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ABSTRACT
Active Cyber Defense (ACD) reconfigures cyber systems
(networks and hosts) in timely manner in order to auto-
matically respond to cyber incidents and mitigate potential
risks or attacks. However, to launch a successful cyber de-
fense, ACD strategies need to be proven effective in neu-
tralizing the threats and enforceable under the current state
and capabilities of the network. In this paper, we present a
bounded model checking framework based on SMT to verify
that the network can support the given ACD strategies accu-
rately and safely without jeopardizing cyber mission invari-
ants. We abstract the ACD strategies as sets of serializable
reconfigurations and provide user interfaces to define cyber
mission invariants as reachability, security, and QoS prop-
erties. We then verify the satisfaction of these invariants
under the given strategies. We implemented this system on
OpenFlow-based Software Defined Networks and we evalu-
ated the time complexity for verifying ACD strategies on
OpenFlow networks of over two thousand nodes and thou-
sands of rules.
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1. INTRODUCTION
Passive cyber defense is not sufficient to address increas-

ingly fast and sophisticated attacks [11, 10]. According to
DARPA’s active cyber defense (ACD) program, a success-
ful ACD requires synchronized, real-time capabilities to dis-
cover, define, analyze and mitigate cyber threats and vul-
nerabilities [1]. Thus, the scope of ACD spans a wide range
of activities related to network monitoring and management
in order to monitor networks, detect attacks, and safely mit-
igate them.

In order to mitigate cyber threats, multiple network recon-
figurations are often required. For example, if a DDoS attack
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causes a certain critical link to be flooded, the ACD strat-
egy may dictate to migrate the affected services to another
secure server. However, migrating services is not an atomic
task as it may require multiple changes in the network to
be executed in a certain order. For a successful ACD, we
believe that this sequence of reconfigurations should satisfy
three important properties: consistency, enforceability, and
effectiveness. The Consistency property is satisfied if the
consecutive or potentially concurrent reconfigurations do not
contradict each other. The Enforceability means that the
network is capable of handling the reconfigurations dictated
by the ACD strategies without introducing any violations
for the network mission invariants due to misconfigurations
or unforeseen lack of resources. The Effectiveness means
that the strategy should achieve the expected outcome by
disrupting or neutralizing the targeted threat.

In this work, we focus on the enforceability property and
we defer the other two properties for the future work. As
depicted in Figure 1, we present the design and implementa-
tion of a bounded model checking framework that verifies the
enforceability of ACD strategies in OpenFlow-based SDNs
with respect to given mission invariants. If the ACD strat-
egy is found not enforceable, we provide the means to di-
agnose the potential violations that may result from invalid
ordering of the strategy reconfigurations. If the violation is
not related to the order, a counter example will be returned
to help understanding how the ACD strategies or the net-
work configuration can be changed to make the strategies
enforceable. Specifically, our contribution is as follows:
• We provide a formal specification for the ACD strategies

as a set of reconfiguration. This set will be used to gen-
erate a series of configuration states (i.e., snapshots), on
which the network mission invariants will be verified.
• We provide a flexible high level language to specify the

network mission invariants as reachability, security, and
QoS requirements. The language allows users to define
any combination of QoS parameters at run time and sup-
ports linear and non-linear arithmetic operations to set
thresholds on the QoS parameters.
• We model the complete pipeline processing of OpenFlow

switches to capture the packet transformations between
OpenFlow switches and between flow tables inside a sin-
gle OpenFlow switch. Our model considers the data rate
configurations of OpenFlow queues, among other perfor-
mance parameters, to detect QoS violations.
To model the complete network configuration in addition

to the mission invariants and ACD specification, we imple-
mented ACDChecker, a special-purpose model checker for
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Figure 1: ACD Enforceability Verification.

