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Sequential Consistency

A comfortable model for concurrent programming would be Sequential
Consistency (SC), as defined by Leslie Lamport in 1979:

The result of any execution is the same as if the operations of all

the processors were executed in some sequential order, and the

operations of each individual processor appear in this sequence in

the order specified by its program.
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Example

Consider the following example, where initially x = y = 0:

sb
P0 P1

(a) x← 1 (c) y← 1

(b) r1← y (d) r2← x

r1=?; r2=?;

Following SC, we expect three possible outcomes:

(a)(b)(c)(d) r1 = 0 ∧ r2 = 1
(c)(d)(a)(b) r1 = 1 ∧ r2 = 0
(a)(c)(b)(d)
(a)(c)(d)(b) r1 = 1 ∧ r2 = 1
(c)(a)(b)(d)
(c)(a)(d)(b)
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Consider the following example, where initially x = y = 0:

sb
P0 P1

(a) x← 1 (c) y← 1

(b) r1← y (d) r2← x

r1=0; r2=1;

Following SC, we expect three possible outcomes:

(a)(b)(c)(d) r1 = 0 ∧ r2 = 1
(c)(d)(a)(b) r1 = 1 ∧ r2 = 0
(a)(c)(b)(d)
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(c)(a)(b)(d)
(c)(a)(d)(b)
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Experiment

{x=0; y=0;}

P0 | P1 ;

MOV [y],$1 | MOV [x],$1 ;

MOV EAX,[x] | MOV EAX,[y] ;

exists (0:EAX=0 /\ 1:EAX=0)

Let us check that on my machine.
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Weak memory models

! We just observed r1=r2=0 on my laptop
! Modern architectures allow more executions than SC

! x86, Power or ARM

! They provide weak memory models
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Porte ouverte à deux battants

We propose two ways of verifying concurrent software running on weak
memory:

! we instrument the program to embed the weak memory semantics
inside it, then feed the transformed program to an SC verification tool;

! we explicitly builds partial order models representing the possible
executions of the program on weak memory.
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Instrumentation
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Bringing verification tools up to speed

Most verification tools assume SC: ESBMC, Poirot, SatAbs, Threader, . . .

! How can we verify concurrent programs for weak memory?

! Without having to rewrite all of these tools?

! For every architecture?

Rather than modifying a tool, we modify its input.
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Instrumentation stategy

our transformation
(eg TSO, Power, ARM...)
C program P wrt WMM

SC tool

pass

fail

C program P’ wrt SC

(eg Spin,
  Satabs...)
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Instrumentation
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Instrumenting writes

Consider the following program on SC:

sb
P0 P1

(a) x← 1 (c) y← 1

(b) r1← y (d) r2← x

r1=?; r2=?;

not observable:

r1=0; r2=0
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Instrumenting writes

Consider the following program on SC:

sb
P0 P1

(da) b(x)← 1 (dc) b(y)← 1

(b) r1← y (d) r2← x

(fa) x← b(x) (fc) y← b(y)

r1=?; r2=?;

Writes access fifo buffers, one per memory location.

observable:

r1=0; r2=0
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Instrumenting reads

Consider the following program on SC:

iriw
P0 P1 P2 P3

(a) r1← x (c) r3← y (e) x← 1 (f ) y← 2

(b) r2← y (d) r4← x

r1=1; r2=0; r3=2; r4=0;

not observable:

r1=1; r2=0; r3=2; r4=0;
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Instrumenting reads

Consider the following program on SC:

iriw
P0 P1 P2 P3

(a) r1← b(x) (c) r3← b(y) (de) b(x)← 1 (df ) b(y)← 2

(b) r2← y (d) r4← x (fe) x← b(x) (ff ) y← b(y)

r1=?; r2=?; r3=?; r4=?;

Reads read from the buffers.

observable:

r1=1; r2=0; r3=2; r4=0;

Jade Alglave Verification of Concurrent Software in the Context of WM May 9, 2013 12 / 25



What about a demo?

Jade Alglave Verification of Concurrent Software in the Context of WM May 9, 2013 13 / 25



Partial-order models
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Rolling up our sleeves

! Here we chose to build a tool that is weak memory aware by design

! We adapted CBMC (a bounded model-checking tool for C code)
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Independent Reads of Independent Writes

iriw
P0 P1 P2 P3

(a) r1← x (c) r3← y (e) x← 1 (f ) y← 2

(b) r2← y (d) r4← x

r1=1; r2=0; r3=2; r4=0;

(a) Rx1

(b) Ry0

(c) Ry1

(d) Rx0

(e)Wx1 (f )Wy1

po po

rf

fr

rf

fr
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Validity of an execution

! An execution is valid on an architecture if it does not show certain
cycles.

! So we assign a clock to each event

! Then see if we can order these clocks w.r.t. less-than over N
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On iriw

(a) Rx1

(b) Ry0

(c) Ry1

(d) Rx0

(e)Wx1 (f )Wy1

po po

rf

fr

rf

fr

(po P0) cab (po P1) ccd
(rf x) sea (rf y) sfc
(fr x) (si0d ∧ ci0e)⇒ cde (fr y) (si1b ∧ ci1f )⇒ cbf

! On SC: unsatisfiable
! On Power: satisfiabe as we remove (rf x) and (rf y)
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What about a demo?
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A real-world example
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PostgreSQL developers’ discussions
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Synchronisation in PostgreSQL

1 void worker( int i )
2 { while(! latch [ i ]);
3 for (;;)
4 { assert (! latch [ i ] || flag [ i ]);
5 latch [ i ] = 0;
6 if ( flag [ i ])
7 { flag [ i ] = 0;
8 flag [( i+1)%WORKERS] = 1;
9 latch [( i+1)%WORKERS] = 1;

10 }
11 while(! latch [ i ]);
12 }
13 }

Each element of the array
latch is a shared boolean
variable dedicated to
interprocess communication.

