
Zappa for Correctly Implementing
CPSA Analyzed Protocols

John D. Ramsdell
Joshua D. Guttman Ian D. Ketz

HCSS
09 May 2023

1 / 14

Problem Statement

Given Security protocol specification that meets its goals

Eg, verified using analysis tool

CPSA, for instance

Want Protocol implementation meeting specification

With assurance that it does

Zappa compiles the spec
Coq script validates source/target pairs
for simplified core compiler

Same source file for both CPSA and Zappa

2 / 14

Problem Statement

Given Security protocol specification that meets its goals

Eg, verified using analysis tool
CPSA, for instance

Want Protocol implementation meeting specification

With assurance that it does
Zappa compiles the spec
Coq script validates source/target pairs
for simplified core compiler

Same source file for both CPSA and Zappa

2 / 14

How does Zappac work?

CPSA uses the Dolev-Yao adversary model.

Receptions are destructured using Dolev-Yao elimination rules.

▶ Examples: projection from a tuple and decryption.

Transmissions are synthesized using Dolev-Yao introduction rules.

▶ Examples: Tuple construction and encryption.

3 / 14

Corrected Blanchet Simple Example Protocol

A → B : {|{|S ,B|}K−1
A
|}KB

[S generated]

B → A : {|D|}S [D generated]

CPSA Style Roles

Initiator (init role)

•

init {|{|S,B|}K−1
A
|}KB

{|D|}S

Responder (resp role)

•

resp{|{|S,B|}K−1
A
|}KB

{|D|}S

4 / 14

CPSA Analysis From the Responder Point-of-View

Query

•

resp

Analysis

•

resp init≻
{|{|S,B|}K−1

A
|}KB

{|{|S,B|}K−1
A
|}KB

5 / 14

CPSA Summary
Cryptographic Protocol Shapes Analyzer

Query is a protocol and points-of-views.

Analysis is concise descriptions of allowed behaviors.

Deduce the goals achieved from the allowed behaviors.

6 / 14

Modifications to CPSA to Support Code Generation

Channels: Specify an endpoint for message reception and transmission.

Channels, as added to CPSA, have a distinct sort.
Channels cannot be included in messages.

Proc Info: Specify generated procedure parameters and return values.

All channels must be included in the parameters.

resp: 1 Parameters C ,B,KA, and K−1
B .

2 Receive on C : {|{|S ,B|}K−1
A
|}KB

.

3 Generate D.
4 Send on C : {|D|}S .
5 Return D and S .

7 / 14

Zappac Output for the Responder Role
Parameters

1 Parameters C ,B,KA, and K−1
B .

/// Role: resp (blanchet.scm:16:3)

pub fn resp<M, C, Z: Zil<M, C>>(

z: &Z, v0: &mut C, v1: &M, v2: &M, v3: &M

) -> Result<(M, M)> {

z.chck(b"name", v1)?;

z.chck(b"akey", v2)?;

z.chck(b"~akey", v3)?;

8 / 14

Zappac Output for the Responder Role
Reception

2 Receive on C : {|{|S ,B|}K−1
A
|}KB

.

// Recv (blanchet.scm:19:6)

let v4 = z.recv(b"enc", v0)?;

let v5 = z.adec(b"enc", &v4, v3)?;

let v6 = z.vrfy(b"enc", &v5, v2)?;

let v7 = z.proj(b"cat", 2, &v6, 0)?;

z.chck(b"skey", &v7)?;

let v8 = z.proj(b"cat", 2, &v6, 1)?;

z.chck(b"name", &v8)?;

z.same(&v8, v1)?;

9 / 14

Zappac Output for the Responder Role
Transmission and Return Values

3 Generate D.
4 Send on C : {|D|}S .
5 Return D and S .

// Send (blanchet.scm:20:6)

let v9 = z.frsh(b"data")?;

let v10 = z.senc(b"enc", &v9, &v7)?;

z.send(v0, &v10)?;

Ok((v9, v7))

}

10 / 14

Zappa Summary

Source is a CPSA query.

Target contains a procedure for each role in the protocol.

Implement the Zil trait to create an executable.

▶ Use the extensive Zappa libraries.

▶ Provide your own implementation of the Zil trait.

11 / 14

Why is Zappac Output Correct?

Zappac implements the Roletran algorithm.

▶ Roletran’s source file is a simplification of Zappac’s.

▶ Roletran’s target file is easily translated into Zappac’s.

A Coq scrip automatically proves Roletran source/target pairs have
the same semantics, and therefore achieve the same goals.

▶ Script proves:

⋆ A run of the protocol, implies an execution for its procedure (Liveness).

⋆ An execution of the proceduce, implies a run of the protocol (Safety).

▶ The procedure semantics is specified using a small step semantics.

▶ Zil method implementations must honor the small step semantics.

12 / 14

Zappa Runtime Systems

Two distinct runtime system libraries are provided.

Tools automatically generate parts of a runtime system.

ASN.1 specified communication formats are supported.

Zappa system supports protocols with state.

13 / 14

Conclusion
Assured Protocol Implementation Scheme

Use CPSA to ensure your protocol
achieves desired goals.

Use Zappa to ensure the generated code
achieves the same goals.

CPSA and Roletran are available here.
Roletran paper is here.

14 / 14

https://hackage.haskell.org/package/cpsa
https://link.springer.com/chapter/10.1007/978-3-030-91631-2_20