ACD strategies, on top of SDNChecker, a general-purpose
verification tool for OpenFlow-based SDNs. While SDNChecker
models the data plane configuration and allows for the ver-
ification of properties expressed using the standard LTL
language, ACDChecker is customized for the verification of
ACD strategies. It translates both the mission and ACD
specifications to the appropriate LTL expressions that are
fed to SDNChecker. The SDNChecker and, inherently, ACD-
Checker are implemented using bounded model checking
approach based on Satisfiability Modulo Theories (SMT).
OpenFlow Software defined networks provide central config-
uration management, which makes it more suited for ACD
than traditional networks as the network controller can up-
date the configuration of multiple switches in response to
attack events and incidents. OpenFlow allows multiple ac-
tions to be executed on the same flow. The temporal rela-
tions between these actions is crucial for the correctness of
mission invariants. Model checking can efficiently capture
this temporal dependency by exploring all relevant paths.
Bounded model checking does not require exponential space
or manual manipulation as the case of variable ordering in
BDD-based verification [5, 13]. Moreover, using SMT pro-
vides a flexible model that supports advanced decision pro-
cedures for linear and non-linear arithmetic and difference
logic beyond bit level operations, which are needed to con-
sider quantitative invariants, such as QoS requirements.

The rest of the paper is organized as follows. In Sections 2,
we present the technical details to build the general-purpose
SDNChecker based on OpenFlow data plane configuration.
Section 3 presents our model of ACD strategies and how we
verify their enforceability. In Section 4, we present the per-
formance evaluation. Finally, the related work and conclu-
sions are presented in Section 5 and Section 6, respectively.

2. NETWORK CONFIGURATION MODEL
In this section, we present SDNChecker, a bounded model

checker that encodes the entire data plane of an OpenFlow-
based SDN and verifies properties expressed using the generic
LTL language. We show how we build the transition system
based on the OpenFlow data plane configuration and how
we encoded it using SMT in order to verify the properties.

2.1 An Overview of OpenFlow Configuration
An OpenFlow-based network consists of a set of OpenFlow-

enabled switches controlled by a central controller. The con-
troller provides interfaces to deploy network management
applications and dynamically update the flow tables of the
OpenFlow switches. OpenFlow switches operate based on
a flow-based rule sets. Each flow rule consists of six com-

Location Variables

loc The unique switch ID

tab The number of the flow table in a switch

Match Fields Variables (F)

IN PORT Ingress port: A physical or logical port.

ETH DST Ethernet destination MAC address.

ETH SRC Ethernet source MAC address.

ETH TYPE Ethernet type of the OF packet payload.

VLAN ID VLAN-ID from 802.1Q header.

VLAN PCP VLAN-PCP from 802.1Q header.

IP PROTO IP protocol number.

IP SRC IPv4 source address.

IP DST IPv4 destination address.

SRC PORT Source port number.

DST PORT Destination port number.

IP DSCP Diff Serv Code Point (DSCP).

IP ECN ECN bits of the IP header.

Action Set Variables (A)

AS POP V Pop the outer-most VLAN header.

AS PUSH V Push a new VLAN header.

AS SET <Var> Set the value of Var (Var ∈ F).

AS SET QUEUE Set the output queue to a specific value.

AS OUT Forward the packet to a specific port.

Table 1: State Variables.

ponents: the match fields, priority, counters, instructions,
timeouts, and cookie [14]. In this work, we model the com-
ponents that directly affect the packet processing, which
include the match fields, the priority, and the instructions
set. The match fields represent filters on the flow headers
that determine the set of the flows matching the flow en-
try. They include the Ethernet, IP, and TCP/UDP headers
in addition to the VLAN, MPLS, and PBB tags. The pri-
ority determines the matching precedence of the flow rules.
The instructions set contains any of the instructions {Apply-
Actions, Clear-Actions, Write-Actions or Goto-Table}.

We model the hosts as basic OF switches with one port
and flow table. A host’s flow table contains only one rule
that redirects all the outgoing packets to the host’s gateway.

