
Verifying Hyperproperties
with TLA

Fred B. Schneider
Samuel B Eckert Professor of Computer Science

Department of Computer Science
Cornell University

Ithaca, New York 14853
U.S.A.

Appears in:
Proceedings 4th IEEE Computer Security Foundations Symposium.
June 2021

Joint work with Leslie Lamport

Overview

! Hyperproperties
– What and Why

! TLA
– Important characteristics

! TLA verification of hyperproperties

1

Hyperproperties

behavior: an infinite sequence of states
! = #$ #% #& … #(…

Property: A predicate on individual behaviors.
– Any sequential, concurrent, or distributed program (!)
– Partial correctness, total correctness
– Mutual exclusion
– Termination / Eventual service

Hyperproperty: A predicate on sets of behaviors.
– Information flow
– Memory consistency

2

Verification of Hyperproperties?

! Led to “new” methods being created.
– Logix x + more stuff = Logic hyper-x

! But new methods are not necessary!
– What attributes of an existing method are required?
– Why.

3

Properties and !"redicates

Property: set " of behaviors defined by predicates !" on behaviors #:
⊨ !" ≝ !" is true on

= # ∈ "

Program: predicate /0 on behaviors that defines a set 0 of behaviors

0 ⊨ !" = 0 ⊆ "
= ∀#: # ∈ 0 ⇒ # ∈ "
= ∀#: # ⊨ /0 ⇒ # ⊨ !"
= ∀#: # ⊨ /0 ⇒ !"
= ⊨ /0 ⇒ !"

TLA is a logic where programs 0 are easily expressed as formulas /0.

4

Universal Domains for States (rqmnt)

“⊨ "# ⇒ %& ” means “true in all interpretations '”!
':)*)+ …)- … What variables does)- map?

Expect:
⊨ %&, ⊨ %/
⊨ %& ∧ %/

Soundness then requires:
States in a behavior ' must map all variables to values.
… including variables not in %& and not in %/

5

Stuttering (rqmnt)

Example: Clock specifications (seconds shouldn’t matter)
!"#$ behaviors are increasing: hrs ℎ,mins ', secs (;
)"# behaviors are increasing: hrs ℎ,mins '.

⊨ !"#$ ⇒)"# ?
<3:59:50> … <3:59:59> <4:00:00> … ⊨ !"#$
<3:59> <4:00> … ⊨)"#
<3:59:50> … <3:59:59> <4:00:00> … ¬⊨)"#

¬⊨ !"#$ ⇒)"# !
Conclusion: Predicates must be stuttering insensitive or
else they constrain unnamed variables. Specifications should
constrain a system but not the whole universe!

6

Toward verification of hyperproperties:

Hyperproperties as Predicates

A hyperproperty is defined by a predicate on properties !.
A finitary hyperproperty ℋ ! is built using

– propositional operators
– “(∀' ∈ ! …”
– predicates *+ ',, '., … , '/ that depend on '0 but not on !.

A finitary hyperproperty ℋ ! is always equivalent to

∀/∃', ∈ !: … ∀/∃'5 ∈ !: 67 ',, … , '5
where 67(⋅) does not depend on !.

7

Translate Sets to Predicates 1/2

∀/∃$% ∈ ':…∀/∃$* ∈ ': +, $%, … , $*

Translate: Set membership to predicate satisfaction
– ∀$ ∈ ':… into ∀$: /' $ ⇒ …
– ∃$ ∈ ':… into ∃$: /' $ ∧ …

8

Translate Sets to Predicates 2/2

Translate: Predicates on behaviors to Temporal Logic
formulas on variables

– "#(… , '(, …) into "#(… , +̅(, …)
where +̅,, +̅-, … , +̅. are disjoint lists. [Cf Self-Composition]

Temporal Logic inference or model checking does the rest.
We have: Reduced hyperproperty verif to property verif!

9

',:

'.:

+̅,:
+̅-:

+̅.:

…

…

…

… ……

…
…

…
':

∀∃-Hyperproperties in TLA

A subclass of finitary hyperproperties:

#$ &̅' ∧ ⋯∧ #$ &̅* ∧ +, &̅', … , &̅*
⇒ (∃&̅*1' … , &̅2: #$ &̅*1' ∧ ⋯∧ #$ &̅2

∧ #4 &̅', … , &̅2)

! A class of formulas TLA+ model checker handles.
! Class is expressive enough to handle all hyperproperties

we have encountered in literature.

