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ABSTRACT
When reasoning about software security, researchers and
practitioners use the phrase “attack surface” as a metaphor
for risk. Enumerate and minimize the ways attackers can
break in then risk is reduced and the system is better pro-
tected, the metaphor says. But software systems are much
more complicated than their surfaces. We propose function-
and file-level attack surface metrics—proximity and risky
walk—that enable fine-grained risk assessment. Our risky
walk metric is highly configurable: we use PageRank on
a probability-weighted call graph to simulate attacker be-
havior of finding or exploiting a vulnerability. We provide
evidence-based guidance for deploying these metrics, includ-
ing an extensive parameter tuning study. We conducted an
empirical study on two large open source projects, FFmpeg
and Wireshark, to investigate the potential correlation be-
tween our metrics and historical post-release vulnerabilities.
We found our metrics to be statistically significantly asso-
ciated with vulnerable functions/files with a small-to-large
Cohen’s d effect size. Our prediction model achieved an
increase of 36% (in FFmpeg) and 27% (in Wireshark) in
the average value of F2-measure over a base model built
with SLOC and coupling metrics. Our prediction model
outperformed comparable models from prior literature with
notable improvements: 58% reduction in false negative rate,
81% reduction in false positive rate, and 548% increase in
F2-measure. These metrics advance vulnerability prevention
by (a) being flexible in terms of granularity, (b) performing
better than vulnerability prediction literature, and (c) being
tunable so that practitioners can tailor the metrics to their
products and better assess security risk.
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1. INTRODUCTION
In our digital world, software must be secure. As customers,

patients, and citizens, we rely on our software to provide
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confidentiality, integrity, and availability. The responsibility
to engineer secure software rests on developers, who must
understand complex security risks that change with each new
line of code they write. Developers inevitably make mistakes,
and the risk of those mistakes can be quantitatively tracked
with metrics.

The attack surface metaphor is often invoked as a way
to assess the security risk of large systems [14, 18, 15, 20,
19]. The metaphor goes like this: if an attacker has more
avenues to enter the system, then the system is at a higher
risk. Software systems provide these avenues in their inputs
and outputs, where inputs can take in potential exploits and
outputs provide information on how data is processed (e.g.
lack of sanitization). Thus, broadly speaking, developers
can understand their security risks by understanding their
inputs and outputs. This metaphor has been the inspira-
tion for security risk metrics such as the number of entry
points and exit points [20, 21, 22] and is even in practice at
Microsoft [18].

Historically, attack surface metrics have focused on the
system’s “perimeter” and hence fail to capture what happens
beyond the entry and exit points. A simple source code
change, such as the addition of an API call deep within the
system, can have a drastic effect on security risk because
large software systems are vastly interconnected and the API
call could be connecting two subsystems that were earlier
disconnected. If the attack surface metaphor is about exam-
ining avenues of attack, then risk analysis should be about
how attacker traverses the software system.

The call graph [13, 12, 1, 7] can be used as a basis for a
model of attacker behavior because it contains the overall
system structure. Random walks through a call graph can
serve as an approximation for attacker searching (manually
or automatically) for vulnerabilities. With network analysis
techniques [3, 30, 39, 28] such as centrality, random walks,
and geodesic paths, we can provide developers with fine-
grained risk metrics at the function- or file-level that can be
used to continually assess the impact of a source code change
on security risk.

The goal of this research is to assess security risk through
an empirical understanding of the relationship between vulner-
abilities, individual functions or files, and the attack surface
of a software system. We apply the attack surface metaphor
described in prior literature [14, 15, 22] to the call graph and
propose function- and file-level metrics—proximity and risky
walk—that simulate random walks across functions/files to
account for system structure beyond the surface. We empiri-
cally analyze our metrics in two large open source projects:



the FFmpeg media transcoder and the Wireshark network
protocol analyzer to understand if the metrics are associ-
ated with historical vulnerabilities. We also investigate the
sensitivity of the metrics to call graph collection approach
(static-only vs. static+dynamic), as well as parameter tuning
for our random walk metric.

We address the following research questions:

RQ1 Association Is a function/file more likely to be fixed
for a post-release vulnerability if:

(a) it is near the attack surface or dangerous points?
(b) it has a higher probability of being traversed on a

random walk from the attack surface?

RQ2 Prediction (Base) Do proximity and risky walk met-
rics improve the performance of a base prediction model
built with SLOC and coupling metrics?

RQ3 Prediction (Prior) How do the prediction models
built with proximity and risky walk metrics compare
with prior vulnerability prediction literature?

The research contributions of this work are:

• A method for applying the attack surface metaphor
to individual functions/files so that developers can
quantitatively assess security risk;

• Implementation of our method as an open source project
[34];

• Empirical evaluation of our method in two large open
source projects.

The remainder of the paper is organized as follows: in
Section 2, we present the motivation for our metrics. In
Section 3, the metrics are defined and the approach to collect
the metrics is presented. We present the methodology used
in the empirical evaluation of the metrics in Section 4 and
outline our results in Section 5. We discuss our limitations
in Section 6, present an overview of the state of the art in
attack surface research in Section 7, and conclude with a
summary in Section 8.

2. METRIC MOTIVATION
In this section we discuss some key decisions that led to the

formation of our risk metrics. Modeling attacker behavior
using graphs is not new [42, 25], nor is using call graphs [20,
21, 51], but our approach of combining attack surface and
call graph is unique to our knowledge.

Historically [14], software attack surface researchers have
concluded that reducing points of entry/exit should reduce
the number exploits attackers can use. We expand the scope
of that argument by applying the principle of defense in depth.
We wish to consider risks of attack by aggregating how the
system is interconnected, still using the attack surface as a
starting point, to model attacker behavior.

Consider the attack surface metaphor as it applies to
medieval castles. If a castle has many different entrances and
exits, attackers will also have many different ways of invading
the castle. Reduce entrances and the security will improve.
But, an inner courtyard might also be particularly risky
because it is the point of convergence for multiple pathways
into the castle. A renovation within the castle might change
attacker behavior without changing the external entry and
exit points. By combining both structure and surface, we
can better understand our system from the inside out.

Why use call graphs?

Call graphs provide an inexpensive, automated way of mea-
suring how the system is interconnected. Most programming
languages support call graph collection, so these metrics
could be easily adopted into, say, a continuous integration
build. Call graphs are also the next natural step from the
attack surface methods because entry/exit points in prior
attack surface literature [20, 21, 22] are actual methods.

