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Zero-knowledge Proofs
● Allow a prover to convince a verifier that they posses some 

piece of knowledge without revealing the information itself
○ Prove knowledge of a SHA256 preimage for some value x
○ Demonstrate your private transaction in Zcash is valid

● The statement being proved is represented as either:
○ Boolean circuit: XOR, NOT, AND
○ Arithmetic circuit: ADD, NEG, MUL

● Circuit must be a DAG and the entire circuit must be executed
● Performance depends on number of AND/MUL gates
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ZK Proofs of Exploitability 
● Allow vulnerability researchers to prove they have a valid exploit 

without revealing techniques
● Remove trust from bug disclosure process, protect users
● Must operate at the binary and processor level

○ Source-level vulnerabilities are very common and rarely lead to exploits
○ Memory protections, heap layout, and syscalls are processor/runtime specific
○ Rarely have access to source

● Challenges:
○ How do we model exploits as ZK circuits
○ Provide users with simple-to-use ZK statement compiler
○ Find ZK proof systems that are efficient for very large circuits
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Results: Microcorruption
● CTF where players break into a lock controlled by an MSP430
● Covers common exploitation techniques:

○ Stack/heap overflow, command injection, and ROP gadgets
○ Bypass protections such as ASLR, DEP, and stack canaries

● Our toolchain can prove the Microcorruption challenges with a 
ZK MSP430 processor running at 30.5 Hz

● Proofs require 128 kb per instruction
● Can complete an exploit that takes 12k steps to finish in ~7 min
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Results: Toolchain
● Circuit Compiler:

○ Model processor behavior in Verilog
○ Use a combination of Yosys and custom backend to generate ZK statements
○ Improve synthesis time and memory usage by 99% and 88%, respectively
○ User only needs to input a valid MSP430 binary

● ZK Proof System: Reverie
○ First highly-optimized Rust implementation of an MPC-based ZK proof system
○ No trusted setup or non-standard cryptographic assumptions 
○ Optimizes for prover time: 2 orders of magnitude faster than other ZK provers
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Modeling RAM Programs in ZK
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Naive Approach
● Prover runs program on an emulator with their exploit
● Emulator produces a program trace
● Trace is the secret input to the ZK proof system
● ZK statement is a sequence of circuits that check whether each 

trace entry logically follows from the previous one
● Each step of the circuit contains a register file, ALU, RAM, etc
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Problems with Naive Approach
● Very large constant factors 

○ Processor circuit (decoder, ALU, register file)
○ Must mux the entirety of RAM at every step

● Totally infeasible for even small amounts of RAM
● Want to develop solution that scales linearly with number of 

memory accesses, not total size of RAM
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Better Approach (Ben-Sasson et al.)
● Check memory in separate proof
● Provide memory sorted trace as auxiliary input

○ Memory accesses are sorted by address
○ Ties are broken by timestamps

● Memory checker verifies that adjacent reads/writes are 
consistent 

○ If a value x is written to address y, check that subsequent reads from that address 
contain x.

○ No muxing, easy to verify constraints, linear in number of memory ops
● Augment program trace with memory hints, the alleged values 

being read from memory
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Better Approach (Ben-Sasson et al.)
● Problem: prover could input a program trace and memory trace 

that have nothing to do with each other
● Must prove program trace is a permutation of the memory trace
● Accomplished via routing networks
● Proof requires a circuit n*log(n) in the trace size
● Asymptotically worse than naive approach, but in reality much 

more efficient
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Validate memoryCheck trace validity Permutation Proof
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Our Work
● Eliminate log(n) factor in permutation proof
● Use polynomial argument: Given two lists A and B and a 

challenge x, perform the following check:

● Challenge is generated using Fiat-Shamir
● Prover cannot cheat because of Schwartz-Zippel
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Our Work
● Problem: this permutation proof is efficient for arithmetic 

circuits, but we use Boolean (multiplication is expensive)
● Solution: develop techniques for switching between Boolean 

and arithmetic circuits
○ Uses 128 AND gates to convert 64 Boolean values into 64-bit arithmetic values
○ Final cost: 256 AND gates and 2 MUL gates per memory operation

● Useful independent of the proof of vulnerability application
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Proof of Exploitability Toolchain
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Toolchain
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Circuit Compiler
● Write core circuits in Verilog and synthesize with Yosys
● Problem: when unrolling the whole RAM reduction Yosys spends 

time looking for optimizations we know don’t exist
○ For a trace with 7k instructions, Yosys uses 160GB of RAM and takes 24 hrs to finish
○ Will not scale to real exploits

● Solution: develop circuit flattener that takes advantage of the 
repetitive nature of the RAM reduction circuit

○ Use Yosys only for the one-step processor circuit and memory checker
○ Aggressively cache flattened versions these components and avoid repeating work
○ Can do 7k step trace in 6 minutes using 20GB RAM - a 99% and 88% improvement 

over Yosys, respectively
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Modeling Exploits
● Many IoT exploits can be identified by the fact that the an 

attacker has the ability to execute a certain system call
○ Unlock a door
○ Turn on a camera/microphone

● Privilege escalation can be detected via the results of a system 
call, e.g. checking if geteuid() == 0

○ ZK proof concludes with such a system call and returns the output
○ Can be extended to other syscalls like mprotect

● Prover can demonstrate RCE/ACE by having verifier challenge 
them to set PC to random values
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Reverie
● Based on recent work of Katz et al. 
● Prover run MPC protocol “in their head” and verifier opens all but one player
● Large proofs, but facilitates streaming (only needs 3.9mbps bandwidth)
● Benchmarks for computing 511 iterations of SHA256

Setup (sec) Prove (sec) Verify (sec) Size (KB)

libSNARK 1,027 360 0.002 .013

Bulletproofs - 2,555 0.044 395

Ligero - 400 4 1,500

Reverie - 9.6 7.67 112,000
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Future Work
● Model larger processors such as ARM and x86

○ Already working on x86 circuit based on 80386
○ Want to automate circuit generation for new architectures

● Support more realistic runtime environments
○ The DARPA Cyber Grand Challenge has a large corpus of vulnerable x86 

binaries that run on DECREE, a simple operating system
● Take advantage of recent ZK breakthroughs to minimize proof size

○ Interactive systems (sVOLE, GC)
○ Free disjunctions 


