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Abstract—Security practitioners use the attack surface of
software systems to prioritize areas of systems to test and
analyze. To date, approaches for predicting which code artifacts
are vulnerable have utilized a binary classification of code as
vulnerable or not vulnerable. To better understand the strengths
and weaknesses of vulnerability prediction approaches, vulner-
ability datasets with classification and severity data are needed.
The goal of this paper is to help researchers and practitioners
make security effort prioritization decisions by evaluating which
classifications and severities of vulnerabilities are on an attack
surface approximated using crash dump stack traces. In this work,
we use crash dump stack traces to approximate the attack
surface of Mozilla Firefox. We then generate a dataset of 271
vulnerable files in Firefox, classified using the Common Weakness
Enumeration (CWE) system. We use these files as an oracle for
the evaluation of the attack surface generated using crash data.
In the Firefox vulnerability dataset, 14 different classifications
of vulnerabilities appeared at least once. In our study, 85.3%
of vulnerable files were on the attack surface generated using
crash data. We found no difference between the severity of
vulnerabilities found on the attack surface generated using crash
data and vulnerabilities not occurring on the attack surface.
Additionally, we discuss lessons learned during the development
of this vulnerability dataset.

I. INTRODUCTION

Security professionals use the attack surface of a software
system to determine specific parts of a software system to
target with security testing and review efforts. The Open Web
Application Security Project (OWASP) defines the attack sur-
face as follows 1: The sum of all paths for data/commands into
and out of the application, the code that protects these paths,
valuable data used in the application (including secrets and
keys, intellectual property, critical business data, and personal
data and PII), and the code that protects data. Howard et al.
defined the attack surface of a system along three different
dimensions: targets and enablers, channels and protocols, and
access rights [1].

Determining the complete attack surface of a system is com-
putationally difficult [2]. One approach for approximating the
attack surface of a software system is called Risk-Based Attack
Surface Approximation (RASA) [3], [4]. RASA uses crash
dump stack trace information from target software systems
to predict where potentially exploitable vulnerabilities might
be. However, previous work in attack surface approximation
and vulnerability prediction has treated vulnerable code as a
binary classification: source code either has a vulnerability or

1https://www.owasp.org/index.php/Attack Surface Analysis Cheat Sheet

it does not. Vulnerabilities come in different classifications,
such as buffer overflow errors, memory corruption errors, or
data processing errors. In addition to different classifications of
vulnerabilities, vulnerabilities are not equal in terms of their
impact. Some vulnerabilities have critical consequences for
many users, such as the recent Heartbleed vulnerability [5].
Some vulnerabilities may initially be declared as low severity,
but are later determined to have wider consequences. One
example of this is the default credentials vulnerability in
Internet of Things (IoT) devices that led to the Mirai botnet [6].

RASA can be described as a vulnerability prediction model
(VPM). VPMs are used to predict source code as either
containing a vulnerability or not containing a vulnerability.
Evaluating which classifications and severities of vulnerabil-
ities are covered by a VPM is important to understand the
benefits and limitations of approaches for prioritizing security
effort. The goal of this paper is to help researchers and
practitioners make security effort prioritization decisions by
evaluating which classifications and severities of vulnera-
bilities are on an attack surface approximated using crash
dump stack traces. Practitioners utilizing RASA for attack
surface approximation could benefit from an understanding of
what classifications of vulnerabilities are best detected by the
model. Similar concerns exist for other approaches for attack
surface generation and vulnerability prediction. Knowing the
classifications of vulnerabilities on the attack surface may
influence the next steps practitioners take to remedy those
issues. In this paper, we will answer the following research
questions:

RQ1: What vulnerability classifications are more likely to
appear on a risk-based attack surface approximation
compared to the entire set of code in a system?

RQ2: What severity of vulnerabilities are more likely to
appear on a risk-based attack surface approximation
compared to the entire set of code in a system?

In our study, we compare whether vulnerabilities of spe-
cific types and severities appear on, or are covered by, the
approximated attack surface given by RASA. We analyzed
vulnerabilities and source code from three different versions
of Firefox: 57.0, 58.0b, and 59.0a. We obtained externally-
reported vulnerabilities from the Mozilla organization’s pub-
lic reporting. We augmented the vulnerabilities with defects
mined from Mozilla’s Bugzilla repository of bugs, identifying
defects with security consequences using a keyword search.