While call graphs are simple to collect they are, in practice,
imperfect representations of what can happen at runtime
because of pointer manipulations. In our approach discussed
in the subsequent section, we discuss how one could mitigate
this concern and how, in our empirical study, we found our
call graph to be a close representative of potential attacker
pathways. We also examined the sensitivity of static-only vs.
static+dynamic call graph collection in our empirical study
in Section 4.2.

Once customized to the build process of a software system,
our proposed approach is entirely automated. We envision
developers using these fine-grained metrics as an informative
part of their everyday development workflow to prioritize
their software protection efforts such as code reviews and
penetration testing.

Why use random walk metrics?

Many network analysis applications rely upon geodesic
path (i.e. “shortest path”) metrics to provide analysis. Geod-
esic path metrics are useful in social situations where distance
is to be measured and the attempt to find a shortest path (e.g.
two humans who are “friends” are also “friends-of-friends”,
but the shortest path makes the most sense in that domain).
We use geodesic paths whenever we want to gauge potential
distance (e.g. “distance to the attack surface”).

Computers, however, do not execute methods based on
shortest paths, they execute methods based on inputs. For
attackers searching for a vulnerability, perhaps via a fuzz
testing tool or through manual experimentation, traversals of
the network would look more random. An attacker, via his
inputs, would execute commonly-used methods, leading to
a higher risk of attack if those methods had a vulnerability.
Thus, we use random walk metrics to simulate the attacker
behavior of exploring the system.

Why use PageRank and not regular Random Walk?

The standard Random Walk metric is useful when dis-
cussing how someone traverses a network infinitely (e.g. car
traffic patterns). Attackers, however, are constantly starting
over their traversals–at the attack surface. The PageRank
metric, based on Google’s algorithm of modeling web surfing
behavior, is a Random Walk with additional parameters of
(a) damping factor (a probability of “starting over”), and
(b) personalization vector (the probability of starting at a
particular method). The concept of constantly starting over
at the attack surface and then conducting a random walk
fits with the scenario of an attacker exploring for a vulner-
ability. Thus, to incorporate the notion of attack surface
into call graph centrality, we found PageRank to be the most
appropriate metric.

3. PROPOSED METRICS
In this section, we introduce the proximity and risky walk

metrics in the context of the attack surface metaphor in-
troduced earlier. A unique (read desirable) feature of our



metrics is that they can be defined at either function- or file-
level, enabling developers to choose the level of granularity
in risk assessment.

The high-level approach to collecting the metrics, at either
the function- or file-level, may be summarized as follows:

Step 1: Obtain the call graph

Step 2: Identify Entry, Exit, and Dangerous Points

Step 3a: Compute Proximity metrics

Step 3b: Compute Risky Walk metric

We have developed an open source tool, called Attack
Surface Meter [34], that enables the collection of the metrics
proposed in this paper for a software system written in
the C programming language. As of this writing, attack
surface meter is capable of parsing call graphs obtained from
GNU cflow and GNU gprof. The attack surface meter may
be extended to measure software systems written in other
programming languages by defining a parser for the call
graph generated by an appropriate language-specific utility.

Step 1: Obtain the call graph
The proximity and risky walk metrics are defined on the
call graph representation of a software system. The call
graph represents a series of steps that an attacker effectively
takes when attempting to exploit a vulnerability. In our
definition, a call graph is a collection of directed relationships
from caller functions to callee functions, represented as a
symmetric directed graph. That is, if an attacker’s exploit
accesses a callee, it can potentially access the caller, and
vice versa. We use a symmetric directed graph instead of an
undirected graph so that we can weight returns differently
than calls. (Note: our predecessors [20, 21, 51] have used
directed but not symmetric call graphs, which we believe
does not fully account for function returns.)

The caller—callee relationships may be deduced in two
ways: (1) static analysis, where the source code is parsed
and analyzed, or (2) dynamic analysis, where the software
system is profiled during execution. Both techniques are
imperfect: static analysis has limited support for language
features such as function pointers and polymorphism, and
dynamic analysis requires software to compile and all possible
execution paths to be exercised. Thus, the call graph is
always an approximation as Grove et al. mention when
describing soundness of call graphs [12]. We hypothesize
that the level of approximation achieved by the call graph
may be improved if static and dynamic analyses are used
in unison. In Section 4.2, we present the sensitivity of our
metrics to static-only vs. static+dynamic analysis.

Developers familiar with their own systems can manually
inspect the call graph for soundness, as we did in both of
our historical studies. Based on applying our technique to
historical case studies, we also used two heuristics for gauging
if the collected call graph has a representative set of edges.
The two heuristics we used were:

Number of Fragments (f) The number of strongly con-
nected components in the call graph

Monolithicity (m) The percentage of total functions that
is in the largest strongly connected component.

We note that these heuristics are useful in systems that are
“monolithic”, that is, systems that are intended to compile
into one massive call graph. While this happened to be true

in our empirical studies, it may not be in, say, an API with
intentionally disconnected subsystems such as glibc.

In practice, software systems often have functions that
are never invoked or functions that are invoked only when
testing. These functions will appear as islands in the call
graph, so the ideal m is not necessarily 100% and the ideal
f is not necessarily one. The ideal value of m and f vary
between systems, and must be taken into consideration.

The call graph described so far is conventional in that
the edges in the graph represent function call/return. The
edges in the conventional call graph may be used to deduce
call/return relationships between files as well. The file-level
call graph enables the proximity and the risky walk metrics
to be collected at a file-level, providing an alternate approach
to security risk assessment.

Step 2: Identify Entry, Exit, and Dangerous Points
Attackers need places to send their attacks, or places where
they might start the reconnaissance for their attacks. From
Manadhata et al. [22], we defined these functions as entry
points (where data enters in) and exit points (where data
exits out). Additionally, attackers may be more likely to
target functions that make system calls deemed dangerous.
We call these functions as dangerous points. There may be
other criteria in which a function could be deemed dangerous
(e.g. function handling sensitive information specific to an
application), however, we restrict ourselves to only functions
that make dangerous system calls.

The language used in the development of a system and its
operating environment determine how inputs, outputs, and
the dangerous system calls are identified. For instance, in
the context of a web application, an entry point could be a
method that saves form-posted data to a database, whereas,
an exit point could be a method that formats data for a
web page. In the context of a C program: any function
invoking a C standard input function (e.g. scanf, getc,
etc.) is an entry point, whereas, any function invoking a
C standard output function (e.g. printf, putc, etc.) is
an exit point. Again, in the context of a C program, any
function making a dangerous system call (e.g. chown, fork,
etc.) is a dangerous point. Defining entry and exit points
for all available technologies may be an open problem, but
the most popular set of functions for the C standard library
is in Appendix A of Manadhata and Wing [19]. Similarly,
the set of available system calls is dependent on the version
of the C standard library used during the development of a
software system. We have used the system calls with threat
level 1 through 3 enumerated by Bernaschi et al. [2].

