Adoption of Security Analysis Tools in Software Development

Shams Al-Amin, Nirav Ajmeri, Munindar Singh, Jon Doyle, Emily Z. Berglund

Motivation

- Security tools guide developers to identify potential vulnerabilities in their codes
- However, the use of security tools is not common among developers
- □Sanctions are a way to enforce adoption of security practices among developers

Research Objective

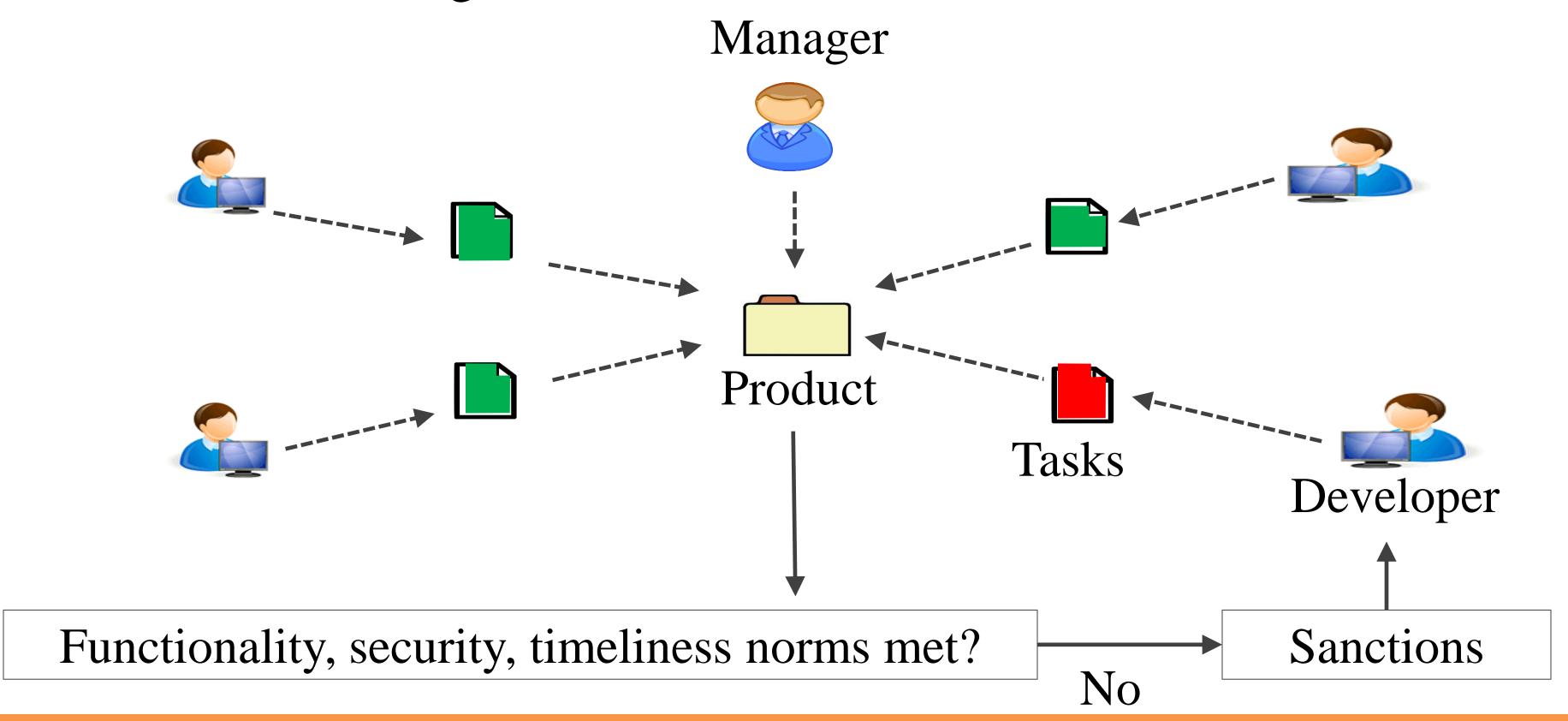
□ Research Question

Which sanctioning mechanism promotes greater adoption of security tools?

- □ Research Contributions
- -A model that will improve understanding of the adoption of security tools in developers
- -Useful for identifying appropriate sanctioning mechanisms for increasing use of security tools
- □ Novelty
- -Simulates heterogeneity of developers
- -Produces emergent adoption dynamics due to developer and manager decisions

Contribution

- □ Simulate
- -Heterogeneity in developers' skills, preferences and decisions
- -Heterogeneity in project task requirements, durations, number of developers
- -Developers' decision making to maximize utility
- -Sanctions to increase functionality or security of product
- -Dynamic interactions between developers and manager


Modeling Framework

Developer's Decision Making

- -A developer can code, run security tests, learn to code or run security tests, or do other tasks not related to project
 - -A developer only receives reward for coding or testing

☐ Manager's Sanctions: Rewards and Penalties

- -Sanctions after each project completion based on timeliness, functionality, or security
 - -Change in developer's preference of action according to sanction
 - -Individual, group, and peer sanctions
 - -Positive and negative sanctions

Preliminary results

Performances	# Sanctions	For functionality		For security	
		Individual	Group	Individual	Group
Tasks tested (%)	19	20	19	16	33
Time spent on security tasks (%)	37	37	37	32	40
Sanctions (%)	_	20	20	46	20
Sanction efficacy (%)	_	100	100	70	100

Simulation description: Number of projects: 5, developers: 10, tasks/project: 50, project duration: 55, Time required to code a task: 6, time required to test a task: 5, Maximum skill: 100, Average of skill required for tasks: 50, Average skill of developers in initialization 50

□ Observation

-Group sanctioning for security promotes better adoption of security practices

Future work

- □Conduct survey to identify the attitude of people and seed the simulation accordingly
- □ Extend the model to compare resilience and liveliness for sanctions

Science of Security
Lablet

