x = y = 0:

sb
P0 P1

(a) x← 1 (c) y← 1

(b) r1← y (d) r2← x

r1=?; r2=?;

Following SC, we expect three possible outcomes:

(a)(b)(c)(d) r1 = 0 ∧ r2 = 1
(c)(d)(a)(b) r1 = 1 ∧ r2 = 0
(a)(c)(b)(d)
(a)(c)(d)(b) r1 = 1 ∧ r2 = 1
(c)(a)(b)(d)
(c)(a)(d)(b)

Jade Alglave Verification of Concurrent Software in the Context of WM May 9, 2013 3 / 25



Example

Consider the following example, where initially x = y = 0:

sb
P0 P1

(a) x← 1 (c) y← 1

(b) r1← y (d) r2← x

r1=?; r2=?;

Following SC, we expect three possible outcomes:

(a)(b)(c)(d) r1 = 0 ∧ r2 = 1
(c)(d)(a)(b) r1 = 1 ∧ r2 = 0
(a)(c)(b)(d)
(a)(c)(d)(b) r1 = 1 ∧ r2 = 1
(c)(a)(b)(d)
(c)(a)(d)(b)

Jade Alglave Verification of Concurrent Software in the Context of WM May 9, 2013 3 / 25



Example

Consider the following example, where initially x = y = 0:

sb
P0 P1

(a) x← 1 (c) y← 1

(b) r1← y (d) r2← x

r1=0; r2=?;

Following SC, we expect three possible outcomes:

(a)(b)(c)(d) r1 = 0 ∧ r2 = 1
(c)(d)(a)(b) r1 = 1 ∧ r2 = 0
(a)(c)(b)(d)
(a)(c)(d)(b) r1 = 1 ∧ r2 = 1
(c)(a)(b)(d)
(c)(a)(d)(b)

Jade Alglave Verification of Concurrent Software in the Context of WM May 9, 2013 3 / 25



Example

Consider the following example, where initially x = y = 0:

sb
P0 P1

(a) x← 1 (c) y← 1

(b) r1← y (d) r2← x

r1=0; r2=?;

Following SC, we expect three possible outcomes:

(a)(b)(c)(d) r1 = 0 ∧ r2 = 1
(c)(d)(a)(b) r1 = 1 ∧ r2 = 0
(a)(c)(b)(d)
(a)(c)(d)(b) r1 = 1 ∧ r2 = 1
(c)(a)(b)(d)
(c)(a)(d)(b)

Jade Alglave Verification of Concurrent Software in the Context of WM May 9, 2013 3 / 25



Example

Consider the following example, where initially x = y = 0:

sb
P0 P1

(a) x← 1 (c) y← 1

(b) r1← y (d) r2← x

r1=0; r2=1;

Following SC, we expect three possible outcomes:

(a)(b)(c)(d) r1 = 0 ∧ r2 = 1
(c)(d)(a)(b) r1 = 1 ∧ r2 = 0
(a)(c)(b)(d)
(a)(c)(d)(b) r1 = 1 ∧ r2 = 1
(c)(a)(b)(d)
(c)(a)(d)(b)

Jade Alglave Verification of Concurrent Software in the Context of WM May 9, 2013 3 / 25



Experiment

{x=0; y=0;}

P0 | P1 ;

MOV [y],$1 | MOV [x],$1 ;

MOV EAX,[x] | MOV EAX,[y] ;

exists (0:EAX=0 /\ 1:EAX=0)

Let us check that on my machine.

Jade Alglave Verification of Concurrent Software in the Context of WM May 9, 2013 4 / 25



Weak memory models

! We just observed r1=r2=0 on my laptop
! Modern architectures allow more executions than SC

! x86, Power or ARM

! They provide weak memory models

Jade Alglave Verification of Concurrent Software in the Context of WM May 9, 2013 5 / 25



Porte ouverte à deux battants

We propose two ways of verifying concurrent software running on weak
memory:

! we instrument the program to embed the weak memory semantics
inside it, then feed the transformed program to an SC verification tool;

! we explicitly builds partial order models representing the possible
executions of the program on weak memory.