The notion of entry, exit, and dangerous points may be
extended to the file-level by applying the following heuristic:
a file is an entry point, exit point, or dangerous point if it
contains at least one function that is an entry point, exit
point, or dangerous point, respectively.

Step 3a: Compute Proximity Metrics
As an attacker’s exploit enters the system, functions/files
that are near entry and exit points are likely to be involved
with handling user data. In the call graph, nearby ancestors
(i.e. functions/files that can reach a given function/file) may
be more likely to have security risks, so we use an unweighted
shortest path algorithm to determine the distance from a
given function/file to the attack surface. Since functions/files
may be reachable from multiple entry and exit points, we



average the shortest path lengths. We chose to use the
average of the shortest path lengths to better approximate
the reality of function/file invocation pattern. In addition to
measuring the distance to the attack surface, we also measure
the distance of a function/file to dangerous points that were
defined in the previous step.

Our three proximity metrics (i.e. proximity to entry, prox-
imity to exit, and proximity to dangerous) are defined as:

Definition 1. Proximity of a function/file foo to entry
points, exit points, or dangerous points is the mean of the
shortest unweighted path lengths to all functions/files reach-
able from foo that are entry points, exit points, or dangerous
points, respectively.

The power of the proximity metric is in its sensitivity to
the (unforeseen) ripple effect of a source code change on
functions that may have not been directly modified by the
developer. For example, suppose a developer working on a
function, readMessage, adds a call to pingServer. The prox-
imity of readMessage, and all its descendants (i.e. functions
reachable from readMessage), to the entry surface would
decrease if pingServer is near an entry point. Conversely,
a refactoring effort on pingServer that separates concerns
of input validation or secure memory management would
increase the proximity of readMessage to the entry surface
without a direct change to it.

Step 3b: Compute Risky Walk Metric
Attackers looking for vulnerabilities may have limited knowl-
edge of the system’s source code and are essentially exercising
different execution paths in the system hoping to find a vul-
nerability. This behavior of the attacker is similar to that
of a World Wide Web user (“surfer”) searching for a piece
of information. The surfer starts at, say, the results from a
search engine and follows a series of links until she finds the
information she was looking for. Or perhaps she deems the
search futile, at which point she returns back to the starting
point and follows a different series of links. The starting
point of the surfer is analogous to the entry points of the
software system and the act of following a link is analogous
to invoking a function in the software system. However, the
attacker has no direct control over the series of function calls
that the system makes in response to a particular input. As
a result, the attacker resorts to trying several entry points
with varying inputs.

In addition to ranking web pages [38], twitter users [16],
and improving recommender systems [23], PageRank algo-
rithm has found application in the realm of security as
well [47, 25].

The PageRank algorithm uses three configurable parame-
ters in addition to the call graph, they are:
• a personalization vector, v, that contains the probability

that a random walk starts at a given node,

• a damping factor, α, that defines the probability that
an attacker will continue the random walk across the
call graph without abandoning the current walk and
starting over, and

• an edge weights vector, w, that contains the edge weights
used to derive the probability that a random walk tra-
verses one of the many possible edges from a given
node.

Wills [50] presents an elaborate description of the math-
ematics behind the computation of the page rank and the
role of these parameters in the algorithm.

printf

scanf

read_config

compute_baz

pretty_print

compute_bar

compute_foo

Figure 1: Attack surface visualization of a sample C
program

In the context of security risk assessment, these parameters
must be chosen with the intent of reflecting attacker mindset.
For instance, we may want to assign a higher weight to edges
terminating at functions that were fixed for vulnerabilities
in the past to model the likelihood that an attacker may try
to attack past vulnerable functions hoping to uncover a new
vulnerability. Similarly, some software systems may have
defenses in place to wraparound standard library functions
known to be used incorrectly by developers. In such cases,
we may want to assign a lower weight to edges terminating
at such defensive functions.

In the empirical analysis of the risky walk metric in FFm-
peg and Wireshark, we carried out an extensive parameter
tuning exercise (detailed in Appendix A) to identify a robust
set of parameters. Users of our approach may choose to use
the parameters we arrived at in our study as our parameters
ended up being similar across case studies. Alternatively,
users may choose to use our weights as a starting point and
adapt them to their own software systems.

Our Risky Walk metric is defined as follows:
Definition 2. Risky walk of a function/file is the PageR-

ank of that node in the call graph computed with a personal-
ization vector, a damping factor, and an edge weights vector
tuned to simulate attacker behavior.

The power of risky walk metric is that it aims to simulate,
by means of probabilities, the behavior of a typical attacker,
specifically during the reconnaissance phase of an attack. The
risky walk of a function/file is the probability that a random
execution of the system, with inputs tailored to uncover
vulnerabilities, will result in the function/file being invoked.
In practice, risky walk of a function/file may be extremely
small in a system with large number of functions/files, so
viewing the logarithm of the risky walk or simple a ranking
can make the values easier to interpret.

3.1 An Example
Figure 1 shows the call graph of a sample C program with

the attack surface highlighted with dotted ellipse. The nodes
represent the functions in the program. The solid directed
edge represents call to a function, whereas, the dotted di-
rected edge represents return from a function. The function
read_config is an entry point because it calls an input func-
tion scanf. The functions compute_foo and pretty_print

are exit points because they call the output function printf.
The entry and exit points are shaded gray. For simplicity,
the graph does not show any dangerous points.

The proximity to entry for compute_baz is 1 and for com-

pute_bar it is 2. The proximity to exit for compute_baz



is (2 + 2)/2 = 2 and for compute_bar it is (1 + 1)/2 = 1.
Let α = 0.85, vector v contain 0.3125 for entry and exit
points and 0.03125 for the other functions (i.e. attacker is
10 times more likely to start at entry or exit point), and the
vector w contain 10 for call edges and 5 for return edges.
For risky walk, the function compute_bar would have a total
weighting of 10 + 10 + 5 = 25 for the outgoing edges. Each
edge weight is computed as a proportion of the total, for
example, the compute_bar to compute_baz edge probability
would be 10/25 = 0.4%. The page rank of compute_baz will
be 0.29 and compute_bar will be 0.27.

4. METHODOLOGY
In this section, we describe the methodology used in the

empirical evaluation of the proximity and risky walk metrics
in the context of two large open source projects: FFmpeg
and Wireshark. At a high-level, the empirical evaluation was
conducted in four phases, they are:

Phase I: Metric Collection

Phase II: Function/File Labeling

Phase III: Association Analysis

Phase IV: Regression Analysis

All statistical tests were executed on R version 3.2.3 [40].