A process waits to have its latch
set then should have work to do,
namely passing around a token
via the array flag (line 8).

Once the process is done, it sets
the latch of the process the
token was passed to (line 9).
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Synchronisation in PostgreSQL

1 void worker( int i )
2 { while(! latch [ i ]);
3 for (;;)
4 { assert (! latch [ i ] || flag [ i ]);
5 latch [ i ] = 0;
6 if ( flag [ i ])
7 { flag [ i ] = 0;
8 flag [( i+1)%WORKERS] = 1;
9 latch [( i+1)%WORKERS] = 1;

10 }
11 while(! latch [ i ]);
12 }
13 }

Starvation seemingly cannot
occur: when a process is woken
up, it has work to do.

Yet, the developers observed
that the wait in line 11 would
time out, i.e. starvation of the
ring of processes.

The processor can delay the
write in line 8 until after the
latch had been set in line 9.

Jade Alglave Verification of Concurrent Software in the Context of WM May 9, 2013 22 / 25



Message passing idiom in PostgreSQL

This corresponds to the message passing idiom

pgsql (mp)
Worker 0 Worker 1

(8) f[1]=1; (2) while(!l[1]);

(9) l[1]=1; (6) if(f[1])

Observed: l[1]=1; f[1]=0

W f[1] 1

W l[1] 1

R l[1] 1

R f[1] 0

po
rf

po
fr

Jade Alglave Verification of Concurrent Software in the Context of WM May 9, 2013 23 / 25



Message passing idiom in PostgreSQL

This corresponds to the message passing idiom

which requires synchronisation to behave as on SC

pgsql (mp)
Worker 0 Worker 1

(8) f[1]=1; (2) while(!l[1]);
lwsync dependency

(9) l[1]=1; (6) if(f[1])

Forbidden: l[1]=1; f[1]=0

W f[1] 1

W l[1] 1

R l[1] 1

R f[1] 0

po
rf

po
fr
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Load buffering idiom in PostgreSQL

We also found a load buffering idiom

pgsql (lb)
Worker 0 Worker 1

(6) if(flag[0]) (6) if(flag[1])

(8) flag[1]=1; (8) flag[0]=1;

Allowed: flag[0]=1; flag[1]=1

R flag[0]

W flag[1]

R flag[1]

W flag[0]

po
rf

po
rf
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Load buffering idiom in PostgreSQL

We also found a load buffering idiom which is only a potential bug for
now, since not yet implemented on Power machines

pgsql (lb)
Worker 0 Worker 1

(6) if(flag[0]) (6) if(flag[1])
dependency dependency

(8) flag[1]=1; (8) flag[0]=1;

Forbidden: flag[0]=1; flag[1]=1

R flag[0]

W flag[1]

R flag[1]

W flag[0]

po
rf

po
rf
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Thanks!

! Instrumentation: paper at ESOP 13
http://cprover.org/wmm

! Partial orders for BMC: paper at CAV 13
http://cprover.org/wpo
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Formally
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Architectures

An architecture A " (ppo, grf, ab) gives us:

! the preserved program order ppo;
! the global read-from grf determines if

! store buffering is allowed (as on x86);
! if the stores are atomic (unlike on Power or ARM);

! the barrier semantics ab.
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Machine state

A state s " (m, b, rs) contains:

! the memory m: a map from addresses to writes to this address;

! the buffer b: a total order over writes per address;

! the read set rs: a set of reads.
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Instrumenting writes

Write to buffer

$

s
d(w(w))
−−−−−→ (m, updb(b,w), rs)

Write from buffer to memory

rr(b, {e | (e,w) ∈ ppo ∪ ab}) = ∅∧
rs∩{e | (e,w) ∈ ppo ∪ ab} = ∅∧
rs∩{r | (r ,w) ∈ po-loc} = ∅∧
last(rr(b, {e | addr(e) = !}),w)

s
f(w(w))
−−−−−→ (updm(m,w), delb(b,w), rs)
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Instrumenting reads

Delay read

$

s
d(r(w ,r))
−−−−−→ (m, b, updrs(rs, r))

Read from set

r ∈ rs∧
rs∩{r | (r ,w) ∈ dp} = ∅∧

rr(b, {e | (e, r) ∈ ppo ∪ ab}) = ∅∧
rs∩{e | (e,w) ∈ ppo ∪ ab} = ∅∧

[

(w = m(addr(r)) ∧ rr(b, {w | (w , r) ∈ po-loc}) = ∅)∨
(w ,= m(addr(r)) ∧ w ∈ b∧ visible(w , r))

]

s
f(r(w ,r))
−−−−−→ (m, b, delrs(rs, r))

Jade Alglave Verification of Concurrent Software in the Context of WM May 9, 2013 30 / 25



Visibility

A write w is visible to a read r , when:

! w and r share the same address !;
! w is in the part of the buffer visible to r , namely if:

! store buffering is not allowed, w cannot be on the same thread as r ;
! stores are atomic, w cannot be on a different thread from r ;

! w is b-before the first write wa to ! that is po-after r ;

! w is equal to, or b-after, the last write wb to ! that is po-before r .
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