
Z3str3: A DPLL(T) Solver
for a Theory of
Strings and Integers
Murphy Berzish 1, Yunhui Zheng 2, Vijay Ganesh 1

1 University of Waterloo

2 IBM Research

Outline
● Background and overview

● The Z3str3 string solver

● New heuristics
– Theory-aware branching

– Theory-aware case split optimization

● Experimental results

● Future work and conclusions

THE Z3STR3 STRING SOLVER PAGE 2

Overview
● String SMT solvers increasingly used for security

applications and analysis of string-intensive programs

● Many tools developed to address these challenges and
applications: Z3str2, CVC4, Norn, S3, Stranger

THE Z3STR3 STRING SOLVER PAGE 3

The Z3str3 String Solver
● Successor to Z3-str and Z3str2

● Native first-class theory solver in Z3 SMT solver framework

● Primary string solver in Z3 official release

● Reasoning about strings, length, regular expressions, and
high-level string operations

● Direct access to the core solver of Z3 has enabled new
heuristics

THE Z3STR3 STRING SOLVER PAGE 4

Architecture of Z3str3

THE Z3STR3 STRING SOLVER PAGE 5

Input Language of Z3str3

THE Z3STR3 STRING SOLVER PAGE 6

String and integer constants “abc”, “new\nline”, 123

String concatenation (str.++ “abc” “def”)

String length (str.len “abcdef”)

Integer arithmetic (+ 2 2)

String equality (= X “abc”)

Integer comparison (= X 42), (<= A 100)

Regular language membership (str.in.re “aaa” (re.* (str.to.re “a”)))

High-level string operations (str.prefixof “abc” “abcdef”),
(str.contains X “abc”), ...

Theory-Aware Branching
● Traditional DPLL(T) architecture separates core (Boolean)

solver from theory solvers

● Theory solvers have contextual information which core
solver doesn't know

● Idea: use this to improve performance in core by preferring
“easier” or “more important” literals

THE Z3STR3 STRING SOLVER PAGE 7

Theory-Aware Branching
● Activity-based branching heuristic (similar to VSIDS):

branch on literal with highest activity
– Activity increased by conflicts, decays over time

● Theory solvers can increase or decrease activity of literals

● Advantage: give the core solver information regarding
the relative importance of each branch, allowing the
theory solver to exert additional control over the
search.

THE Z3STR3 STRING SOLVER PAGE 8

Theory-Aware Branching
● Consider the case where the string solver learns

X . Y = A . B
(for non-constant terms A, B, X, Y)

● The solver considers three possible arrangements:

– X = A, Y = B

– X = A . s
1
, s

1
 . Y = B for a fresh non-empty string s

1

– X . s
2
 = A, Y = s

2
 . B for a fresh non-empty string s

2

● The first arrangement is the simplest to check: no new variables

● Theory solver adds activity to the literal corresponding to this
arrangement; this prioritizes checking it

THE Z3STR3 STRING SOLVER PAGE 9

Theory-Aware Case Split
● A different way to use information from theory solvers to

guide search in the core

● Theory solver can create disjunctions of Boolean literals
which are pairwise mutual exclusive

● We refer to this as a “theory case split”

THE Z3STR3 STRING SOLVER PAGE 10

Theory-Aware Case Split
● Consider the case where the string solver learns:

X . Y = s = c
1
c

2
c

3
...c

n

for variables X, Y and where each c
i
 is a single character in

the string constant s

● There are n+1 possible ways in which we can split s over X
and Y

● Each arrangement represents a mutually exclusive case

THE Z3STR3 STRING SOLVER PAGE 11

Theory-Aware Case Split
● The Boolean abstraction hides the fact that these are

mutually exclusive cases

● Naive solution encodes O(n2) extra mutual exclusion clauses

● Congruence closure can “discover” this fact, but this can
result in unnecessary backtracking

● Previous work has investigated alternate encodings, e.g.
totalizers and lazy cardinality

● Our heuristic implements this mutual exclusion in the
inner loop of Z3's core solver in a theory-aware
manner

THE Z3STR3 STRING SOLVER PAGE 12

Theory-Aware Case Split
● Theory solver provides a set S of mutually-exclusive

literals to the core solver

● During branching, core solver checks whether the
current branching literal is in some set S. If yes, that
literal is assigned true and all other literals in S are
assigned false.