Jade Alglave Verification of Concurrent Software in the Context of WM May 9, 2013 6 / 25



Instrumentation

Jade Alglave Verification of Concurrent Software in the Context of WM May 9, 2013 7 / 25



Bringing verification tools up to speed

Most verification tools assume SC: ESBMC, Poirot, SatAbs, Threader, . . .

! How can we verify concurrent programs for weak memory?

! Without having to rewrite all of these tools?

! For every architecture?

Rather than modifying a tool, we modify its input.

Jade Alglave Verification of Concurrent Software in the Context of WM May 9, 2013 8 / 25



Instrumentation stategy

our transformation
(eg TSO, Power, ARM...)
C program P wrt WMM

SC tool

pass

fail

C program P’ wrt SC

(eg Spin,
  Satabs...)

Jade Alglave Verification of Concurrent Software in the Context of WM May 9, 2013 9 / 25



Instrumentation

Jade Alglave Verification of Concurrent Software in the Context of WM May 9, 2013 10 / 25



Instrumenting writes

Consider the following program on SC:

sb
P0 P1

(a) x← 1 (c) y← 1

(b) r1← y (d) r2← x

r1=?; r2=?;

not observable:

r1=0; r2=0

Jade Alglave Verification of Concurrent Software in the Context of WM May 9, 2013 11 / 25



Instrumenting writes

Consider the following program on SC:

sb
P0 P1

(da) b(x)← 1 (dc) b(y)← 1

(b) r1← y (d) r2← x

(fa) x← b(x) (fc) y← b(y)

r1=?; r2=?;

Writes access fifo buffers, one per memory location.

observable:

r1=0; r2=0

Jade Alglave Verification of Concurrent Software in the Context of WM May 9, 2013 11 / 25



Instrumenting reads

Consider the following program on SC:

iriw
P0 P1 P2 P3

(a) r1← x (c) r3← y (e) x← 1 (f ) y← 2

(b) r2← y (d) r4← x

r1=1; r2=0; r3=2; r4=0;

not observable:

r1=1; r2=0; r3=2; r4=0;

Jade Alglave Verification of Concurrent Software in the Context of WM May 9, 2013 12 / 25



Instrumenting reads

Consider the following program on SC:

iriw
P0 P1 P2 P3

(a) r1← x (c) r3← y (de) b(x)← 1 (df ) b(y)← 2

(b) r2← y (d) r4← x (fe) x← b(x) (ff ) y← b(y)

r1=?; r2=?; r3=?; r4=?;

not observable:

r1=1; r2=0; r3=2; r4=0;

Jade Alglave Verification of Concurrent Software in the Context of WM May 9, 2013 12 / 25



Instrumenting reads

Consider the following program on SC:

iriw
P0 P1 P2 P3

(a) r1← b(x) (c) r3← b(y) (de) b(x)← 1 (df ) b(y)← 2

(b) r2← y (d) r4← x (fe) x← b(x) (ff ) y← b(y)

r1=?; r2=?; r3=?; r4=?;

Reads read from the buffers.

observable:

r1=1; r2=0; r3=2; r4=0;

Jade Alglave Verification of Concurrent Software in the Context of WM May 9, 2013 12 / 25



What about a demo?

Jade Alglave Verification of Concurrent Software in the Context of WM May 9, 2013 13 / 25



Partial-order models

Jade Alglave Verification of Concurrent Software in the Context of WM May 9, 2013 14 / 25



Rolling up our sleeves

! Here we chose to build a tool that is weak memory aware by design

! We adapted CBMC (a bounded model-checking tool for C code)

Jade Alglave Verification of Concurrent Software in the Context of WM May 9, 2013 15 / 25



Independent Reads of Independent Writes

iriw
P0 P1 P2 P3

(a) r1← x (c) r3← y (e) x← 1 (f ) y← 2

(b) r2← y (d) r4← x

r1=1; r2=0; r3=2; r4=0;

(a) Rx1

(b) Ry0

(c) Ry1

(d) Rx0

(e)Wx1 (f )Wy1

po po

rf

fr

rf

fr

Jade Alglave Verification of Concurrent Software in the Context of WM May 9, 2013 16 / 25



Validity of an execution

! An execution is valid on an architecture if it does not show certain
cycles.