4.1 Study Subjects
We chose two large open source projects as subjects of

study in the empirical evaluation of our metrics. The mo-
tivation for choosing our subjects of study were: (a) large,
popular, and open source projects, (b) well-kept vulnera-
bility fix records, (c) substantial development history for
tracking vulnerabilities over time, and (d) automated regres-
sion test suites to compare the sensitivity of static-only vs.
static+dynamic analysis.

FFmpeg is a popular open source media transcoding
library that is capable of encoding, decoding, multiplexing,
demultiplexing, streaming, filtering, and playing an enormous
variety of media. FFmpeg is used by other projects such
as Google Chrome and the VLC Media Player. Since 2009,
FFmpeg has had 19 major releases, 217 patch releases, and
237 vulnerabilities. In this study, we collected metrics for 16
of the 19 major releases of FFmpeg, mining 675 vulnerability-
fixing commits to identify 280 unique functions that were
fixed for a post-release vulnerability. On average, each major
release of FFmpeg has 536k source-lines-of-code (SLOC) and
12,908 functions spread across an average of 1,865 files. In
terms of SLOC, the average length of each file is 306 and that
of each function is 30. FFmpeg has an extensive, automated
regression test suite call FATE1, which we leveraged for
dynamic analysis.

Wireshark is an open source network protocol analyzer
that has come to be the de facto standard for sniffing network
data. The current release of Wireshark supports the analysis
of 2,000 network protocols. Since 2008, Wireshark has had 8
major releases, 118 patch releases, and 312 vulnerabilities. In
this study, we collected metrics for 7 of the 8 major releases
of Wireshark, mining 590 vulnerability-fixing commits to
identify 1,705 unique functions that were fixed for a post-
release vulnerability. On average, each major release of
Wireshark has 2,081 kSLOC and 53,350 functions spread
across an average of 2,593 files. In terms of SLOC, the

1https://ffmpeg.org/fate.html

average length of each file is 855 and that of each function
is 24. We collected dynamic analysis data by developing
a simple test runner script to invoke the Wireshark GUI
(and its command line variant, TShark) for a set of 1,877
packet capture files typically used for regression testing by
the Wireshark team.

4.2 Phase I: Metric Collection
In this section, we apply the method introduced in Section

3 to collect the proximity and risky walk metrics from the
releases of FFmpeg and Wireshark considered in our study. In
addition to attack surface meter, we have developed another
open source application, called Attack Surface Evolution,2

to facilitate the automated (and parallel) collection of the
metrics for multiple releases of a software system. The
metrics collected are saved to a database for further analysis.

We note that we collected, and analyzed, the metrics at
both function- and file-level to evaluate the utility of the
metrics at different levels of granularity.

Step 1: Obtain the call graph
We chose two popular call graph generation utilities: GNU
cflow,3 a static call graph generation utility, and GNU gprof,4

a dynamic profiling utility, to obtain the call graphs of FFm-
peg and Wireshark. We refer to these as cflow and gprof

in the remainder of the section, respectively.
In order to determine the need for dynamic analysis, we

use the heuristics—number of fragments and monolithicity—
from Section 3. We obtain static and dynamic call graphs for
the most recent release of FFmpeg and Wireshark considered
in our study and use the heuristics to determine if there is a
need for dynamic analysis or not. The most recent releases
of FFmpeg and Wireshark considered in this study are 2.5.0
and 1.12.0, respectively. Since FFmpeg and Wireshark are
intended to compile into a single system, we expect number
of fragments to be low and monolithicity to be high. The
number of fragments (f) and monolithicity (m) of the FFm-
peg version 2.5.0 and Wireshark version 1.12.0 are given in
the Table 1.
cflow and gprof call graphs are saved to the disk as plain-

text files. The attack surface meter parses the textual call
graph files and produces a single call graph that represents the
software system. The attack surface meter uses NetworkX5

version 1.9.1 to represent the call graph. The nodes in the
call graph represent the functions in the software system and
the edges represent transfer of control.

Step 2: Identify Entry, Exit, and Dangerous Points
The C standard input and output functions, used to identify
the entry points and exit points in FFmpeg and Wireshark,
are the same as those listed in Appendix A of previous
work [19] by Manadhata. The dangerous system calls used
in our study are the system calls with threat level 1 through
3 enumerated by Bernaschi et al [2].

With the entry, exit, and dangerous points identified, func-
tions belonging to the C standard library were removed
from the call graph to prevent these functions from being
accounted for in the computation of our metrics.

2https://github.com/nuthanmunaiah/attack-surface-
evolution
3http://www.gnu.org/software/cflow/
4https://sourceware.org/binutils/docs/gprof/
5http://networkx.github.io/



Table 1: Number of Fragments (f), Monolithicity (m), and mean value of Proximity to Entry (pen), Proximity
to Exit (pex), Proximity to Dangerous (pda), and Risky Walk (rw) from static and static+dynamic analysis of
FFmpeg version 2.5.0 and Wireshark version 1.12.0

Subject (Version)
Static Static+Dynamic

f m µpen µpex µpda µrw f m µpen µpex µpda µrw

FFmpeg (2.5.0) 182 0.979 3.669 3.807 3.498 6.530E-05 124 0.985 3.666 3.832 3.546 5.727E-05

Interpretation: Appending call graphs obtained through dynamic analysis decreased the number of fragments and
marginally increased the monolithicity. Furthermore, there was a non-trivial change in the mean value of risky walk metric.
Hence, we use dynamic analysis when obtaining the FFmpeg call graph.

Wireshark (1.12.0) 78 0.998 4.197 4.408 4.335 1.527E-05 82 0.998 4.195 4.403 4.334 1.525E-05

Interpretation: Appending the call graphs obtained through dynamic analysis neither decreased the number of fragments
nor increased the monolithicity. Furthermore, there was a trivial change in the mean value of the metrics. Hence, we do
not use dynamic analysis when obtaining the Wireshark call graph.

Step 3a and 3b: Compute Proximity and Risky Walk
Metrics
The attack surface meter has methods to compute the prox-
imity and risky walk metrics for a given function or file. These
methods use the shortest_path_length and page_rank meth-
ods from the NetworkX API.

4.3 Phase II: Function/File Labeling
To evaluate the efficacy of our metrics as an indicator of

vulnerabilities, we must understand fixes to historical post-
release vulnerabilities and identify those functions/files that
were vulnerable in the past. We labeled functions/files that
were fixed for post-release vulnerability as vulnerable and all
other functions/files as neutral. We refer to these two groups
of functions/files as vulnerable functions/files and neutral
functions/files, respectively.