● During propagation, if the core solver assigns a literal in
some set S, the solver must check whether any two
literals L

1
, L

2
 in S have both been assigned true. If so, the

core solver generates conflict clause (not L
1
 or not L

2
)

THE Z3STR3 STRING SOLVER PAGE 13

Experimental Results

THE Z3STR3 STRING SOLVER PAGE 14

Kaluza benchmark results. Timeout = 20 seconds.

THE Z3STR3 STRING SOLVER

Experimental Results
Input Z3str3 Z3str2 CVC4 S3

result time (s) result time (s) result time (s) result time
(s)

pisa-000.smt2 sat 0.03 sat 0.25 sat 0.08 sat 0.07

pisa-001.smt2 sat 0.01 sat 0.19 sat 0.00 sat 0.07

pisa-002.smt2 sat 0.01 sat 0.10 sat 0.00 sat 0.05

pisa-003.smt2 unsat 0.00 unsat 0.02 unsat 0.01 unsat 0.02

pisa-004.smt2 unsat 0.01 unsat 0.05 unsat 0.39 unsat 0.05

pisa-005.smt2 sat 0.06 sat 0.14 sat 0.02 sat 0.04

pisa-006.smt2 unsat 0.01 unsat 0.05 unsat 0.32 unsat 0.05

pisa-007.smt2 unsat 0.01 unsat 0.05 unsat 0.37 unsat 0.05

pisa-008.smt2 sat 16.58 timeout 20.00 timeout 20.00 unsat X 4.73

pisa-009.smt2 sat 12.59 sat 0.62 sat 0.00 timeout 20.00

pisa-010.smt2 sat 0.03 sat 0.09 sat 0.00 unsat X 0.02

pisa-011.smt2 sat 0.04 sat 0.06 sat 0.00 unsat X 0.02
PISA benchmark results. Timeout = 20 seconds. X = incorrect response.

PAGE 15

THE Z3STR3 STRING SOLVER

Experimental Results

Input Z3str3 Z3str2 CVC4 S3

result time (s) result time (s) result time (s) result time (s)

t01.smt2 sat 7.05 sat 1.31 sat 0.01 sat 0.23

t02.smt2 sat 0.13 sat 0.38 sat 0.01 unknown 0.04

t03.smt2 sat 0.53 sat 9.54 sat 3.82 sat X 0.14

t04.smt2 sat 0.68 sat 4.45 timeout 20.00 sat X 0.10

t05.smt2 sat 1.15 sat 16.84 sat 3.87 sat X 0.55

t06.smt2 sat 0.02 sat 0.15 sat 0.01 sat 0.13

t07.smt2 sat 2.62 sat 0.25 sat 0.00 unknown 0.02

t08.smt2 sat 0.01 sat 0.25 sat 0.17 sat X 0.03

IBM AppScan benchmark results. Timeout = 20 seconds. X = incorrect response.

PAGE 16

Future Work
● Improved heuristics for mutually referential terms

(“overlapping variables”)

● String + bit-vector reasoning

● Summaries of library functions, integration with symbolic
execution tools

THE Z3STR3 STRING SOLVER PAGE 17

Conclusions
● We present the Z3str3 string solver, newest in the Z3-str line

● Primary string solver used by Z3 official release

● Improved performance over predecessor and competitors on
majority of industrial benchmarks

● Heuristics are broadly applicable to SMT solvers

https://sites.google.com/site/z3strsolver

https://github.com/Z3prover/Z3

THE Z3STR3 STRING SOLVER PAGE 18

https://sites.google.com/site/z3strsolver
https://github.com/Z3prover/Z3

	Slide 1
	PAGE TITLE HERE
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

