
Verifying Timing-Centric
Software Systems

Verifying Timing-Centric
Software Systems

Sanjit A. SeshiaSanjit A. Seshia

EECS DepartmentEECS Department
UC BerkeleyUC Berkeley

May 2011

Students: Jon Kotker, Dorsa Sadigh,
Sagar Jain, Min Xu, Andrew Chan, Lisa Yan

Collaborators: A. Rakhlin
Funding Sources: NSF, MuSyC, Industry sponsors

– 2 –
S. A. Seshia

Timing Analysis is Central to Correctness
of Cyber-Physical Systems
Timing Analysis is Central to Correctness
of Cyber-Physical Systems

Does the brake-by-wire software
always actuate the brakes within
1 ms?

Can the pacemaker software
trigger a pace more frequently
than prescribed?

– 3 –
S. A. Seshia

Several Timing Analysis ProblemsSeveral Timing Analysis Problems

 WorstWorst--case execution time (case execution time (WCETWCET) estimation) estimation
 Estimating Estimating distributiondistribution of execution timesof execution times
 ThresholdThreshold property: produce a test case that property: produce a test case that

causes a program to violate its deadlinecauses a program to violate its deadline
 SoftwareSoftware--inin--thethe--loop simulationloop simulation: predict : predict

execution time of particular program pathexecution time of particular program path

ALL involve ALL involve predicting timingpredicting timing forfor
some/all executions of a programsome/all executions of a program!!

– 4 –
S. A. Seshia

What’s Hard about Timing AnalysisWhat’s Hard about Timing Analysis

PROGRAM

Timing estimate
(e.g. worst case)

UNDECIDABLE PROBLEM!

Timing
Analysis

Tool

However: Only need to consider terminating programs
• statically-known bounds on loop iterations, recursion depth

– 5 –
S. A. Seshia

Example of Software TaskExample of Software Task
altitude_control_taskaltitude_control_task() from implementation of software () from implementation of software

controller of controller of ““Paparazzi UAVPaparazzi UAV””
main.c:
…
while(1) {
…
periodic_task(…);
…

}

switch(…) {
case 0: …

altitude_control_task(…);
…

}

– 6 –
S. A. Seshia

What’s Hard about Timing AnalysisWhat’s Hard about Timing Analysis

TERMINATING
PROGRAM

Timing
Analysis

Tool

Program timing depends HEAVILY on the program’s
environment (platform): processor, memory hierarchy,
operating system, network, I/O devices, …

Timing estimate
(e.g. worst case)

– 7 –
S. A. Seshia

OutlineOutline

 Challenge: Platform (Environment) ModelingChallenge: Platform (Environment) Modeling
 The The GameTimeGameTime Approach: Learning ProgramApproach: Learning Program--

Specific Environment ModelSpecific Environment Model
 Conclusion and Future DirectionsConclusion and Future Directions

– 8 –
S. A. Seshia

Simplifying the ProblemSimplifying the Problem

 Program = Sequential, Program = Sequential,
terminating programterminating program

 Runs uninterruptedRuns uninterrupted

 Environment = Environment =
SingleSingle--core Processor + core Processor +
Instruction/Data CacheInstruction/Data Cache

– 9 –
S. A. Seshia

Simple Illustrative ProgramSimple Illustrative Program

Control-flow graph
(loop bound = 1)

flag!=0

flag=1; (*x)++;

*x += 2;

flag!=0

flag!=0

flag=1; (*x)++;

CFG unrolled
to a DAG

*x += 2;

while(!flag)
{

flag = 1;
(*x)++;

}
*x += 2;

– 10 –
S. A. Seshia

Simple Illustrative ProgramSimple Illustrative Program

flag!=0

flag!=0

flag=1; (*x)++;

CFG unrolled
to a DAG

*x += 2;

On a processor
with a data cache

x

– 11 –
S. A. Seshia

Simple Illustrative ProgramSimple Illustrative Program

flag!=0

flag!=0

flag=1; (*x)++;

CFG unrolled
to a DAG

*x += 2;

On a processor
with a data cache

x

Case 1:
x is originally
in cache

x

x x

– 12 –
S. A. Seshia

Simple Illustrative ProgramSimple Illustrative Program

flag!=0

flag!=0

flag=1; (*x)++;

CFG unrolled
to a DAG

*x += 2;

On a processor
with a data cache

Case 2:
x is NOT
originally in
cache

cache miss

x

x

cache miss

– 13 –
S. A. Seshia

Challenge of Timing AnalysisChallenge of Timing Analysis

flag!=0

flag!=0

flag=1;
(*x)++;

CFG unrolled
to a DAG

*x += 2;

On a processor
with a data
cache

x

Timing of an edge (basic
block) depends on:
• Path it lies on
• Initial platform state

Challenges:
• Exponential number of
paths and platform states!
• Lack of visibility into
platform state

– 14 –
S. A. Seshia

Current State-of-the-art for
Timing Analysis
Current State-of-the-art for
Timing Analysis

 Program = Sequential, Program = Sequential,
terminating programterminating program

 Runs uninterruptedRuns uninterrupted

 Environment = Environment =
SingleSingle--core Processor + core Processor +
Instruction/Data CacheInstruction/Data Cache

Timing Model

PROBLEM:
Takes several man-

months to construct!
Also: limited to

extreme-case analysis

– 15 –
S. A. Seshia

Existing Approaches: One-size-fits-all? Existing Approaches: One-size-fits-all?

