
Reusing Stack Traces: Automated Attack Surface
Approximation

Christopher Theisen
Department of Computer Science
North Carolina State University
Raleigh, North Carolina, USA

crtheise@ncsu.edu

Abstract —Security requirements around software systems have
become more stringent as society becomes more interconnected via
the Internet. New ways of prioritizing security efforts are needed
so security professionals can use their time effectively to find
security vulnerabilities or prevent them from occurring in the first
place. The goal of this work is to help software development teams
prioritize security efforts by approximating the attack surface of a
software system via stack trace analysis. Automated attack surface
approximation is a technique that uses crash dump stack traces to
predict what code may contain exploitable vulnerabilities. If a code
entity (a binary, file or function) appears on stack traces, then
Attack Surface Approximation (ASA) considers that code entity is
on the attack surface of the software system. We also explore
whether number of appearances of code on stack traces correlates
with where security vulnerabilities are found. To date, feasibility
studies of ASA have been performed on Windows 8 and 8.1, and
Mozilla Firefox. The results from these studies indicate that ASA
may be useful for practitioners trying to secure their software
systems. We are now working towards establishing the ground
truth of what the attack surface of software systems is, along with
looking at how ASA could change over time, among other metrics.

Index Terms—Security, Attack Surface, Security Metrics, Stack
Traces, Crashes.

I. TECHNICAL PROBLEM

One of the ways security professionals identify potentially
vulnerable code is the concept of the attack surface of a software
system. Howard et al. [1] described the attack surface as a
measure of “attackability” of a software system, along three
dimensions: targets and enablers, channels and protocols, and
access rights. The concept of the attack surface of a system has
been used previously in the context of shrinking the attack
surface of a system. Geer explores the concept of limiting attack
vectors using the example of two PDF readers: Adobe Reader
and Foxit Reader [2]. Foxit Reader reduces its attack surface by
making its document reader functionality available via plugins,

which can be disabled by users if they aren’t currently using that
feature.

While these concepts are helpful for attempting to prevent
vulnerabilities from being discovered by attacks, they do not
address finding or preventing vulnerabilities in code that must
be exposed for software to function. Security hardening efforts
on software systems help software security professionals
identify and fix vulnerabilities before malicious parties do – or
even help them to engineer code in a secure manner so
vulnerabilities are never inadvertently created in the first place.
In previous work, we explored how stack traces from crash
dumps can be used to approximate the attack surface of
software systems, specifically Windows 8 [3]. In the Windows
8 study, we found that 48.4% of binaries were seen on at least
one stack trace from Windows 8 crashes. At the same time,
94.8% of the code that vulnerabilities were fixed in was in the
same 48.4% subset of code. In another study on Mozilla Firefox
[4], 8.4% of files appeared on at least one stack trace, while
72.1% of that subset of files had vulnerabilities that were fixed.
The result suggests that security professionals may be well
served by focusing security rework efforts on the subset of code
appearing on stack traces, saving effort in the security
hardening effort space. Reducing the amount of code to be
inspected may help improve the economics of security
assessments and allow for more proactive reviews of potentially
vulnerable code. Further exploration of the use of stack trace
code entities as a metric for security efforts may be useful in the
prioritization of practitioner’s efforts in securing software
systems. We call a stack trace-based approach Attack Surface
Approximation (ASA).

The goal of this work is to help software development teams
prioritize security efforts by approximating the attack surface of
a software system via stack trace analysis. By further exploring
the idea of using stack traces from crash dumps to determine
where security vulnerabilities might be, we can show how robust
the process might be for security vulnerability identification,
along with the practicality of the approach compared to the
current ground truth in attack surface identification. We plan to
explore additional metrics derived from crash dump stack traces
in order to assist security professionals in their efforts.

Our expected contributions include:

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.
ICSE '16 Companion, May 14-22, 2016, Austin, TX, USA
© 2016 ACM. ISBN 978-1-4503-4205-6/16/05 $15.00

DOI: http://dx.doi.org/10.1145/2889160.2889263

2016 IEEE/ACM 38th IEEE International Conference on Software Engineering Companion

 859

• A practical measure of the attack surface of software
systems, using code entities on stack traces from
crashes as the primary metric.

• A determination of the ground truth of the attack
surface of software systems is, and how it compares to
ASA.

• An exploration of the generalizability of ASA, and
toolsets to help practitioners apply ASA to their own
software systems.

II. RESEARCH QUESTIONS

The research questions are as follows:

RQ1: How does attack surface approximation compare with
the “ground truth” of the attack surface?

RQ2: How does the result of attack surface approximation
change over time, and with different amounts of
available data?

