Verifying Hyperproperties
with TLA

Fred B. Schneider

Samuel B Eckert Professor of Computer Science

Department of Computer Science
Cornell University
Ithaca, New York 14853
U.S.A.

Joint work with Leslie Lamport

Appears in:
Proceedings 4th IEEE Computer Security Foundations Symposium.
June 2021

Overview

e Hyperproperties
— What and Why

o LA
— Important characteristics

e TLA verification of hyperproperties

Hyperproperties

behavior: an infinite sequence of states
O =3S590S1S2 ... §j ...

Property: A predicate on individual behaviors.

— Any sequential, concurrent, or distributed program (!)
— Partial correctness, total correctness

— Mutual exclusion
— Termination / Eventual service

Hyperproperty: A predicate on sets of behaviors.
— Information flow

— Memory consistency

Verification of Hyperproperties?

e Led to "new” methods being created.
— Logix X + more stuff = Logic hyper-x

e But new methods are not necessary!
— What attributes of an existing method are required?
— Why.

Properties and Predicates

Property: set P of behaviors defined by predicates P on behaviors o
gEP & Pistrueon o
=og€epP

Program: predicate S on behaviors that defines a set S of behaviors

SEP= ScP
=(Vo: 0€ES= 0g€EP)
=(V0: al=5’=>al=}3)
=(Va: 0|=(.§=>13))
= (S=P)

TLA is a logic where programs S are easily expressed as formulas S.

Universal Domains for States (rgmnt)

“= (S = P)"” means “truein all interpretations ¢!
g: SySq...5; ... Whatvariables doess; map?

Expect:

P, eQ
=PAQ

Soundness then requires:
States in a behavior ¢ must map all variables to values.
... including variables not in P and not in Q

Stuttering (rgmnt)

Example: Clock specifications (seconds shouldn’t matter)

HMS behaviors are increasing: hrs h, mins m, secs s;
HM behaviors are increasing: hrs h, mins m.
= HMS = HM ?
<3:59:50> ... <3:59:59> <4:00:00> ... E HMS
<3:59> <4:00> ... E HM
<3:59:50> ... <3:59:59> <4:00:00> ... == HM

— HMS = HM !

Conclusion: Predicates must be stuttering insensitive or
else they constrain unnamed variables. Specifications should
constrain a system but not the whole universe!

Toward verification of hyperproperties:

Hyperproperties as Predicates

A hyperproperty is defined by a predicate on properties P.

A finitary hyperproperty 7/ (P) is always equivalent to
V/3d0, € P: ... V/30, € P: J(oy,...,01)

where J(-) does not depend on P.

Translate Sets to Predicates 1/2

V/3d0, € P:..Y/30, € P: J(0y,...,0%)

Translate: Set membership to predicate satisfaction
- Yo €EP:.. intoVvo:P(o)=> ..
- 30 €P:... into3da:P(o) A ..

Translate Sets to Predicates 22

Translate: Predicates on behaviors to Temporal Logic
formulas on variables

- J(...,03,...)into J(..., X, ...)
where X, X,, ..., X}, are disjoint lists. [CF Self~Composition]

—

01 %p:

) -

s T 1T -

Ok-

Temporal Logic inference or model checking does the rest.
We have: Reduced hyperproperty verif to property verif!

v3-Hyperproperties in TLA

A subclass of finitary hyperproperties:
P(x) A--ANP(x%) ANK (%, ., %))
= (%41 - Xt P(Xj41) A AP(Ty)
A L(Xq, ..., %))

e A class of formulas TLA* model checker handles.

e Class is expressive enough to handle all hyperproperties
we have encountered in literature.

10

Why Sl: GNI case study 1/4

Generalized Non-interference (GNI): For any behaviors
g, and o, in P, there is a behavior g5 exhibiting the public
events of g; and the secret events of o,.

P(x) AP(%,) = (Qis: P(%3) AL(%y, %3, %3))

L(xy, %y, %3) < O(pub(i3) = pub(iy) A sec(i3) = sec(%y))

11

Why Sl: GNI case study 2/4

P(x,) NP(xXy) = (3xs: P(x3) AL(Xy, X, X3))

L%y, %, %3) & O(pub(ixz) = pub(¥Xy) A sec(X3) = sec(i;))

Example: P(x,): steps ps(x;) alternates with ss(x,),
where:

- ps(x;) step updates pub(i;) but not sec(x;)

- ss(x,) step updates sec(x;) but not pub(i,)

12

Why Sl: GNI case study 3/4

P(x,) NP(xXy) = (3xs: P(x3) AL(Xy, X, X3))

LL(iq,%,,%3) ¥ O(pub(xs) = pub(ixy) Asec(x3) = sec(x,))

X1: 51 ps(xy) sy ss(xy) s3 ps(ey) sy ...
fz: tl pS(fz) tz t3 SS(fz) t4

X3: u; ps(iz) u, u; 27?7 uy, ..

13

Stuttering Insensitivity (Sl)

Behaviors ¢ and 7 are stuttering equivalent if deleting
repeated values from each produces identical sequences.

e Define o E (f ~g) iff ol and o|, are stuttering equivalent, where
projection o is sequence of values o gives to state function f.

TLA is a linear-time temporal logic where all formulas are SI.

e S = P can mean S satisfies/implements P

e Can “form” a behavior for execution that combines executions
described by behaviors ¢, and o, (needed for some hyperproperties).

14

Why SI: GNI case study 4/4

P(x)) AP(x) =
(3%3, V1, V20 V1 ~% N Yo ~%; A P(x3)
A L(¥1, 72, %3))
LL(iq1,%,,%3) ¥ O(pub(xs) = pub(ixy) Asec(x3) = sec(x,))

o y, ~ X, Yy, ~ X, accounts for SI behaviors in P(.

15

v3-Hyperproperties Examples

e Generalized Non-interference: For any behaviors ¢; and o, in
P, there is a behavior g5 exhibiting the public events of ¢; and the
secret events of g,.

e Observational non-determinism. Two system behaviors with
same initial public state are public-stuttering equivalent.

e Non-interference. Deleting secret commands has no effect on
public outputs.

e Possibilistic non-interference. If g; and g, have the same initial
public values then the exists a behavior g; with the same initial
state as g, and the same public values as g; throughout.

16

Summary

e Hyperproperties provide needed expressiveness for
security and concurrency.
e Existing logics + self composition works if:

— States map all variables.
= Already needed for ordinary compositionality
— Behaviors are stuttering insensitive.
= Already needed for “implements” to be implication (=)

e TLA+ is such a logic, used in industry and with a model
checker for support.

17

Reading

e M. Clarkson and F.B. Schneider. Hyperproperties. Journal of Computer
Security 18 (2010).

e L. Lamport. The temporal logic of actions. ACM Transactions on
Programming Languages and Systems, 16(3), May 1994, 872--923.

e L. Lamport and F.B. Schneider. Verifying hyperproperties with TLA. 34th
IEEE Computer Security Foundations Symposium. (Virtual Conference. June
2021), 1--16. Distinguished paper award.

18