2.2 Transition System
The transition systems consists of states, that are defined

over a set of system variables, connected by transitions,
which capture the changes in system’s variables based on
the actions of the system and its environment.
States. In our model, the state of the network is deter-
mined by the unique flows that can be transferred through
the network and their possible locations. The flows are rep-
resented by the flow match fields. In addition, our model
provides the ability to incorporate special purpose variables
for particular mission invariants, such as QoS guarantees.
Therefore, the state of the network is modeled by four groups
of variables: the location variables, the match fields vari-
ables F, the Action Set variables A, and the special purpose
variables L. Formally, the state is encoded by the following
characteristic function:

σ : loc× tab× F×A× L→ {true, false} (1)

Table 1 shows a list of the location, match fields, and ac-
tion set variables along with their meanings. The Action
Set contains a set of actions carried between the flow tables
during the pipeline processing. Since the instructions of flow
entries can modify the Action Set by inserting or removing
actions, we need to keep track of its content during the tran-
sitions. The actions in the Action Set are executed when the
instruction set of the matching flow entry does not contain a



Goto instruction. Based on OpenFlow specification, the Ac-
tion Set contains a maximum of one action of each type. We
define a variable for each possible action in the Action Set.
If the value of that variable is null, the associated action is
not part of the Action Set.
Transitions. Transitions are built based on packet trans-
formations across flow tables. We add a transition if we en-
counter an Output action (a transition to a new OF switch)
or a Goto instruction (a transition to a new table in the
same OF switch). Multiple transitions may be associated
with the same flow rule. Let us consider the rule ri that
belongs to the table t in the OF switch s. Let Ri be the set
of values specified in the rule ri for the match fields indexed
by the variables’ names (i.e., Ri[F ] is the value of the field F
in the rule ri). The transitions of the rule ri are calculated
as follows:

Si = (loc = s) ∧ (tab = t) ∧
∧
F∈F(F = Ri[F ]) ∧¬S−i (2)

S′i,a =
∨

k∈O

 (loc′ = ktar) ∧ (tab′ = 0)

∧
∧
F∈F

(F ′ = R′i[F ])

 ∧∧
A∈A(A′ = 0) (3)

S′i,g = (loc′ = loc) ∧ (tab′ = new table) ∧∧
F∈F

(F ′ = R′i[F ]) ∧
∧
A∈A

(A′ = R′i[A]) (4)

S′i,as = R
′
i[AS OUT ]→ [(loc′ = R′i[AS OUT ])∧

(tab′ = 0) ∧
∧
F∈F

Exp[F ] ∧
∧
A∈A

(A′ = 0)] (5)

In equation 2, we calculate the flow space Si of the rule (i.e.
all the flows that match the values in the rule ri and do not
match another rule with higher priority). The expression
S−i captures the flow space for all the rules that have higher
priority in the same flow table.

The flow space calculated in Equation 2 encodes the cur-
rent state of the transitions associated with the rule ri. To
encode the next state(s), we use the primed variable F ′ to
represent the next state variable of the field F . We also
define the set R′i that keeps the values of the next state
variables during the execution of the rule’s instructions list.
Initially, the next state variables have the same values as
the current state ones (i.e., ∀F∈F : R′[F ] = F). There are
three sources of transitions in a flow entry. (1) The Out-
put action(s) in the Apply-Actions instruction’s actions list.
(2) The Goto instruction, which transfers packets process-
ing from one flow table to another in the same OpenFlow
switch. (3) The Output action in the packet’s Action Set. If
the instructions list of a flow entry does not contain a Goto
instruction, the actions in the packet’s Action Set are exe-
cuted, where the Output action is executed last. If no Output
action exists in the Action Set, the packet is dropped. The
next states of the three cases are encoded in equations 3, 4,
and 5, respectively. The set O of Equation 3 includes the
Output actions in the Apply-Actions instruction’s actions
list, where ktar is the target switch of the Output action at
index k. Note that in equations 3 and 5, the packet is trans-
ferred to another switch; hence, the Action Set’s variables
(A) need to be cleared. The Exp set in Equation 5 captures
the effects of Set actions in the Action Set. For example,
the final value of the next state variable IP SRC’ depends
on the value of the Action Set variable AS SET IP SRC’.
Exp[IP SRC ] captures the conditional statement shown in
Equation 6 that encodes the value of the variable IP SRC’
depending on the value of AS SET IP SRC’. The ITE op-

erator stands for IF-THEN-ELSE.