We then collected crash dump stack traces from Mozilla Crash
Reports to generate the approximated attack surface from
RASA.

After collecting a set of vulnerabilities to evaluate, we
determine which vulnerabilities were on or off the attack
surface approximated by RASA. We then determine whether
specific classifications and/or severities of vulnerabilities are
more or less likely to be covered by RASA. If RASA has
specific strengths or weaknesses, these strengths and weak-
nesses can be augmented by other security effort prioritization
approaches.

We contribute the following as part of this work:
• An analysis of how vulnerabilities of different classifica-

tions and severities are covered by the Risk-Based Attack
Surface Approximation; and

• A process for mining vulnerability datasets from bug
repositories for other software systems.

The rest of this paper is organized as follows. Section II
describes related work to our project, Section III describes
the process for generating an attack surface from RASA,
Section IV describes our research methodology, Section V
describes our data collection approach for Mozilla Firefox,
Section VI describes our results, Section VII discusses the con-
clusions drawn from our results, and Section VIII describes
the limitations of our work and potential future avenues of
research.

II. RELATED WORK

In this section, we present related research to our study.

A. Crash Dump Stack Trace Analysis

Analyzing crash dump stack traces to build profiles of soft-
ware or identify defective code continues to be an active area
of research. Castelluccio et al. [7] developed an approach for
grouping crash dumps together for easier analysis on Mozilla
Firefox, which is deployed in Mozilla’s crash reporting system.
Bianci et al. [8] use crash data to generate tests designed to
reproduce the failures the data represents.

Recent work in the area of crashes has focused on using
crash dump data to reproduce the behavior that led to the
crash. Cui et al. [9] built Retracer, an approach for reverse
engineering the execution path from crash data. Chen et
al. [10] developed an approach called Star, another approach
for reverse engineering crashes using symbolic execution. In
the space of security specific work on crash data, Credal,
developed by Xu et al. [11] focuses on localizing memory
corruption errors from memory dumps. The volume of recent
work in the area of crash dump reproduction speaks to the
value of this data when attempting to triage defects and
vulnerabilities.

B. Vulnerability Prediction and Prioritization

Vulnerability Prediction Models (VPMs) are a subset of
Defect Prediction Models (DPMs) focused specifically on vul-
nerabilities in software. The analysis of and improvement of
DPMs using new datasets, new features, and new approaches

for analysis is a popular subject of top software engineering
conferences [12]. Text mining was explored for vulnerability
prediction by Hovsepyan and Scandariato et al. [13], [14]. Shin
et al. [15] and Zimmermann et al. [16] explored the use
of software metrics like code churn and code complexity for
vulnerability prediction. Theisen et al. [3] developed RASA,
reproduced in this work, which is used for security effort
prioritization. However, none of these approaches consider
vulnerability classification or severity in their analysis.

C. Classifying Defects and Vulnerabilities

The classification of defects and vulnerabilities has a long
history in the research community. Chillarege et al. developed
a technique called Orthogonal Defect Classification (ODC) to
develop classifications of defects [17]. Podgurski et al. [18]
later developed an automated approach for classifying defects.
In this work, we use existing classification data for defects
generated by the Mozilla team to determine if any of those
defects could also be considered as vulnerabilities.

Defect research in software engineering already considers
the classifications of defects that occur in different types of
software systems. Sullivan et al. compared defects that occur
in databases versus operating systems [19]. Li et al. profiled
defect characteristics in open source projects [20]. Khalid et
al. found that complaints about software functionality were
the most common complaint for mobile applications [21].
However, classification schemes for vulnerabilities is not as
common. In vulnerability classification literature, researchers
have mostly focused on whether code can be classified as
vulnerable or not [3], [4], [22], [15], [16], [14].

Austin et al. [23] performed a comparison of vulnerability
detection techniques and found that a single approach was not
sufficient for vulnerability coverage. This work informs the
need for a vulnerability dataset that not only considers a binary
classification of vulnerabilities, but also a classification process
for vulnerabilities. Bettenburg et al. provided a blueprint for
the content of useful bug reports [24].