! So we assign a clock to each event

! Then see if we can order these clocks w.r.t. less-than over N

Jade Alglave Verification of Concurrent Software in the Context of WM May 9, 2013 17 / 25



On iriw

(a) Rx1

(b) Ry0

(c) Ry1

(d) Rx0

(e)Wx1 (f )Wy1

po po

rf

fr

rf

fr

(po P0) cab (po P1) ccd
(rf x) sea (rf y) sfc
(fr x) (si0d ∧ ci0e)⇒ cde (fr y) (si1b ∧ ci1f )⇒ cbf

! On SC: unsatisfiable
! On Power: satisfiabe as we remove (rf x) and (rf y)

Jade Alglave Verification of Concurrent Software in the Context of WM May 9, 2013 18 / 25



What about a demo?

Jade Alglave Verification of Concurrent Software in the Context of WM May 9, 2013 19 / 25



A real-world example

Jade Alglave Verification of Concurrent Software in the Context of WM May 9, 2013 20 / 25



PostgreSQL developers’ discussions

Jade Alglave Verification of Concurrent Software in the Context of WM May 9, 2013 21 / 25



Synchronisation in PostgreSQL

1 void worker( int i )
2 { while(! latch [ i ]);
3 for (;;)
4 { assert (! latch [ i ] || flag [ i ]);
5 latch [ i ] = 0;
6 if ( flag [ i ])
7 { flag [ i ] = 0;
8 flag [( i+1)%WORKERS] = 1;
9 latch [( i+1)%WORKERS] = 1;

10 }
11 while(! latch [ i ]);
12 }
13 }

Each element of the array
latch is a shared boolean
variable dedicated to
interprocess communication.

A process waits to have its latch
set then should have work to do,
namely passing around a token
via the array flag (line 8).

Once the process is done, it sets
the latch of the process the
token was passed to (line 9).

Jade Alglave Verification of Concurrent Software in the Context of WM May 9, 2013 22 / 25



Synchronisation in PostgreSQL

1 void worker( int i )
2 { while(! latch [ i ]);
3 for (;;)
4 { assert (! latch [ i ] || flag [ i ]);
5 latch [ i ] = 0;
6 if ( flag [ i ])
7 { flag [ i ] = 0;
8 flag [( i+1)%WORKERS] = 1;
9 latch [( i+1)%WORKERS] = 1;

10 }
11 while(! latch [ i ]);
12 }
13 }

Starvation seemingly cannot
occur: when a process is woken
up, it has work to do.

Yet, the developers observed
that the wait in line 11 would
time out, i.e. starvation of the
ring of processes.

The processor can delay the
write in line 8 until after the
latch had been set in line 9.

Jade Alglave Verification of Concurrent Software in the Context of WM May 9, 2013 22 / 25



Message passing idiom in PostgreSQL

This corresponds to the message passing idiom

pgsql (mp)
Worker 0 Worker 1

(8) f[1]=1; (2) while(!l[1]);

(9) l[1]=1; (6) if(f[1])

Observed: l[1]=1; f[1]=0

W f[1] 1

W l[1] 1

R l[1] 1

R f[1] 0

po
rf

po
fr

Jade Alglave Verification of Concurrent Software in the Context of WM May 9, 2013 23 / 25



Message passing idiom in PostgreSQL

This corresponds to the message passing idiom

which requires synchronisation to behave as on SC

pgsql (mp)
Worker 0 Worker 1

(8) f[1]=1; (2) while(!l[1]);
lwsync dependency

(9) l[1]=1; (6) if(f[1])

Forbidden: l[1]=1; f[1]=0

W f[1] 1

W l[1] 1

R l[1] 1

R f[1] 0

po
rf

po
fr

Jade Alglave Verification of Concurrent Software in the Context of WM May 9, 2013 23 / 25