ITE(R′i[AS SET IP SRC ],

IP SRC’ = R′i[AS SET IP SRC ], IP SRC’ = R′i[IP SRC ])
(6)

The complete transition relation of the rule ri based on
Equations 2 to 5 is represented as

T (ri) = Si ∧ (S′i,a ∨ S′i,g ∨ S′i,as) (7)

Global Transition Relation. The global transition rela-
tion is the disjunction of the transition relations of all the
rules. For the network N that has S switches, the global
transition relation Tg(N) is calculated as

Tg(N) =

∨
s∈S

len(s)∨
t=1

len(t)∨
i=1

T (rs,t,i)

 ∧ ∧
L∈L

f(L,L′) (8)

Where len(s) is the number of flow tables in the switch s,
len(t) is the number of rules in the flow table t and rs,t,i is
the rule i in the flow table t that belongs to the switch s.
T (rs,t,i) is calculated according to Equation 7. L is the set
of special-purpose variables and f(L,L′) is the transition of
variable L.

2.3 SMT-based Bounded Model Checking
Encoding the model as an SMT-based satisfaction formula

is done by unfolding the model for k steps starting from the
initial states S0. Let V = F ∪A ∪ L ∪ {loc, tab} be the set
of variables that represent a state in the system, and let Vi

denote the set of variables that represent the state i. We
use I(Vi) to represent a relation in terms of the variables
Vi. The global transition relation computed in Equation 8
is denoted in terms of the current and next state variables
as T (Vi, Vj) for a transition from state i to state j. The
network properties are encoded as a relation in terms of
the variables {V0, V1 . . . Vk}. The formula representing the
unfolded system Mk can be represented as:

Mk = I(V0) ∧
k∧

i=1

T (Vi−1, Vi) ∧ I(V0, V1, . . . Vk) (9)

The transition relation is unfolded starting from the base
transition relation computed in Equation 8. Given the base
transition T (V, V ′) and a bound k, we unfold the transition
relation as follows. (1) Define the variables set V0. (2) Ini-
tialize i to 1, and for all i ≤ k, perform the following three
steps. (3) Define the new variables set Vi. (4) Construct a
new formula T (Vi−1, Vi) by replacing all variables of V and
V ′ with the corresponding variables from Vi−1 and Vi. (5)
Add the new transition formula to the model as an assertion.

The network properties need to be translated to SMT ex-
pressions as well. We use the standard LTL specification
language as generic means to specify system properties. A
property in LTL can contain the temporal connectives: next
(X), eventually (F), global (G), until (U) and release (R)
operators. Let Ψi be a constraint in the property q expressed
in terms of the ith state variables (Vi); we denote the SMT
expression of a property q at point i on a path given a bound
of k as [q]ki . Based on this notation, the property encoding
as SMT formula can be recursively defined as shown in Fig-
ure 2. The translation is based on the standard semantics of
LTL operators except for the G operator. To encode the G
operator, we forward the packets that are dropped or have
reached their destinations to a designated node called sink.
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Figure 2: Property Encoding.

If a packet reaches the sink node then the path is terminated.
The property [G q] is simplified to [q U (loc = sink)] in our
model, which means that q holds until the path is termi-
nated.

After unfolding the transition relation and the LTL prop-
erties, the complete SMT formula Mk that is calculated
based on Equation 9 is fed to Z3 SMT solver, which de-
termines if the formula is satisfiable or not.

3. VERIFYING ACD STRATEGIES
The generation of the ACD strategies in response to at-

tacks and incidents is out of the scope of this work. However,
we demonstrate in this section how to formalize given ACD
strategies and translate them along with the mission require-
ments to LTL properties that can be fed to SDNChecker.