We begin by collecting a list of publicly disclosed vulnera-
bilities from Common Vulnerabilities and Exposures (CVE)6,
National Vulnerability Database (NVD)7, or the security
advisories section on the project’s website. The security
advisories section on the project’s website is more suited for
our purposes as it contains the versions of software affected
by a vulnerability and information that helps trace vulner-
ability fixes to the source code. Furthermore, the security
advisories are released only when a publicly-disclosed vul-
nerability is acknowledged and fixed by the project team.
The FFmpeg and Wireshark project teams post their secu-
rity advisories at https://www.ffmpeg.org/security.html

and https://www.wireshark.org/security/, respectively.
In our study, for each historical vulnerability fixed by the
development team, we collected the commit identifier that
the project team reports as containing the fix. For each
vulnerability-fixing commit identifier collected, we generated
a patch using the git client and parsed the patch output
(similar to [27]) to identify the name of the functions/files
affected by the commit. We manually examined a random
sample of the patches to ensure that the fix commit was not
combined with other changes. In our sample, we found none
of these cases to be true for FFmpeg and Wireshark.

4.4 Phase III: Association Analysis
We used the non-parametric Mann-Whitney-Wilcoxon

(MWW) test to understand how well the proximity and

6https://cve.mitre.org/
7https://nvd.nist.gov/

risky walk metrics reflect the reality of historical post-release
vulnerabilities. We consider the association between a given
metric and post-release vulnerabilities to be statistically
significant if the p-value is less than 0.05. We use the popu-
lation median to determine if a metric is higher (or lower)
for vulnerable functions/files when compared with neutral
functions/files.

Association analysis merely reveals if there is a statisti-
cally significant difference between the distribution of the
metric values collected from a population of vulnerable func-
tions/files from that of the metric values collected from a
population of neutral functions/files. We complemented the
association analysis with Cohen’s d effect size evaluation
to assess the strength of association (if any, as revealed by
MWW test). We used the heuristics proposed in Cohen’s
d literature [6] when interpreting the effect size. According
to the heuristic, an effect is considered large if |d| ≥ 0.8,
medium if |d| ≥ 0.5, small if |d| ≥ 0.2, negligible otherwise.

4.5 Phase IV: Regression Analysis
In the regression analysis phase, the goal is to assess if the

proximity and risky walk metrics can be used in building
a regression model capable of predicting the likelihood of a
function/file needing a fix for a post-release vulnerability in
the future. A necessary condition in the evaluation of the
efficacy of such a model is to assess if it performs better than a
base prediction model built with SLOC and coupling metrics.
The coupling metrics used in this study are the structural
variant of fan in and fan out of a function/file. Fan in is
the number of functions/files that call a given function/file
and fan out is the number of functions/files that a given
function/file calls. We chose to use SLOC, fan in, and fan
out in building the base model because these metrics have
been shown to be good predictors of vulnerabilities [54, 43].

While fan in and fan out were collected directly from the
call graph, SLOC was measured using Scitools Understand8.
Functions/files for which SLOC was not available from Un-
derstand were omitted when training and testing the model.
We note that SLOC was available for all functions/files that
were fixed for a post-release vulnerability.

We used two approaches in the training and testing of
the regression models: (a) Cross-validation and (b) Next
release validation. We used precision, recall, and F2-measure
to evaluate the performance of a model against the base
model. In contrast to F1-measure, the F2-measure weights

8https://scitools.com/understand/



recall higher than precision. A model that exhibits a higher
recall is desirable in vulnerability prediction [31, 5, 43]. We
note that the performance of a model was evaluated if and
only if the model had at least one statistically significant
(p-value ≤ 0.05) feature.

In cross-validation, a model is repetitively trained and
tested with random splits of the data from a single release.
We used stratified sampling when randomly splitting the
data set to ensure equal proportion of vulnerable and neutral
functions/files was maintained between the training and
testing splits. In our study, we performed 10 repetitions of
a 10-fold cross-validation. In other words, we trained and
tested 100 models in each of the 23 releases of FFmpeg and
Wireshark. The performance metrics—precision, recall, and
F2-measure—were aggregated across the 100 models.

In next release validation, a model is trained with historical
vulnerability data and tested by attempting to predict known
future vulnerabilities. For example, consider a scenario where
FFmpeg version 1.1.0 is being prepared for release. Retro-
spectively, all functions fixed for a post-release vulnerability
in releases leading up to, and including, 1.1.0 are used in train-
ing the model. The model is then used to predict functions
that are likely to require a fix for a post-release vulnerability
in the future. The predictions are validated by comparing
them against all functions known (in the context of this
study) to be fixed for a post-release vulnerability in patch
releases from the 1.1.x branch (i.e. FFmpeg releases 1.1.1 to
1.1.16).

While cross-validation is an acceptable, and commonly
used [46, 54, 44, 9], approach, next release validation is intu-
itive and closer to reality. We chose to use both approaches to
ensure that the performance of our models can be compared
with those from prior vulnerability prediction literature.

Vulnerabilities are rare; the act of predicting vulnerabilities
in software systems has been compared with searching for
a needle in a haystack [54]. As an example, on average, a
mere 0.67% of functions in FFmpeg were fixed for a vulnera-
bility. At a file-level, however, an average of 3.47% of files in
FFmpeg were fixed for a vulnerability. Predicting at a higher
level of granularity may partially alleviate the problem of
disproportionately sized populations of vulnerable and neu-
tral entities. However, even at the file-level, the number of
vulnerable entities are so few that the prediction models may
be biased toward neutral entities resulting in a considerably
high false negative rate. We have used a popular approach
to dealing with class imbalanced data sets called SMOTE [4].
SMOTE uses synthetic over-sampling of the minority class
(vulnerable functions/files) and a random under-sampling of
the majority class (neutral functions/files). In our study, we
have over-sampled vulnerable functions/files by 200% and
under-sampled neutral functions/files by 200%.

5. RESULTS
In the subsections that follow, we present the results from

the empirical evaluation of our metrics.

5.1 RQ1: Association
Question: Is a function/file more likely to be fixed for a
post-release vulnerability if:

(a) it is near the attack surface or dangerous points?

(b) it has a higher probability of being traversed on a random
walk from the attack surface?

In this question, we wanted to understand if the proximity
and risky walk metrics are capable of explaining the real-
ity of historical post-release vulnerabilities. A statistically
significant association between the metrics and historical
post-release vulnerabilities support the utility of these met-
rics as early warning indicators of vulnerability likelihood.