RQ3: Is attack surface approximation a practical, robust, and
effective approach for prioritization of security efforts?

III. BACKGROUND AND RELATED WORK

In this section, we present background information on the
definition of attack surface, use of stack traces as a software
development metric, and current work in attack surface metrics.

A. Attack surface

The attack surface of an application, as defined by the Open
Web Application Security Project (OWASP) [5] is:

1. The sum of all paths for data/commands into and out
of the application,

2. The code that protects these paths,
3. All valuable data used in the application, including

secrets and keys, intellectual property, critical business
data, personal data, and personally identifiable
information (PII),

4. The code that protects these data.
Some examples of resources that comprise a system’s attack

surface include the following (but is not an exhaustive list) [6]:
open ports, services available on the inside of the firewall, code
that processes incoming data, and user interface forms and
fields. An attack can use these and other resources to attack a
software system. However, this definition of attack surface only
focuses on configuration of systems, and is used in practice to
limit the attack surface of software systems as much as possible.
Practically, some of these attack vectors much be left open in
order for software to function for users.

Research efforts into the configuration definition of attack
surface include Heumann et al.’s work on the attack surface
indicator (ASI) metric [7]. ASI is an aggregation of several
metrics of web applications that affect the attack surface, such
as URL parameters, file upload fields, search fields, and number
of domains. ASI provides a picture of the deployed application's
attack surface rather than the software system itself. For
example, if a single web application was deployed on multiple
different servers, various configuration permutations for an

application could result in two completely different ASI values
for the software system.

From a software engineering perspective, Howard et al. [1]
described the attack surface along three dimensions. Targets
and enablers refer to the assets attackers want to access, and the
resources they use to access them. Channels and protocols are
the messaging structure software uses to pass messages to one
another. Access rights give legitimate users of a software
system access to data. While the Howard definition is a good
definition of attack surface, the work does not provide a method
for practitioners to apply the definition to their own products.

B. Crash dump stack traces as a metric

The focus of most crash reporting systems is to identify why
a software system has crashed. Examples include CrashLocator
by Wu et al. [8], which uses stack traces from crashes to narrow
down the location of the fault in the code that caused the crash.
ReBucket by Dang et al. [9] clusters crash reports by similarities
in the attached stack traces, aggregating reports for engineers to
triage. Both of these tools are examples of crash reports being
processed by researchers to provide benefits for practitioners
trying to find defects in their software. Other researchers have
built tools to determine where the exact fault location is based
on stack traces from crashes. Jin and Orso [10] built F3, a fault
localization tool for failure that describes where the final fault
is from crash information.

C. Attack surface metrics

Manadhata et al. [11] performed early work on
approximating the attack surface of software system. By
scanning all API entry points into a system, the researchers
created their own approximation of the attack surface of the
software system they examined. Manadhata et al.'s approach
has several drawbacks. First, their approach only covers
publicly disclosed entry points, and do not cover paths through
the system or exit points. While API scanning is a useful place
to start, a more complete picture of the attack surface is needed.
Second, the API scanning approach only covers entry points
into a system, ignoring the paths data takes within the system.
Identifying the entry and exit points of the attack surface of a
software system is not enough. To properly apply a "defense-
in-depth" strategy for protecting software systems, knowing the
paths data takes through the software system is necessary so
those paths can be hardened against attack.

As mentioned previously, ASA is an approach for
approximating the attack surface of software systems by
looking at crash dump stack traces from the system. Our first
results from the Windows 8TM operating system (OS) [3]
revealed a correlation between binaries that appear on crash
dump stack traces generated by the system and historical
vulnerabilities discovered by security professionals that have
been fixed in the code. The correlation could be useful to
security professionals when targeting security reviews and
testing of code bases. The effectiveness of ASA was analyzed
by comparing the approximation of the attack surface against
the location of historical vulnerabilities in Windows 8 OS. The
result revealed that 48.4% of shipped binaries seen in at least
one crash dump stack trace in Windows 8 OS contained 94.8%

860

of the vulnerabilities seen over the same time period. We
created a vulnerability prediction model (VPM) based on
previous VPM work by Zimmermann et al. [12], though these
results had issues with precision and recall. [3]. Precision of the
VPM was 0.69, while recall was 0.04.

IV. METHODOLOGY AND EVALUATION

In this section, we explore the process of evaluating each of
the research questions established in Section II.

A. How does attack surface approximation compare with the
“ground truth” of the attack surface? (RQ1)

Figure 1 represents a visualization of a software system as a
graph, with individual nodes being code entities in the system.
The API nodes should be identified by the Manadhata approach
via their API scanning technique [13], but may miss the
intermediate code entities (colored in red). ASA aims for a
“defense-in-depth” approach, where these intermediate code
entities are just as important from a security perspective.