3.1 ACD Strategy Specification
We abstract an ACD strategy as a set of reconfigurations

that may be applied sequentially or in parallel. The basic
building block of ACD strategies is called Cyber Command.

Cyber Command We define the cyber command C, as the
triplet 〈t, o, α〉, which specifies that the action α is taken on
the object o by the actuator t.

In Figure 3, we present the syntax of a simple specifica-
tion language to define ACD strategies. The language allows
the users to specify multiple cyber commands and combine
them using sequential and/or parallel operators to compose
a single ACD strategy. The operators ‖ and � are used to
denote parallel and sequential composition, respectively. In
each cyber command, the actuator is the device that per-
forms the action. For example, OpenFlow switches perform
OF actions, such as Set, on the traffic flows; the switches are
the actuators in this case. The objects can be traffic flows
or other networking components such as the hosts, services,
switches, and their ports. Each object may have a number
of attributes that can uniquely identify it. The attributes
of traffic flows are their header information, while other en-
tities like hosts and services may be identified by their IP
addresses/port numbers. We define two groups of actions
that may be selected based on the object. If the object is
a traffic flow, the action belongs to any of the actions sup-
ported by the OpenFlow switches, such as forward and Set.
If the object is another entity in the network such as hosts,

Actuator L ::= < A device in the network >

OF Action αof ::= forward | block | Set | ...
Mgnt Action αmg ::= enable | disable | migrate | ...

Object O ::= switch | host | VM
Cyber Command C ::= 〈L, flow({Attrib}), αof ({Arg})〉 |

〈L,O({Attrib}), αmg({Arg})〉
ACD Strategy S ::= C | S ‖ S | S � S

Figure 3: ACD Specification Language.

services, or virtual machines, the action will be selected from
the management actions group, denoted by Mgnt Actions
in Figure 3. Examples of management actions include en-
abling/disabling ports in OF switches, setting the data rate
of a queue, or migrating virtual machines and services.

Example. Let’s consider an ACD strategy that migrates a
virtual machine, whose address and universal ID are VMadd

and VMweb, to the server Srv in response to flooding a
critical link. On the network configuration level, the migra-
tion will not be successful until the flow tables at the switch
SWborder are updated to reroute the appropriate traffic to
the new location’s gateway SWgw avoiding the flooded link.
In addition, we need to update the access control at SWgw

to allow the traffic to reach the VM.

Smig = 〈SWgw, f low(dst = VMadd), forward〉 �
[〈Srv, V M(UUID = VMweb),migrate〉 ‖
〈SWborder, f low(dst = VMadd), forward(SWgw)〉]

In this strategy, we define three cyber commands. First,
the access control at the gateway switch is updated, then
the traffic rerouting and VM migration are executed con-
currently. Note that we used an object called VM, which
has an attribute called UUID.

3.2 Mission Invariants Specification
We provide the means to specify network mission invari-

ants as reachability between network services and QoS re-
quirements in terms of QoS parameters, such as bandwidth,
delays, and jitter. The network data plane can directly af-
fect these parameters as it determines which heterogeneous
switches, ports, and queues the traffic passes through.

The language shown in Figure 4 can be used to specify the
mission invariants. The construct CanReach is used to spec-
ify a reachability requirement with QoS constraints between
a pair of locations in the network. A location in the net-
work is specified by an IP address and a port number with
the ability to use wild cards to specify multiple addresses or
port numbers. The QoS Constraints are composed of a set
of conditions on the aggregate values of the QoS parameters.
The aggregate functions max, min, sum, and avg calculates
the maximum, the minimum, the summation, and the av-
erage values of the parameter ρ in the path between the
specified locations.