We found a statistically significant association between
the proximity metrics and vulnerable functions in 15 of the
16 FFmpeg releases and in all releases of Wireshark. The
Cohen’s d effect size evaluation was predominantly medium
in FFmpeg and large in Wireshark. The association results
were consistent at the file-level as well, with the metrics
being associated, to a statistically significant extent, with
vulnerable files in 14 of the 16 FFmpeg releases and in
all releases of Wireshark. The Cohen’s d effect size was
predominantly small in both FFmpeg and Wireshark.

At both the function- and file-level, the median values of
proximity metrics collected from vulnerable functions/files
were lesser than that collected from neutral functions/files.
In other words, vulnerable functions/files tend to be near
the attack surface of a software system and also other func-
tions/files regarded as dangerous.

Vulnerable functions/files tend to be near the attack sur-
face and/or dangerous points.

The association analysis also revealed a statistically signifi-
cant association between the risky walk metric and vulnerable
functions in 13 of the 16 FFmpeg releases and in all releases
of Wireshark. The Cohen’s d effect size evaluation was pre-
dominantly small in both FFmpeg and Wireshark. The
association results were consistent with the file-level as well,
with the metric being associated, to a statistically significant
extent, with vulnerable files in 15 of the 16 FFmpeg releases
and in all releases of Wireshark. The Cohen’s d effect size
was predominantly large in both FFmpeg and Wireshark.

At both the function- and file-level, the median value of
risky walk metric collected from vulnerable functions/files
was higher than that collected from neutral functions/files in-
dicating that vulnerable functions/files tend to have a higher
probability of being traversed by a random walk starting at
the attack surface.

Vulnerable functions/files have a higher probability of
being traversed on a random walk from the attack surface.

5.2 RQ2: Prediction (Base)
Question: Do proximity and risky walk metrics improve the
performance of a base prediction model built with SLOC and
coupling metrics?

In this question, we wanted to understand if the proximity
and risky walk metrics can be used in building a predictive
model that can predict the likelihood of a function/file being
vulnerable better than a base model built with SLOC and
coupling metrics.

We begin the regression analysis by assessing the corre-
lation between the different metrics: proximity, risky walk,
SLOC, fan in, and fan out. We used the non-parametric
Spearman’s Rank Correlation Coefficient, ρ, to asses the
correlation between metrics. We observed a very high posi-
tive correlation (ρ ≥ +0.97) between the proximity metrics.
The high correlation suggests that entry points, exit points,



and dangerous points tend to be close to one another. As a
consequence, only one of the three proximity metrics may
be sufficient in explaining all three phenomena, rendering
the other two metrics redundant. The correlation analysis
also revealed a strong positive correlation (ρ ≈ 0.76) between
SLOC and fan out. The positive correlation between SLOC
and fan out is understandable in that a function that has
more SLOC is likely to have more function calls. We also
observed a moderate negative correlation (ρ ≈ −0.65) be-
tween fan out and the proximity metrics. All correlations
were statistically significant with p-value < 0.05.

We chose to not remove the redundant features manually
but to use regression analysis approaches that are capable
of dealing with multicollinearity. We explored several para-
metric and non-parametric regression analysis approaches
and found the random forest machine learning approach to
perform the best. The model performance results presented
here, and in RQ3, are from the random forest model. Fur-
thermore, the performance metrics—precision, recall, and
F2-measure—presented here are the mean values of those
obtained from the models using the cross-validation and next
release validation approaches.

FFmpeg

File-level: The average values of precision, recall, and F2-
measure of the base model were 0.0467, 0.7938, and 0.1840,
respectively. The random forest model outperformed the base
model model with an average precision of 0.1138 (an increase
of 143.47%) and average F2-measure of 0.3196 (an increase
of 73.69%). However, the average recall of the random forest
model was 0.5753 (a decrease of 27.52% from that of base).
Function-level: The average values of precision, recall, and F2-
measure of the base model were 0.0114, 0.7200, and 0.0533,
respectively. The random forest model outperformed the
base model with an average precision of 0.0156 (an increase
of 36.33%) and average F2-measure of 0.0725 (an increase of
36.07%). However, the average recall of the random forest
model was 0.5493 (a decrease of 23.71% from that of base).

Wireshark

File-level: The average values of precision, recall, and F2-
measure of the base model were 0.1147, 0.7574, and 0.3399,
respectively. The random forest model outperformed the
base model model with an average precision of 0.1841 (an
increase of 60.53%) and average F2-measure of 0.3646 (an
increase of 7.25%). However, the average recall of the random
forest model was 0.5250 (a decrease of 30.68% from that of
base).
Function-level: The average values of precision, recall, and F2-
measure of the base model were 0.0245, 0.5259, and 0.1023,
respectively. The random forest model outperformed the
base model with an average precision of 0.0333 (an increase
of 31.11%), average recall of 0.5991 (an increase of 13.93%),
and average F2-measure of 0.1294 (an increase of 26.55%).

The random forest model outperformed the base model
in terms of F2-measure at both function- and file-levels.

As seen above, lowering the granularity of the metrics
from file-level to function-level makes finding the “needle in
a haystack” an order of magnitude more difficult. While
function-level prediction has its challenges, the benefits war-
rant the need for more research at function-level prediction.
For instance, in FFmpeg, if a file is predicted as vulnerable,

developers must audit 306 SLOC, on average, however, if a
function is predicted as vulnerable, developers must audit 30
SLOC, on average–a considerable reduction in effort.

5.3 RQ3: Prediction (Prior)
Question: How do the prediction models built with proxim-
ity and risky walk metrics compare with prior vulnerability
prediction literature?

While traditional bug prediction is related to this question,
our recent work has shown that the best bug prediction mod-
els would perform poorly when predicting vulnerabilities [33].
Further discussion on this is in Related Work in Section 7.
Furthermore, vulnerability data used in building the model
is one of the most important aspects in vulnerability pre-
diction [24]. There have been many studies [10, 48, 11, 8]
that use warnings from static code analyzers as indicators of
vulnerability in a file. While these studies show that there is
a correlation between warnings from static code analyzers
and vulnerabilities, the correlation is moderate at best. In
our prediction models, we have used real-world vulnerabil-
ities i.e. those that were publicly disclosed, acknowledged,
and fixed by the development team. In contrast, a recent
work by Scandariato et al. [41] used files marked as vulner-
able based on warnings from a static code analyzer. While
the precision and recall of the model was shown to be high
(≥ 0.8), the response from the model was not the likelihood
of a file being vulnerable but its likelihood of having a static
analysis warning.

