Zappa for Correctly Implementing
CPSA Analyzed Protocols

John D. Ramsdell
Joshua D. Guttman lan D. Ketz

HCSS
09 May 2023

MITRE

1/14

Problem Statement

Given Security protocol specification that meets its goals
o Eg, verified using analysis tool

Want Protocol implementation meeting specification
o With assurance that it does

MITRE

2/14

Problem Statement

Given Security protocol specification that meets its goals

o Eg, verified using analysis tool
@ CPSA, for instance

Want Protocol implementation meeting specification

@ With assurance that it does

@ Zappa compiles the spec

e Coq script validates source/target pairs
for simplified core compiler

Same source file for both CPSA and Zappa

MITRE

2/14

How does Zappac work?

@ CPSA uses the Dolev-Yao adversary model.

@ Receptions are destructured using Dolev-Yao elimination rules.

» Examples: projection from a tuple and decryption.

@ Transmissions are synthesized using Dolev-Yao introduction rules.

» Examples: Tuple construction and encryption.

MITRE

3/14

Corrected Blanchet Simple Example Protocol

A— B: {{S, B‘}K;1|}KB [S generated)]
B — A: {D|}s [D generated]

CPSA Style Roles

Initiator (init role) Responder (resp role)
init — {15, Bly i1 [xcs {{lS; Bl g1 [t s — resp
o < {Dls {Dl}s <—

MITRE

4/14

CPSA Analysis From the Responder Point-of-View

Query

resp

|

Analysis
{5, Bl i [e {5, Blt i1 [e

resp € - < it

|

MITRE

5/14

CPSA Summary

Cryptographic Protocol Shapes Analyzer

@ Query is a protocol and points-of-views.

@ Analysis is concise descriptions of allowed behaviors.

@ Deduce the goals achieved from the allowed behaviors.

MITRE

6/14

Modifications to CPSA to Support Code Generation

Channels: Specify an endpoint for message reception and transmission.
@ Channels, as added to CPSA, have a distinct sort.
@ Channels cannot be included in messages.

Proc Info: Specify generated procedure parameters and return values.
@ All channels must be included in the parameters.

resp: @ Parameters C, B, K4, and Kgl.
@ Receive on C: {{S, B[}KA_l\}KB.
© Generate D.
© Sendon C: {|D}}s.
© Return D and S.
MITRE

7/14

Zappac Output for the Responder Role

Parameters

© Parameters C, B, Ky, and Kgl.

/// Role: resp (blanchet.scm:16:3)
pub fn resp<M, C, Z: Zil<M, C>>(
z: &Z, vO: &mut C, vi: &M, v2: &M, v3: &M
) —> Result<M, M)> {
z.chck(b"name", v1)7;
z.chck(b"akey", v2)7;
z.chck(b"~akey", v3)7;

MITRE

8/14

Zappac Output for the Responder Role

Reception

@ Receive on C: {5, B[}KA_1|}KB.

// Recv (blanchet.scm:19:6)

let v4 = z.recv(b"enc", v0)7;

let vb = z.adec(b"enc", &v4, v3)7;
let v6 = z.vrfy(b"enc", &v5, v2)7;
let v7 = z.proj(b"cat“, 2, &v6, 0)7;

z.chck(b"skey", &v7)7;

let v8 = z.proj(b"cat", 2, &v6, 1)7;
z.chck(b"name", &v8)7;

z.same(&v8, v1)7;

MITRE

9/14

Zappac Output for the Responder Role

Transmission and Return Values

© Generate D.
Q Send on C: {|D}}s.
@ Return D and S.

// Send (blanchet.scm:20:6)

let v9 = z.frsh(b"data")?;

let v10 = z.senc(b"enc", &v9, &v7)7;
z.send(v0, &vi10)7;

0k ((v9, v7))

MITRE

10/14

Zappa Summary

@ Source is a CPSA query.

@ Target contains a procedure for each role in the protocol.

@ Implement the Zil trait to create an executable.

> Use the extensive Zappa libraries.

» Provide your own implementation of the Zil trait.

MITRE

11/14

Why is Zappac Output Correct?

@ Zappac implements the Roletran algorithm.

» Roletran's source file is a simplification of Zappac's.

» Roletran’s target file is easily translated into Zappac's.

e A Coq scrip automatically proves Roletran source/target pairs have
the same semantics, and therefore achieve the same goals.
» Script proves:
* A run of the protocol, implies an execution for its procedure (Liveness).
* An execution of the proceduce, implies a run of the protocol (Safety).
» The procedure semantics is specified using a small step semantics.

» Zil method implementations must honor the small step semantics.

MITRE

12/14

Zappa Runtime Systems

@ Two distinct runtime system libraries are provided.

@ Tools automatically generate parts of a runtime system.

@ ASN.1 specified communication formats are supported.

Zappa system supports protocols with state.

MITRE

13/14

Conclusion

Assured Protocol Implementation Scheme

@ Use CPSA to ensure your protocol
achieves desired goals.

@ Use Zappa to ensure the generated code
achieves the same goals.

@ CPSA and Roletran are available here.
Roletran paper is here.

MITRE

14/14

https://hackage.haskell.org/package/cpsa
https://link.springer.com/chapter/10.1007/978-3-030-91631-2_20