3.3 ACD Enforceability Verification
The enforceability of an ACD strategy is satisfied if the

network mission invariants are ensured at any configuration
state during and after the execution of the strategy. Recall
that the strategy may consist of multiple cyber commands.
Starting from the initial configuration of the system, S0,
we generate new configuration states, {S1, S2,..., Sk}, that
result from executing the k-commands ACD strategy, and



QoS Param ρ ::= BW | D RATE | DELAY | . . .
Operator ./::= > | < | ≥ | ≤ | ==

Term Φ ::= Z
+ | max(ρ) | min(ρ) | sum(ρ) | avg(ρ)

QoS Constraint Ψ ::= Φ ./ Φ | Ψ ∧Ψ | Ψ ∨Ψ

Location L ::= < Location in the network (ip:port) >

Invariant R ::= CanReach(L, L, Ψ) | R ∨ R | R ∧ R

Figure 4: Mission Invariants Specification Language. Z+ is
the set of positive integers.

we verify the mission invariants at all the new configuration
states. To clarify this point, an ACD strategy that consists
of n sequential cyber commands is enforceable if:

Sk |= V for all k ≤ n

where V is the set of mission invariants. However, generating
the correct sequence of configuration states is not always
straight forward because cyber commands may be combined
using the parallel composition operator. Although the ACD
specification may specify that two commands are executed
in parallel, the parallel notion cannot be enforced due to the
lack of synchronization between the actuators in the network
(i.e., there is no guarantee that the two parallel commands
will start and end at exactly the same moments).

To handle the parallel composition, we do not generate
only one deterministic sequence of configuration states. In-
stead, we generate all possible order permutations for the
parallel cyber commands. For example, for the strategy
G = c1 ‖ c2, we generate two sequences. In one sequence, c1
is executed before c2 and in the second, c2 is executed before
c1. We verify the mission invariants at all possible permu-
tations. The ACD is considered enforceable if the mission
invariants are satisfied regardless of the execution order of
the parallel commands.

3.4 Verifying Mission Invariants
The verification of the mission invariants is repeated at

each potential configuration state of the system that results
from executing the cyber commands in an ACD strategy.
In this section, we show the steps we follow to translate
mission invariants to LTL expressions and verify them at a
single configuration state (i.e., snapshot).
• The QoS parameters, such as bandwidth and data rate,

are encoded as special purpose variables. We provide a
special keyword, map, to map the values of these param-
eters based on other state variables, such as loc. The map
keyword allows users to integrate as much variables as re-
quired at run time without the need to rebuild the frame-
work. We assume that every device/port in the network
will have its own values for the QoS parameters.
• The aggregate functions, such as sum and max, are also

encoded as special purpose variables utilizing the arith-
metic theory in SMT.
• Since the QoS parameters and aggregate functions are de-

fined as special purpose variables, the constraints are en-
coded directly into SMT by replacing the QoS parameters
defined in the mission invariants with the corresponding
special purpose variables. We then write the invariant us-
ing the F , eventually, LTL operator with constraints on
the QoS variables.

Example. The following shows an example for an invari-
ant that requires the traffic from a particular server s to the
data center dc not to pass through a port which has a data

rate less than the threshold τ . First, we define the DR pa-
rameter as a map between the OpenFlow queue ID and the
data rate of that particular queue. This map will add a vari-
able in our model whose value is dependent on the queue ID.
Next, we write an LTL expression with a constraint in terms
of the new variable DR and the aggregate function min that
is satisfied if the data rate in all the paths between s and dc
does not drop below τ .

Mission Invariant: CanReach(s, dc, min(DR) ≥ τ)

map(queue,DR) {{1, 512}, {2, 1024} . . . }
P = (loc == s) ∧ (IP DST == dc) ∧
F [(min(DR) < τ) ∧ (loc == dc))]

Since the mission invariants are translated to LTL ex-
pression, they are compatible with the generic SDNChecker.
We run the invariants against the configuration and retrieve
whether they are satisfied or not.

4. IMPLEMENTATION AND EVALUATION
We implemented a tool using C#.NET that automatically

reads the complete data plane of an OpenFlow network and
provides a GUI for the user to specify the ACD strategy and
the mission invariants. This tool uses the Z3 .NET API to
compose the proper SMT expressions and generate an SMT
file that is fed to the Z3 SMT solver. We ran all experiments
on a standard PC with 3.4 GHz Intel Core i7 CPU and 16
GB of RAM.