Prediction models from prior vulnerability prediction liter-
ature have operated at file-level [36, 29], component-level [37],
or binary-level [54, 46]. We found only one vulnerability pre-
diction model that attempted to predict vulnerabilities at
a function-level [44]. As a consequence of the disparity in
granularity, choice of study subjects, and vulnerability data
used in building the model, a direct comparison of the perfor-
mance of the models in terms of metrics like precision, recall,
etc., may be unfair. However, since we have collected our
metrics, and built the prediction models, at both the function-
and file-levels, we have partially alleviated the limitation of
direct comparison imposed by granularity. To ensure fairness,
we compared our function- and file-level models with other
function- and file-level models from prior literature, respec-
tively. We also collected and compared the same metrics (e.g.
precision, recall, etc.) that were used in the performance
evaluation of the models from prior literature.

At the function-level, the random forest model, fitted to
data from both FFmpeg and Wireshark, outperformed the
logistic regression model proposed by Shin and Williams [44].
The model proposed by Shin and Williams [44] achieved an
almost zero average false positive rate (FPR) but a consid-
erably high average false negative rate (FNR). A low FPR
and a high FNR suggests that the model may have marked
almost all functions as neutral. The best of our random
forest models achieved a considerably lower average FNR
of 0.3610 (a 58.02% decrease from 0.86) while maintaining
an acceptable level of average accuracy at 0.8995 (a 4.31%
decrease from 0.94).

Our file-level random forest model, fitted to data from
both FFmpeg and Wireshark, outperformed the file-level
prediction model proposed by Theisen et al. [46]. The best
of our random forest models had an average recall that was
considerably higher at 0.5796 (a 1059.24% increase from
0.05), the precision was 0.1984 (a 71.24% decrease from 0.69).



However, in vulnerability prediction we prefer higher recall
over a higher precision [31]. Furthermore, the model proposed
by Theisen et al. was built using only those files that ever
appeared on stack traces from system crashes. There may
be files with latent vulnerabilities (see [26]) that may have
never crashed but their model does not consider these files.
Putting such a model into operation means that the system
must be in production, and potentially vulnerable, for a long
time to get the stack trace data in the first place.

The file-level random forest models, fitted to data from
both FFmpeg and Wireshark, outperformed the component-
level prediction model proposed by Gegick et al. [9]. The
CART model proposed by the authors achieved a recall of
0.57 but suffered a FPR of 0.48. The best of our random
forest models had an average recall of 0.5796, which is similar
to the model proposed by Gegick et al., however, the average
FPR was 0.0876 (a 81.37% decrease).

In summary, both the function-level and file-level predic-
tion models proposed in our work outperformed comparable
models from existing vulnerability prediction literature. The
true value of our metrics is in providing fine-grained, action-
able, and interpretable intelligence about potential security
risks that tend to vary with everyday changes to the source
code. Furthermore, while performance metrics such as preci-
sion and recall provide a common ground to compare models,
they fail to capture the nuances of the model building process.

The random forest model, at both function- and file-levels,
outperformed comparable models from prior literature.

6. LIMITATIONS
Our empirical analysis is based on historical vulnerabil-

ities, which are by no means comprehensive. Thus, many
vulnerabilities may exist in our systems that have not been
found. This is a common limitation in empirical security
research, and is the reason we use the word “neutral” instead
of “not vulnerable”.

A call graph is only an approximation of the system’s
function calls because ensuring all possible paths of control
flow are represented is, at best, time consuming, and, at
times, impossible. Program analysis researchers [12, 13]
have proposed several call graph construction algorithms
that produce call graphs with varying levels of precision.
Researchers have used missing functions and/or function
calls when comparing two call graphs [17] or two call graph
generation tools [35]. In our study, we conducted manual
inspection of the call graph to ensure its accuracy, and we
suggest some added heuristics—number of fragments and
monolithicity—to help users of our metrics understand how
“close” they may be to getting as many graph edges and
nodes as they will get.

The proposed metrics, especially the risky walk metric, de-
pends on several parameters that, if not tuned properly, may
result in poor risk analysis. We have conducted sensitivity
analysis via parameter tuning across our models (See Ap-
pendix A). We found similar parameter values across our two
case studies, indicating that our discovered parameters may
generalize. Nonetheless, we recommend careful consideration
be given to parameters when deploying these metrics.

Furthermore, the risky walk metric is sensitive to the
weight assigned to edges in the call graph. While the sensi-
tivity may seem to be a limitation of the metric, it indeed

presents the users with an opportunity to configure the met-
ric to better reflect the structure and history of a software
system. For instance, in our empirical evaluation, we have
chosen to increase the weight of edges terminating at histori-
cally vulnerable functions/files with the assumption that an
attacker may attempt to start the reconnaissance by looking
at such functions/files. We did, however, explore the impact
of not weighting the edges terminating at historically vul-
nerable functions/files and found that the prediction models
suffered a small (2.70% in FFmpeg and 7.84% in Wireshark)
decrease in the average F2-measure, while still outperforming
the base model. The exploration revealed that the prediction
performance of the models can be improved by assigning
appropriate weights to the call graph edges thus allowing the
users to customize the metric to their software systems.

7. RELATED WORK
The attack surface as a metaphor for risk is far from

new. Michael Howard of Microsoft proposed the idea of
quantifying security of a software system by measuring its
attack profile [14]. Michael Howard’s proposal was to reduce
the attack profile of a product by having only the most
commonly used features enabled by default. He introduced
the notion of attackability of a product as a measure of its
exposure to an attack. He computed the Relative Attack
Surface Quotient (RASQ) to compare the attackability of
seven versions of the Windows operating system to assess the
relative security between them. The notion of attackability
was redefined by Howard et al. along three dimensions:
targets and enablers, channels and protocols, and access
rights [15]. Howard et al. also proposed a formal method of
measuring attack surface of software system in terms of its
attack vectors (features that may be used in an attack).

The granularity of attack surface measurement was lowered
from a system-level to a design-level by defining entry points
and exit points to identify resources that compose the attack
surface [22]. The notion of size of the attack surface emerged
as measured by number of entry and exit points. We propose
the refinement of the attack surface metrics by extending
them to individual functions (and files) and taking into
account the structure as they connect to the system’s entry
and exit points.