D. Attack Surface

Manadhata et al. [2] provided one of the earliest measures
of attack surfaces in software systems, focusing on entry and
exit points. Theisen et al. used crash dump stack traces to
predict potentially vulnerable code [3], [4]. We replicate their
approach, called Risk-Based Attack Surface Approximation
(RASA), as part of this work. Vulnerability data collected
as part of this work is shared with another report submitted
to another conference [25]. Zhang et al. [26] used package
dependencies to determine the attack surface of package based
systems. In related domains such as networks and power grids,
researcher look for ways to limit the exposure of critical
infrastructure using the attack surface concept [27].

Work in the area of attack surfaces sometimes takes the
form of minimizing the attack surface to limit the areas that
need to be tested or reviewed for security issues. Geneiatakis et
al. [28] focused on minimizing the attack surface of databases.
Zhang et al. [29] developed an approach for reducing the



attack surface of an operating system kernel. Kantola et
al. [30] examined message handling between applications on
the Android operating system in order to reduce the possibility
of attack. While many approaches exist for approximating or
reducing the attack surface of software systems, the generation
of a ground truth attack surface for large software systems
remains an open question.

III. RISK-BASED ATTACK SURFACE APPROXIMATION

In this section, we describe Risk-Based Attack Surface
Approximation (RASA) [3], [4], an approach for predicting
what source code in a software system might have exploitable
vulnerabilities.

Crash dump stack traces were used by Theisen et al. as
a proxy for potentially vulnerable code. [3]. Crashing code
has several properties that it shares with vulnerabilities. First,
crashing code and vulnerable code can both be expressed as
unexpected data flow and handling errors. In a crash, these data
flow and handling errors result in a specific form of unintended
behavior; a crash of the target system. Many vulnerabilities
consist of data flow and handling errors, with the consequence
of the violation of security properties such as confidentiality,
integrity, and availability. The core assumption of the Theisen
et al. approach is that code that has previously crashed is
likely to have additional, separate data flow and handling
issues. While previous research has shown that defects tend to
correlate with one another, Camilo et al. found that this does
not extend to vulnerabilities, necessitating new approaches for
determining what code should be inspected for vulnerabili-
ties [31].

Generating RASA For a software system consists of several
data collection and analysis steps. A visualization of this
process is found in Figure 1. First, we collect a set of crash
dump stack traces from the software system. We find the
crashing thread in the crash dump, along with the associated
stack trace for that thread at the time of the crash. From the
stack trace, we identify the individual code artifacts (binaries,
files, functions) that occur on each frame (or line), of the stack
trace in the crashing thread. Next, code artifacts from the crash
data are compared against the contents of source control for
the software system, with the goal of developing a one-to-
one mapping of the code in the crash data to source control.
Code artifact names can be reused or overloaded during the
development process. For example, multiple source code file
can be named “foo.cpp” in different directories of the system.
Function name reuse is also common. The resultant mapping
of crashing code to source control provides a list of code in
source control that has crashed at least once. We treat this as an
approximated version of the attack surface of of the software
system, or the RASA of the software system. A visualization
of the approximated attack surface of a software system can
be found in Figure 2.

After generating RASA for a software system, we use
security vulnerability data as an oracle for evaluating how
well RASA covers vulnerable code.. Code artifacts with at
least one vulnerability are considered vulnerable code, while

code artifacts with no vulnerabilities are considered non-
vulnerable code. We then calculate two metrics to evaluate the
performance of RASA: Code Coverage (CC) and Vulnerability
Coverage (VC) [4].

CC is the percentage of artifacts found on crash dump stack
traces relative to all artifacts, as shown in via Equation 1 [4]:

CC =
# artifacts in crashes

# artifacts in the system
(1)

VC is the percentage of artifacts found on crash dump stack
traces with at least one or more security vulnerabilities relative
to all artifacts with one or more vulnerabilities, as computed
in Equation 2 [4]:

V C =
# artifacts with at least one vuln. in crashes

# artifacts with at least one vuln.
(2)

In one RASA [3] using Windows data, 48.4% of binaries
appeared on at least one crash dump stack trace (CC=48.4%),
while 94.8% of post-release vulnerabilities (VC=94.8%) were
found in that 48.4% subset of the binaries. Based on this
result, Security professionals can prioritize their efforts on
source code that has been seen in crash dump stack traces, as
vulnerabilities are found to be more dense in those locations.