To evaluate the performance and the scalability of our
framework, we measure the time required to solve the gen-
erated SMT assertions with respect to multiple parameters,
such as the network size, the sizes of flow tables, the number
of special purpose variables, and the complexity of the mis-
sion invariants. The measures reported in this section are for
one snapshot of the network configuration. The verification
of an ACD strategy may require repeating this verification
multiple times based on the number and the order of the
ACD strategy commands.

4.1 Real Network Case Study
In this case study, we evaluate the performance of our

framework on the Stanford backbone network, a mid-size
enterprise network whose entire configuration has been made
public for researchers [16]. The network consists of 14 zones
connected to two backbone routers via ten layer-2 switches
with a total of 240 hosts and a total of 3840 flow rules.

We generated and verified 100 mission invariants with a
quality of service constraints on the number of hops between
random pairs of hosts in the network. The source and des-
tination in each pair were selected from different zones. For
both the satisfied and not satisfied requirements, the mea-
sured time ranged between 6 and 18 seconds with a mean of
14.34 seconds.

4.2 Scalability Evaluation
To evaluate the scalability of our bounded model checking

approach, we generated synthetic networks with based on
the tree topology, where the leafs are hosts and the inner
nodes are OF switches. In all the generated networks, the
core switches do not constitute more than 15% of the total
nodes in the network. We then built the SMT assertions for
each instance and collected the time required by Z3 SMT
solver to solve the assertions.
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Figure 6: The impact of the bound.
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Figure 7: The impact of the table size.
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Figure 10: The impact of actions list.

The impact of network size. In this experiment, we study
the impact of the overall number of network nodes. We gen-
erated a number of networks whose sizes varied from 75 to
2100 nodes. For each of them, we report the average time of
verifying 20 random reachability invariants. We conducted
the experiment under two different settings of the bound k.
In one setting, the bound k varies based on the number of
flow tables. In the other, it is set to a constant value regard-
less of the network size. Each switch in these experiments
contains up to two flow tables with an average length of 50
flow rules. Figure 5 shows the results of this experiment.
We can see that in the case of fixed bound, the time is lin-
ear with respect to the network size. However, in the case
of varying bound, the performance is affected by both: the
network size and the bound and it is best described by a
quadratic polynomial.
The impact of the flow table size. In this experiment, we
generated various networks with the same number of nodes
(300 nodes), but with varying number of rules per flow ta-
ble. All the rules have the same number of instructions and
length of actions lists. As reported in Figure 7, the total
number of rules ranged from 1400 to 33500 rules. The results
show that the growth in time stabilizes after a threshold. We
believe this behavior is due to the compact representation
in Z3 that merges similar expressions together.
The impact of the bound k. The bound determines the
number of steps to consider in the bounded model. For each
step, a new set of variables and a replica of the transition
relation is added. To study the impact of the bound value,
we generated two networks: Network 1 that consists of 300
nodes and Network 2 that consists of 600 nodes. Each switch
in the network has up to 2 tables and an average of 50 flow
rules per table. For each network, we ran our experiment
multiple times, selecting a bound between 50 and 600. Fig-
ure 6 shows that in both networks the time increases linearly
with respect to the bound. However, in Network 2 the in-
crease is faster, which is expected due to its larger size.
The impact of Goto instruction. The Goto instructions
cause the transitions across flow tables inside a single switch.