10

Why SI: GNI case study 1/4

Generalized Non-interference (GNI): For any behaviors
!" and !# in $, there is a behavior !% exhibiting the public
events of !" and the secret events of !#.

'$)̅" ∧ '$)̅# ⇒ (∃)̅%: '$)̅% ∧ '/()̅",)̅#,)̅%))

'/)̅",)̅#,)̅% ≝ □(456)̅% = 456)̅" ∧ sec)̅% = sec)̅#)

11

Why SI: GNI case study 2/4

!" $̅% ∧ !" $̅' ⇒ (∃$̅+: !" $̅+ ∧ !-($̅%, $̅', $̅+))
!-($̅%, $̅', $̅+) ≝ □(234 $̅+ = 234 $̅% ∧ 678 $̅+ = 678 $̅')

Example: !" $̅% : steps 26($̅%) alternates with 66 $̅% ,
where:

– 26($̅%) step updates 234 $̅% but not 678($̅%)
– 66($̅%) step updates 678($̅%) but not 234 $̅%

12

Why SI: GNI case study 3/4

13

!" $̅% ∧ !" $̅' ⇒ (∃$̅+: !" $̅+ ∧ !-($̅%, $̅', $̅+))
-- $̅%, $̅', $̅+ ≝ □(234 $̅+ = 234 $̅% ∧ sec $̅+ = sec $̅')

$̅%: 9% 29 $̅% 9' 99 $̅% 9+ 29 $̅% 9: …
$̅': ;% 29 $̅' ;' ;+ 99 $̅' ;: …

$̅+: 3% 29 $̅+ 3' 3+ ? ? ? u: …

Stuttering Insensitivity (SI)

Behaviors ! and " are stuttering equivalent if deleting
repeated values from each produces identical sequences.
! Define ! ⊨ $ ~ & iff !|(and !|) are stuttering equivalent, where

projection !|(is sequence of values ! gives to state function $.

TLA is a linear-time temporal logic where all formulas are SI.
! *+ ⇒ -. can mean *+ satisfies/implements -.
! Can “form” a behavior for execution that combines executions

described by behaviors !/ and !0 (needed for some hyperproperties).

14

Why SI: GNI case study 4/4

!" $̅% ∧ !" $̅' ⇒
(∃$̅+, -.%, -.': -.% ∼ $̅% ∧ -.' ∼ $̅' ∧ !" $̅+

∧ !1(-.%, -.', $̅+))
11 $̅%, $̅', $̅+ ≝ □(567 $̅+ = 567 $̅% ∧ 9:; $̅+ = 9:; $̅')

! -.% ∼ $̅% , -.' ∼ $̅' accounts for SI behaviors in !" ⋅ .

15

∀∃-Hyperproperties Examples

! Generalized Non-interference: For any behaviors #$ and #% in
&, there is a behavior #' exhibiting the public events of #$ and the
secret events of #%.

! Observational non-determinism. Two system behaviors with
same initial public state are public-stuttering equivalent.

! Non-interference. Deleting secret commands has no effect on
public outputs.

! Possibilistic non-interference. If #$ and #% have the same initial
public values then the exists a behavior #' with the same initial
state as #% and the same public values as #$ throughout.

16

Summary

! Hyperproperties provide needed expressiveness for
security and concurrency.

! Existing logics + self composition works if:
– States map all variables.

§ Already needed for ordinary compositionality
– Behaviors are stuttering insensitive.

§ Already needed for “implements” to be implication (⇒)
! TLA+ is such a logic, used in industry and with a model

checker for support.

17

Reading

! M. Clarkson and F.B. Schneider. Hyperproperties. Journal of Computer
Security 18 (2010).

! L. Lamport. The temporal logic of actions. ACM Transactions on
Programming Languages and Systems, 16(3), May 1994, 872--923.

! L. Lamport and F.B. Schneider. Verifying hyperproperties with TLA. 34th
IEEE Computer Security Foundations Symposium. (Virtual Conference. June
2021), 1--16. Distinguished paper award.

18