Another RASA study using Mozilla Firefox data [4] ran
the process at the source code file level, rather than the
binary level. In the Firefox study, the researchers found that
randomly sampling stack traces down to 10% of the available
crash data did not have an appreciable impact on RASA’s
ability to predict where exploitable vulnerabilities would be in
either Firefox or Windows [4]. The process for approximating
vulnerable code was run 10 times with 10% of the crashes,
20% of the crashes, et cetera for both systems. Between
runs at the same sampling level, variation of vulnerability
coverage of less than 1% was observed. In addition, only
3% (or fewer than eight) fewer vulnerabilities were covered
using an order of magnitude less data (10% of the crashes
versus 100% of the crashes in the collected dataset). Therefore,
smaller organizations with significantly less crash data may see
practical results similar to the results of RASA on Firefox and
Windows for their own software systems.

IV. METHODOLOGY

In this section, we describe the methodology for identifying
and classifying vulnerabilities and the use of crash dump stack
traces to approximate the attack surface of a product.

A. Identifying Vulnerabilities

We identify vulnerabilities from the target software system
in two stages. First, vulnerabilities explicitly defined as such
by the maintainers of the software system are included in
our dataset. Organizations that publicly report vulnerabilities
can be found in several ways. First, such organizations may
have a blog, newsletter, or mailing list for reporting security
incidents, such as Mozilla’s Security Reports blog. Second,
the organization’s bug tracking repository may have a flag



Fig. 1. A visualization of the process used to generate a Risk-Based Attack Surface Approximation (RASA) for a software system, with a running example.
Each occurrence of a file in a stack trace adds an additional count to the resultant attack surface.

Fig. 2. A graph visualization of the attack surface generated by RASA.
Individual nodes on the graph are source code artifacts. Edges indicate calls
from one artifact to another. Grey circles are code that crashed at least once.

for security issues, such as “security” or “vulnerability”. In
addition to collecting explicitly defined vulnerabilities, we also
check the rest of the bugs in the bug tracking system for
more potential vulnerabilities, as research by Herzig et al. [32]
indicates a high level of misclassification of bugs in open
source projects. The specific keywords and process used for
mining will depend on the software system in question. For
details specific to our study, reference Section V.

B. Classifying Vulnerabilities

After identifying vulnerabilities for inclusion in our dataset,
two raters then classify each vulnerability using an exist-
ing vulnerability classification scheme. We use the Common
Weakness Enumeration (CWE) set of most commonly seen
weaknesses in software 2. We have added the ”Other” classi-
fication to the list of classifications to cover the case where a
vulnerability does not fall into a preexisting category. In the
event that a significant amount of ”Other” vulnerabilities are
identified, further stratification may be needed. From CWE,
we use the following 24 classifications of vulnerabilities:

• Configuration
• Code
• Code - Data Processing Errors
• Code - Pathname Traversal and Equivalence Errors - Path

Traversal
• Code - Pathname Traversal and Equivalence Errors - Link

Following

2http://cwe.mitre.org/data/definitions/1003.html

• Code - 7PK Security Features - Credentials Management
• Code - 7PK Security Features - Permissions, Privileges,

and Access Controls
• Code - 7PK Security Features - Improper Certificate

Validation
• Code - 7PK Security Features - Cryptographic Issues
• Code - 7PK Security Features - Use of Insufficiently

Random Values
• Code - 7PK Security Features - Insufficient Verification

of Data Authenticity
• Code - 7PK Security Features - Improperly Implemented

Security Check for Standard
• Code - 7PK Security Features - Protection Mechanism

Failure
• Code - 7PK Time and State
• Code - 7PK Code Quality
• Code - Resource Management Error
• Code - Resource Management Error - Uncontrolled Re-

source Consumption
• Code - Resource Management Error - Improper Resource

Shutdown or Release
• Code - Resource Management Error - Use After Free
• Code - Resource Management Error - Double Free
• Code - Channel and Path Errors - Uncontrolled Search

Path Element
• Code - Channel and Path Errors - Unquoted Search Path

or Element
• Environment
• Other

Further explanation of each classification can be found on
the CWE website. The two raters individually classify each
vulnerability in the dataset. After classifying each vulnerabil-
ity, the raters then convene and resolve any differences that
have occurred between the two of them. In the event that the
two raters cannot come to a consensus, a third party arbitrator
may be used to resolve the conflict. The initial independent
classification of each vulnerability is preserved so the initial
agreement between the two raters can be calculated.