 Why construct a Why construct a
SINGLE timing model SINGLE timing model
for ALL programs?for ALL programs?

 We are only interested We are only interested
in analyzing a specific in analyzing a specific
program.program.

 Why not Why not automatically automatically
inferinfer a a programprogram--
specificspecific timing model?timing model?

– 16 –
S. A. Seshia

OutlineOutline

 Challenge: Platform (Environment) ModelingChallenge: Platform (Environment) Modeling
 The The GameTimeGameTime Approach: Learning ProgramApproach: Learning Program--

Specific Environment ModelSpecific Environment Model
 Conclusion and Future DirectionsConclusion and Future Directions

– 17 –
S. A. Seshia

Our Approach and ContributionsOur Approach and Contributions

Model the estimation problem as a GameModel the estimation problem as a Game
–– Tool vs. PlatformTool vs. Platform

 MeasurementMeasurement--based, but minimal instrumentationbased, but minimal instrumentation
–– Perform Perform endend--toto--endend measurements of selected measurements of selected

(linearly many) paths on platform(linearly many) paths on platform
 Learn Environment ModelLearn Environment Model

–– Automatically Automatically learnlearn a programa program--specific model of specific model of
platformplatform’’s behaviors behavior

 Online, randomized algorithm: Online, randomized algorithm: GameTimeGameTime
–– Theoretical guarantee: can find WCET with arbitrarily Theoretical guarantee: can find WCET with arbitrarily

high probability under some assumptionshigh probability under some assumptions
 Uses Uses satisfiabilitysatisfiability modulo theories (SMT) solvers modulo theories (SMT) solvers

for test generationfor test generation

[ICCAD ’08, ACM TECS]

– 18 –
S. A. Seshia

The GameTime Approach: OverviewThe GameTime Approach: Overview
Game-Theoretic Online Learning +

Satisfiability Solving Modulo Theories (SMT)

PROGRAM CONTROL-FLOW
GRAPH

EXTRACT BASIS PATHS

i1
i2

i3

SMT SOLVER GENERATES
TEST INPUTS

PREDICT
TIMING

PROPERTIES
(worst-case,

distribution,etc.)

LEARNING
ALGORITHM

i1
i2
i3

…

42
75
101

…

MEASURE
EXECUTION

TIMES

online

Publication: S. A. Seshia and A. Rakhlin, “Quantitative Analysis of Systems Using
Game-Theoretic Learning”, ACM Trans. Embedded Computing Systems.

– 19 –
S. A. Seshia

The Game FormulationThe Game Formulation

 Challenge: Exponentially many program paths and Challenge: Exponentially many program paths and
platform states, lack of visibilityplatform states, lack of visibility

 Model as a 2Model as a 2--player Game: Tool vs. Platformplayer Game: Tool vs. Platform
–– Program paths controlled by toolProgram paths controlled by tool
–– Platform states uncontrollable (controlled by Platform states uncontrollable (controlled by

adversary)adversary)

 Problems: Problems:
–– How to How to select pathsselect paths??
–– What is the What is the platform modelplatform model and how do we and how do we learn itlearn it??

– 20 –
S. A. Seshia

Must find:
Longest path in the CFG

Only deal with control-dependent
timing

Data-dependence: paths inputs

Search Space = PathsSearch Space = Paths

– 21 –
S. A. Seshia

A Path is a Vector x ∈ {0,1}mA Path is a Vector x ∈ {0,1}m

1

1

1

1

1

1

(m = #edges)

Insight:
Only need to sample

a Basis
of the space of paths

– 22 –
S. A. Seshia

Basis Paths Basis Paths

1

1

1

1

1

1

#(basis paths)
· m

Useful to compute
certain special
bases called
“barycentric
spanners”

– 23 –
S. A. Seshia

Platform ModelPlatform Model

2

1

1 3

1

1

5 1

flag!=0

flag!=0

flag=1; (*x)++;

*x += 2;

 Adversary picks Adversary picks
weights for CFG weights for CFG
edges in two stagesedges in two stages