Before additional work in the area of ASA can be completed,
we must establish how ASA relates to the ground truth of what
the attack surface of software systems actually is. While there
have been theoretical attempts to define what the attack surface
of a software system is [1], to the author’s knowledge there is
little literature of these approaches applied to actual software
systems.

A suitable software system that ASA, the Manadhata
approach, and the ground truth can all be executed on will be
chosen for the experiment. Determination of the “ground truth
attack surface” will be performed via the following steps:

1. Identify all functions in the codebase that accept input
from locations outside the software system,

2. Recursively, identify all functions called from functions
identified in the previous step until all remaining
functions call no other functions in the software system,

3. All of the functions identified in steps 1-2 are on the
attack surface of the software system.

We will then compare the three approaches across three
metrics: accuracy, detection efficiency, and reachability.

• The accuracy is a comparison of the classification
derived by a technique to the ground truth, considering
the ground truth as the baseline.

• The detection efficiency is the time required to do the
attack surface analysis for the system. Detection

efficiency will be measured by the time it takes to apply
the approach to a software system and the level of
expertise required to implement it.

• The reachability metric indicates the percentage of
discovered vulnerabilities that were found on the attack
surface.

We will present the results of each approach measured by
these metrics. From there, we can make recommendations for
researchers and practitioners based on the interaction of these
metrics and the needs of each domain.

B. Attack surface metrics (RQ2)

In previous work on ASA [3], the metric for inclusion on the
attack surface is an on/off metric. If a code entity appears on at
least one stack trace, then we consider it to be on the attack
surface of the software system [3]. The original ASA metric may
not be an effective approach for identification of the attack
surface, as it does not consider possible code changes, resulting
in code being removed from the attack surface. To determine the
temporal constraints of ASA, we will perform a study that
considers the following. In addition, the previous studies used
millions of stack traces – 10 million for the Windows 8 study
[3], and 1 million for a preliminary study on Mozilla Firefox
[14]. For many organizations, millions of stack traces may be
unreasonable to collect. Determining whether ASA can be
performed with reasonable results when there is orders of
magnitude less data available is important for the practicality of
the approach.

To answer this research question, we will perform several
studies. For temporal constraints, we will answer the following
smaller questions:

• How does the ground truth attack surface (described in
RQ1) change over a specified time period?

• How does ASA change over the same time period?

To answer the question about the level of data required, we
will perform ASA on a chosen software system repeatedly, with
different sized random samples of stack traces from the software
system. We will then determine the answers to the following
questions:

• How many stack traces are necessary to stabilize the
result (or, at what point are additional stack traces not
helping to improve the result)

• How many stack traces are necessary for a practically
useful result?

To answer the practicality question, we will work with
industry and open source partners on their own software
systems and get their feedback on the results from these studies.

C. Is Attack Surface Approximation effective? (RQ3)

To show the broad applicability of ASA, many replications
are necessary across a variety of domains. By working with a
variety of organizations on these replication efforts, we can
both show the generalizability of ASA as well as helping these
organizations secure their products. Many organizations collect

Figure 1: A visualization of the attack surface of a system.

861

and store stack traces from crash dumps, along with version
control information that could be used to replicate ASA. Many
organizations also collect data about the security vulnerabilities
seen over the lifetime of their products. Using these datasets, we
can evaluate ASA in new contexts, and also determine how it
could have helped find or prevent security vulnerabilities.

To evaluate the effectiveness of ASA, we can correlate the
approximation of the attack surface found by the approach with
security vulnerabilities seen in the target software system. We
can also correlate any additional metrics we develop around
ASA, such as frequency of appearance on stack traces. If ASA
provides meaningful feedback to practitioners on where security
vulnerabilities have been previously seen without the approach
knowing about the vulnerabilities, then the approach will be
considered effective. As an example: a target software system
had 10,000 stack traces from 2014, and 100 security
vulnerabilities were fixed the same year. If ASA had a recall of
0.95 with a precision of 0.3, it is reasonable to conclude that
10,000 stack traces from 2015 could provide reasonable
coverage of the security vulnerabilities seen in 2015.