In addition to interpreting the attack surface as being the
outer shell of a system, we could also consider all resources
“exposed” through the surface as being part of the attack sur-
face as well. Younis et al. [52, 51] used reachability analysis
to assess the severity of a vulnerability and the probability
that a vulnerability will be exploited. While this work used
call graphs, they did not apply attack surface metrics to
individual functions as we did. We also take dangerous sys-
tem calls into account in our empirical analysis. Theisen et
al. [46] used the attack surface metaphor to improve existing
vulnerability prediction models. The authors have shown
that approximating the attack surface of a software system
using functions from stack traces improves the performance
of existing vulnerability prediction models. The prediction
models are at the source file and compiled binary levels.
While their study focuses on prediction improvement, our
study focuses on producing a more lightweight approach to
collecting metrics that rely on the call graph and entry/exit
points, and does not require a database of millions of stack
traces from production usage data.



A vulnerability is a special kind of a software bug, one
that has security consequences. Naturally, one may assume
that bug/defect prediction models [49, 32, 53] may be used
in vulnerability prediction. While an empirical connection
has been observed [45], we have shown that bugs do not
foreshadow vulnerabilities [33]. Thus, while the vulnerability
prediction methods may resemble bug prediction, the models
do not directly translate.

8. SUMMARY
The goal of this study is to assess security risk through an

empirical understanding of the relationship between vulnera-
bilities, individual functions/files, and the attack surface of a
software system. We proposed novel attack surface metrics—
proximity and risky walk—defined on the call graph represen-
tation of a software system. Our empirical analysis revealed
a statistically significant association with historical vulnera-
bilities (RQ1), and that prediction models outperformed a
base prediction model built with SLOC and coupling metrics
(RQ2). Prediction models that leverage our metrics, at both
function- and file-levels, outperformed comparable models
from prior vulnerability literature (RQ3). We envision the
metrics to be beneficial to both researchers and practitioners
as they are simple to collect, intuitive to understand, and
flexible to apply.

In the future, we will explore the space of personalization
and edge weighting schemes for the call graph as that affords
an enormous opportunity for configuration and room for in-
novation. Future studies can also examine how these metrics
fare on non-monolithic systems, such as APIs.
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APPENDIX
A. PARAMETER TUNING

In this section, we describe the methodology used to tune
the parameters (i.e. personalization vector, damping factor,
and edge weights vector) for the risky walk metric. The
objective is to explore parameter values that, when used to
compute the risky walk metric, enables a clear delineation
of functions that were fixed for a historical post-release vul-
nerability (i.e. historically vulnerable functions/files) from
those that were not (i.e. neutral functions/files). Although
the label “historically vulnerable” may seem similar to the
term “vulnerable” introduced in Section 4.3, there is a key
difference in usage. To understand the difference, consider a
sequence of chronologically ordered FFmpeg releases with ver-
sion numbers 1.0.0, 1.1.0, 1.2.0, and 1.2.1. All functions/files
fixed for a vulnerability in 1.0.0 and 1.1.0 are considered
historically vulnerable in 1.1.0, whereas, all functions/files
fixed for a vulnerability in 1.2.1 are considered vulnerable
in 1.2.0. Furthermore, the set of vulnerable functions/files
and the set of historically vulnerable functions/files do not
intersect in any given release.

Our overall approach for parameter tuning is a brute-force
exploration of parameter values along an exponential scale.
Collectively, we examined the following seven variables:

Damping factor (α), personalization of entry points
(Pentry), personalization of exit points (Pexit), weight
of call edges (Wcall), weight of return edges (Wreturn),
additive weight for edges terminating at dangerous points
(Awdangerous), and additive weight for edges terminating
at historically vulnerable functions/files (Awvulnerable)

For the personalization vector, the attack surface meta-
phor argument says that an attacker is likely to start the
reconnaissance for an attack at either an entry point or an
exit point (e.g. via fuzz testing techniques). We capture
this behavior by having the personalization vector contain
higher probability for entry and exit points than non-entry
and non-exit points. For the non-entry and non-exit points,
the personalization vector contains probability drawn from a
uniform distribution.

For the damping factor, tailoring the input to the system
is the only way for an attacker to affect the flow of control
through the call graph. We could conceive situations where
explorations would end quickly or after a long time, so in
our parameter tuning we considered a wide range of values.

For assigning weights to edges, we considered four types
of edges: calls, returns, edges to dangerous points, and edges
to historically vulnerable functions/files. We assigned all
call and return edges a base weight. A function/file that

makes dangerous system calls or was historically vulnerable
could be potential targets for an attacker. We capture this
behavior by increasing the weight of edges terminating at
such functions/files. Weights for edges become probabilities
by summing them per node and dividing each by the total
for that node.

We defined a set of candidate values for each of the seven
variables and constructed a collection of 7-tuple permuta-
tions of the candidate values. The range of candidate val-
ues for each of the seven variables were: (a) α from 0.1
to 0.9, (b) Pentry and Pexit from 1 to 1,000,000, (c) Wcall

and Wreturn from 10 to 10,000, and (d) Awdangerous and
Awvulnerable from 10 to 1,000. While the candidate values
for α were on a linear scale (with an interval of 0.1), the
candidate values for the remaining variables were on an
exponential scale. Although the candidate values for the
personalization variables (Pentry and Pexit) are not proba-
bilities, they are transformed into probabilities before being
used in the algorithm.

The total number of permutations in the collection was
63,504. We used an iterative approach to evaluate each per-
mutation to obtain a set of values for the PageRank parame-
ters, which when used in the computation of the risky walk
metric, results in the metric being statistically significantly
associated (p-value ≤ 0.05) with historically vulnerable func-
tions and have the largest effect size evaluation. We used the
non-parametric Mann-Whitney-Wilcoxon (MWW) test to
assess the association and Cohen’s d effect size statistic [6]
to assess the effect size. The process was repeated in all 16
releases of FFmpeg and 7 releases of Wireshark. The permu-
tation that resulted in risky walk having the largest average
value of Cohen’s d when aggregated across releases in each
subject was chosen to compose the PageRank parameters.
The highest ranking value of the parameters in FFmpeg and
Wireshark is presented in Table 2.

Table 2: Highest ranking value of the variables that
compose the PageRank parameters in FFmpeg and
Wireshark

Variable
Subject

FFmpeg Wireshark

α 0.9 0.9

Pentry 1 10,000

Pexit 1 10,000

Wcall 10 100

Wreturn 10 10

Awdangerous 10 10

Awvulnerable 1,000 1,000

To avoid over-fitting the parameters, we also ran a sensitiv-
ity analysis of our prediction question (RQ2, in Section 5.2)
by using the average of the parameter values of the top 100
highest ranking permutations ordered by the average Cohen’s
d (aggregated across releases). The final precision and recall
was within 2.88% of those obtained from the model with the
averaged weights.