Load buffering idiom in PostgreSQL

We also found a load buffering idiom

pgsql (lb)
Worker 0 Worker 1

(6) if(flag[0]) (6) if(flag[1])

(8) flag[1]=1; (8) flag[0]=1;

Allowed: flag[0]=1; flag[1]=1

R flag[0]

W flag[1]

R flag[1]

W flag[0]

po
rf

po
rf

Jade Alglave Verification of Concurrent Software in the Context of WM May 9, 2013 24 / 25



Load buffering idiom in PostgreSQL

We also found a load buffering idiom which is only a potential bug for
now, since not yet implemented on Power machines

pgsql (lb)
Worker 0 Worker 1

(6) if(flag[0]) (6) if(flag[1])
dependency dependency

(8) flag[1]=1; (8) flag[0]=1;

Forbidden: flag[0]=1; flag[1]=1

R flag[0]

W flag[1]

R flag[1]

W flag[0]

po
rf

po
rf

Jade Alglave Verification of Concurrent Software in the Context of WM May 9, 2013 24 / 25



Thanks!

! Instrumentation: paper at ESOP 13
http://cprover.org/wmm

! Partial orders for BMC: paper at CAV 13
http://cprover.org/wpo

Jade Alglave Verification of Concurrent Software in the Context of WM May 9, 2013 25 / 25

http://cprover.org/wmm
http://cprover.org/wpo


Formally

Jade Alglave Verification of Concurrent Software in the Context of WM May 9, 2013 26 / 25



Architectures

An architecture A " (ppo, grf, ab) gives us:

! the preserved program order ppo;
! the global read-from grf determines if

! store buffering is allowed (as on x86);
! if the stores are atomic (unlike on Power or ARM);

! the barrier semantics ab.

Jade Alglave Verification of Concurrent Software in the Context of WM May 9, 2013 27 / 25



Machine state

A state s " (m, b, rs) contains:

! the memory m: a map from addresses to writes to this address;

! the buffer b: a total order over writes per address;

! the read set rs: a set of reads.

Jade Alglave Verification of Concurrent Software in the Context of WM May 9, 2013 28 / 25



Instrumenting writes

Write to buffer

$

s
d(w(w))
−−−−−→ (m, updb(b,w), rs)

Write from buffer to memory

rr(b, {e | (e,w) ∈ ppo ∪ ab}) = ∅∧
rs∩{e | (e,w) ∈ ppo ∪ ab} = ∅∧
rs∩{r | (r ,w) ∈ po-loc} = ∅∧
last(rr(b, {e | addr(e) = !}),w)

s
f(w(w))
−−−−−→ (updm(m,w), delb(b,w), rs)

Jade Alglave Verification of Concurrent Software in the Context of WM May 9, 2013 29 / 25



Instrumenting reads

Delay read

$

s
d(r(w ,r))
−−−−−→ (m, b, updrs(rs, r))

Read from set

r ∈ rs∧
rs∩{r | (r ,w) ∈ dp} = ∅∧

rr(b, {e | (e, r) ∈ ppo ∪ ab}) = ∅∧
rs∩{e | (e,w) ∈ ppo ∪ ab} = ∅∧

[

(w = m(addr(r)) ∧ rr(b, {w | (w , r) ∈ po-loc}) = ∅)∨
(w ,= m(addr(r)) ∧ w ∈ b∧ visible(w , r))

]

s
f(r(w ,r))
−−−−−→ (m, b, delrs(rs, r))

Jade Alglave Verification of Concurrent Software in the Context of WM May 9, 2013 30 / 25



Visibility

A write w is visible to a read r , when:

! w and r share the same address !;
! w is in the part of the buffer visible to r , namely if:

! store buffering is not allowed, w cannot be on the same thread as r ;
! stores are atomic, w cannot be on a different thread from r ;

! w is b-before the first write wa to ! that is po-after r ;

! w is equal to, or b-after, the last write wb to ! that is po-before r .

Jade Alglave Verification of Concurrent Software in the Context of WM May 9, 2013 31 / 25