In Figure 9, the Goto instruction percentage represents the
ratio of the number of rules that have a Goto instruction
to the total number of rules. We ran the experiment for
different values of the bound k. All the experiments where
conducted on a network of 300 nodes with an average of 50
rules per flow table. Despite that more Goto instructions im-
plies more transitions, the time is inversely proportional to
the Goto instructions percentage. We believe this is due to
the Action Set encoding shown in Equation 5 that is added
to the model only if the rule does not contain a Goto instruc-
tion. The growth in time follows the same trend for different
bounds (linearly decreasing with Goto percentage).
The impact of actions list structure. In this experiment,
we study the impact of the actions list of Apply-Actions in-
struction. We generated three groups of configurations that
have different actions distributions in the actions list. In
the first group, 90% of actions are Output actions, and the
rest are Set actions. In the second and the third groups, the
Output actions constitute 50% and 10% of the list, respec-
tively. All the networks in this experiment consist of 300
nodes with up to two flow tables that have an average of
50 rules per table. Figure 10 shows that the time increases
linearly with the number of actions in all the groups. We
were expecting that the required time is proportional to the
percentage of Output actions. However, interestingly, it was
the highest when 50% of actions are Output. Since the num-
ber of output ports is relatively small (<10), many of the
consecutive Output actions will be similar, which results in
similar expressions that can be merged together. When the
Output and Set actions are alternating, every Output action
will result in a completely different transition that increases
the time requirements.
The impact of QoS parameters. We conducted an exper-
iment to study the impact of the number of QoS parameters,
which are encoded as special purpose variables. We ran our
framework against a network of 300 nodes with a varying
number of QoS parameters that ranged from zero to 5000.
Moreover, we defined two types of invariants, namely sim-
ple and complex. In the simple invariant we used the max



aggregate function, while we used the sum function in the
complex. Figure 8 reports the time for both types. We can
see that the number of QoS parameters has no effect on the
time requirements.

5. RELATED WORK
The verification of network invariants has attracted a sig-

nificant body of research in both enterprise and software
defined networks. FlowChecker [2] encodes the OpenFlow
flow tables using Binary Decision Diagrams (BDD) to ver-
ify security properties. VeriFlow [9] proposes to slice the
OF network into equivalence classes to efficiently check for
reachability violations. FLOVER [15] is a model checker
that checks the OpenFlow configuration for security viola-
tions using Yices SMT solver. NetPlumber [7] is a real time
policy checking tool that utilizes a dependency graph be-
tween flow entries to incrementally check for loops, black
holes, and reachability properties. FlowGuard [6] examines
dynamic flow updates to detect firewall policy violations and
it provides violation resolution approaches. Although these
works can check the compliance of OpenFlow network up-
dates with specific invariants, Their applications are limited
to reachability or related analyses in [8, 7, 15] and to firewall
policy verification in [6].

ConfigChecker [3] and Anteater [12] are two model check-
ing frameworks that allow the specification of system prop-
erties using temporal logics. They both employ similar con-
figuration abstraction as our framework, but they are target-
ing traditional networks configuration and they use binary
analysis platforms (BDD and SAT), which make it hard to
verify properties with arithmetic constraints. SecGuru [4] is
another tool that is based on the bit-vectors theory in Z3
solver for checking network invariants.

While these works provide multiple platforms to verify
the end-to-end reachability in enterprise and software de-
fined networks, they do not focus on ACD verification. Even
the real-time verification tools, they verify invariants against
one update at a time and they do not consider multi-step
strategies. They also have very limited support for QoS re-
quirements with the exception of NetPlumber that provides
path length constraints. We provide the ability to verify
complete ACD strategies and we utilize the arithmetic the-
ory in SMT to verify quantitative QoS invariants.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we presented the first step towards ACD

strategies verification using SMT-based bounded model check-
ing approach for OpenFlow-based SDNs. We presented a
formal model to encode ACD strategies along with the mis-
sion invariants as a set of assertions that can be checked for
satisfiability using state of the art SMT solvers. The verifi-
cation reveals any shortcoming in the network configuration
that can render the ACD strategies unsuccessful. We believe
that the time requirement is moderate considering the net-
work size. In the next steps, we will extend our verification
to verify the effectiveness of ACD in addition to the enforce-
ability. We will also employ hierarchical verification tech-
niques by dividing the network and invariants into groups
and investigate optimization and expression simplification
techniques to enhance the performance of our framework.
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