 Important: weights Important: weights
are pathare path--dependentdependent

– 24 –
S. A. Seshia

Platform Model Platform Model

Weights on edges of unrolled CFG
&

Path-specific perturbation

Models path-dependent timing

Models path-independent timing

w

+

– 25 –
S. A. Seshia

Formalizing Repeatable TimingFormalizing Repeatable Timing

Path Dependence Path Dependence
 = 0= 0
 | | | | ··

 | E [] | · max

Platform Starting State Dependence
 w independent of starting state (too strong!)
 w fixed, starting from known state
 w selected adversarially (see ACM TECS paper)

w

+

– 26 –
S. A. Seshia

Platform Model: SummaryPlatform Model: Summary

Weights on edges of unrolled CFG
&

Path-specific perturbation

w ∈ Rm

 ∈ Rm

Time taken by path x is x · (w +)

The platform is an adversary picking edge weights

– 27 –
S. A. Seshia

Timing Analysis Game (Our Model)Timing Analysis Game (Our Model)

Played over several rounds Played over several rounds t = 1, 2, 3, t = 1, 2, 3, ……, ,

Tool
picks xt

CFG
1

Platform
picks wt (= w)

5
7

11

At each round t:

Tool observes lt = xt · (wt + t)

Platform picks t(xt)
(-1, -1, -1, -1)

(5+7+1+11) - 4 = 20

At round At round : Tool makes prediction (longest path : Tool makes prediction (longest path x*x*)
 Tool wins if its prediction is correct

– 29 –
S. A. Seshia

Theorem about Estimating Distribution
(pictorial view)
Theorem about Estimating Distribution
(pictorial view)

 is O(b max) w. high prob.

Mean Perturbation
Assumption: ∀ x ∈ Paths
| E [x . t] | · max

– 30 –
S. A. Seshia

GameTime Algorithm: IntuitionGameTime Algorithm: Intuition

 Suppose we knew Suppose we knew wwtt + + tt for all for all tt
 Then, calculate Then, calculate x* = argmaxx ∈ Paths maxt=1.. x · (wt + t)

 Idea: Idea: Estimate Estimate wwtt + + tt to sufficiently high accuracyto sufficiently high accuracy
 Problem: At any time t, we only see Problem: At any time t, we only see lltt

 Two design decisions in Two design decisions in GameTimeGameTime::
–– How to pick How to pick xxtt ? ?

Choose a Choose a ““basis pathbasis path”” uniformly at randomuniformly at random
–– How to estimate How to estimate wwtt + + tt from from lltt ? ?

Perform Perform ““least squares estimationleast squares estimation””

– 31 –
S. A. Seshia

Summary of Experimental ResultsSummary of Experimental Results

 GameTimeGameTime is Efficientis Efficient
–– E.g.: 7 x 10E.g.: 7 x 101616 total paths vs. < 200 basis pathstotal paths vs. < 200 basis paths

 Sampling basis paths tells us about longer paths Sampling basis paths tells us about longer paths
we do not samplewe do not sample
–– Found paths 25% longer than sampled basisFound paths 25% longer than sampled basis

 GameTimeGameTime can accurately estimate the distribution can accurately estimate the distribution
of execution times with few measurementsof execution times with few measurements
–– Measure basis paths, predict other pathsMeasure basis paths, predict other paths

 GameTimeGameTime does better than Random Testingdoes better than Random Testing
–– Found estimates twice as largeFound estimates twice as large

 GameTimeGameTime can even find larger WCET estimatescan even find larger WCET estimates
than conservative WCET estimation toolsthan conservative WCET estimation tools

(details in ICCAD’08, ACM TECS papers)

– 32 –
S. A. Seshia

Estimating the Distribution: Modular Exponentiation
with 8-bit exponent – predict 256 paths from measuring
9 basis paths

Estimating the Distribution: Modular Exponentiation
with 8-bit exponent – predict 256 paths from measuring
9 basis paths

For StrongARM
processor

– 33 –
S. A. Seshia

Estimating the Distribution: Modular Exponentiation:
predictions in blue, actual 256 measurements in red
Estimating the Distribution: Modular Exponentiation:
predictions in blue, actual 256 measurements in red

For StrongARM
processor

– 34 –
S. A. Seshia

GameTime’s Accuracy: Different
Starting Platform States
GameTime’s Accuracy: Different
Starting Platform States

Error = |Actual – Predicted|
Actual

– 35 –
S. A. Seshia

ConclusionsConclusions

 Timing analysis important for cyberTiming analysis important for cyber--physical physical
systemssystems

 Environment modeling is the hard part Environment modeling is the hard part
–– Current methods too tedious and errorCurrent methods too tedious and error--proneprone

 GameTimeGameTime: Automatic model generation: Automatic model generation
–– Active learning from measurementsActive learning from measurements
–– SMTSMT--based basis path testing (a form of coverage)based basis path testing (a form of coverage)

 Future workFuture work
–– Concurrent software: interrupts, multitasking, etc. Concurrent software: interrupts, multitasking, etc.

(see NASA(see NASA’’s Toyota UA report)s Toyota UA report)
–– DataData--dependent timingdependent timing
–– Other quantitative analysis problems (e.g. predicting Other quantitative analysis problems (e.g. predicting

energy consumption)energy consumption)