V. CURRENT PROGRESS

We have completed a feasibility study into ASA using data from
Microsoft’s Windows 8 product [3]. The study showed that
48.4% of binaries appear in at least one crash dump stack trace
pulled from a sample of 10 million stack traces, while 94.8% of
vulnerable binaries fixed over the same time period were in the
same subset. In addition to these results, we also determined
from interviews and feedback that visualizations of the attack
surface of systems could be beneficial for security practitioners.
We have submitted publications exploring a replication of ASA
at the file level of granularity, with preliminary results appearing
in the Student Research Competition at the Foundations of
Software Engineering conference in 2015 [14]. A full
conference paper on the file level of granularity and ASA has
been submitted as well [4]. We have created a set of Python
scripts for analysis of stack traces in the context of ASA.

VI. PROPOSED WORK

The first step for continuing the work on ASA is to complete
a systematic literature review in the area of attack surface
metrics, so the current ground truth of attack surfaces can be
properly identified for comparison to ASA. Next, the ground
truth of measuring the attack surface needs to be determined.
ASA and other attack surface metrics would then be compared
against the ground truth to determine the limitations and benefits
of each approach as outlined previously. Finally, replications of
ASA will be performed as data is made available from industry,
academic, and open source partners to further establish the
generalizability of ASA.

VII. ACKNOWLEDGMENTS

The work in this paper was performed at Microsoft Research
UK – Cambridge in the summers of 2014 and 2015, and at North
Carolina State University from 2014-2015. The Realsearch

group at NCSU has provided feedback throughout this work. My
advisor, Dr. Laurie Williams, has provided essential ideas and
feedback throughout this process. Brendan Murphy and Kim
Herzig of Microsoft Research have also been significant figures
throughout the development of ASA.

VIII. REFERENCES

[1] M. Howard, J. Pincus, and J. M. Wing, “Measuring Relative
Attack Surfaces,” Comput. Secur. 21st Century, no. CMU-
TR-03–169, pp. 109–137, 2005.

[2] D. E. Geer, “Attack surface inflation,” IEEE Secur. Priv.,
vol. 9, no. 4, pp. 85–86, 2011.

[3] C. Theisen, K. Herzig, P. Morrison, B. Murphy, and L.
Williams, “Approximating Attack Surfaces with Stack
Traces,” in IEEE/ACM 37th IEEE International Conference
on Software Engineering, Florence, Italy 2015.

[4] C. Theisen, R. Krishna, and L. Williams, “Strengthening the
Evidence that Attack Surfaces Can Be Approximated with
Stack Traces,” in North Carolina State University
Department of Computer Science TR2015-10, submitted to
International Conference on Software Testing, Verification,
and Validation (ICST) 2016, 2015.

[5] J. Bird and J. Manico, “OWASP Attack Surface Analysis
Cheat Sheet,” July 18, 2015,
https://www.owasp.org/index.php/Attack_Surface_Analysis
_Cheat_Sheet.

[6] P. K. Manadhata and J. M. Wing, “An attack surface
metric,” IEEE Trans. Softw. Eng., vol. 37, no. 3, pp. 371–
386, May/June 2011.

[7] T. Heumann, S. Türpe, and J. Keller., “Quantifying the
Attack Surface of a Web Application,” in GI SICHERHIET
2010, pp. 305–316, 2010.

[8] R. Wu, H. Zhang, S.-C. Cheung, and S. Kim,
“CrashLocator: locating crashing faults based on crash
stacks,” in International Symposium on Software Testing
and Analysis (ISSTA) San Jose, CA, USA, pp. 204–214,
2014

[9] Y. Dang, R. Wu, H. Zhang, D. Zhang, and P. Nobel,
“ReBucket: A method for clustering duplicate crash reports
based on call stack similarity,” International Conference on
Software Engineering (ICSE) Zurich, Switzerland, pp. 1084–
1093, 2012.

[10] W. Jin and A. Orso, “F3: Fault Localization for Field
Failures,” in International Symposium on Software Testing
and Analysis Lugano, Switzerland, pp. 213–223, 2013.

[11] P. Manadhata, J. Wing, M. Flynn, and M. McQueen,
“Measuring the attack surfaces of two FTP daemons,” 2nd
ACM Workshop on Quality of Protection, p. 3-10, 2006.

[12] T. Zimmermann, N. Nagappan, and L. Williams, “Searching
for a needle in a haystack: Predicting security vulnerabilities
for Windows Vista,” International Conference on Software
Testing, Verification, and Validation, pp. 421–428, 2010.

[13] P. K. Manadhata and J. M. Wing, “Measuring a System’s
Attack Surface,” School of Computer Science, Carnegie
Mellon University CMU-CS-04-102, 2004.

[14] C. Theisen, “Automated Attack Surface Approximation,” in
The 23rd ACM SIGSOFT International Symposium on the
Foundations of Software Engineering - Student Research
Competition, 2015, pp. 1063–1065.

862