We use Cohen’s Kappa to evaluate the agreement between
the two raters [33]. Cohen’s Kappa provides a quantita-



tive measure of the agreement between classifiers or raters.
Cohen’s Kappa is useful for this process because it takes
into account the possibility of agreement by random chance,
rather than properties of the object being rated or classified.
We report Cohen’s Kappa for for sorting vulnerabilities into
classifications once the vulnerabilities have been identified.

C. Vulnerability Severity

We use system-specific severity ratings for the vulnerability
dataset, rather than using a global measure like the Common
Weakness Scoring System (CWSS). A system-specific severity
rating is a rating assigned by the maintainers of a software
system in their own bug tracking system, such as Bugzilla. We
use system-specific severity ratings based on the observation
that security is contextual: a severe vulnerability for one
organization may be a minor one for another, despite the
mechanics of the vulnerability being identical. The severity
of the vulnerability is linked to the consequences of the
vulnerability, such as critical data leaking for one group while
trivial data is leaked for another. Based on these observations,
using internal severity measurements is superior to global
measurements, such as the ones provided by CWSS. For our
study, we use the severity ratings provided by the product
engineers at Mozilla, according to a four point scale: critical,
high, moderate, and low. These ratings are taken directly from
the bug report entries in the Mozilla Bugzilla repository.

D. Risk-Based Attack Surface Approximation

We evaluate RASA, as described in Section III, in terms
of RASA’s ability to cover vulnerabilities of different classi-
fications and severities. For RASA, crash dump stack traces
from the system under analysis are collected and stored. The
individual code artifacts, such as binaries, files, or functions,
that appear on the crashing thread in the the crash dump stack
traces are saved. If a binary, file, or function appears on at
least one of these crashing threads, RASA declares that code
to be on the attack surface of the software system.

After a set of crashes have been collected for the target
system and code artifacts have been identified as being on
the attack surface of the system or off the attack surface, we
then map individual vulnerabilities as collected in the previous
sections to individual code artifacts in the software system.
The process of identifying specific code elements and tying
them to specific code artifacts for our case is described in
detail in Section V.

V. CASE STUDY

In this section, we describe the steps taken to mine vulner-
abilities and crash dump stack traces for Mozilla Firefox.

A. Vulnerability Data

Mozilla Firefox vulnerability data was first collected from
Mozilla Foundation Security Advisories blog [34]. Vulnerabil-
ities were collected by the authors. For each bug, we recorded
the following information:

TABLE I
THE LIST OF KEYWORDS USED TO COLLECT POTENTIAL UNLABELED

VULNERABILITIES FROM MOZILLA’S BUGZILLA DATABASE ON MOZILLA
FIREFOX.

Search Keywords

secure shutdown integer XSS
security regression signedness denial service
vulnerable incorrect widthness DOS
vulnerability memory corruption underflow crash
fail race improper deadlock
failure racy unauthenticated SQL
bug buffer gain access SQLI
problem overflow permission injection
error stack cross site format
crash CSS attack overrun
string bypass CSRF breach
printf backdoor XSRF violate
scanf threat forged fatal
request forgery expose hole blacklist
exploit

• Mozilla Security Report: The short URL where the bug
report was found. Multiple bugs were sometimes reported
in a single blog post on the website.

• Bugzilla Entry: A link to the associated Bugzilla entry in
the Mozilla repository.

• File: The source code file(s) modified to fix the bug.
• Description: A summary of the bug by the Mozilla

security team.
• Severity: The severity of the defect. We used the internal

classification system from the Mozilla team: critical, high,
moderate, and low.

In addition, we mined Mozilla’s Bugzilla repository 3 for
bugs that were not reported publicly on the Mozilla Founda-
tion Security Advisories blog. Some bugs were not reported
publicly, but exhibited characteristics of a vulnerability. We
used a list of keywords determined by Shin et al. [15] to
mine these potential vulnerabilities. The list of keywords used
for mining potential vulnerabilities is found in Table I. After
collecting bugs that matched one or more of these keywords
from Bugzilla, two of the authors independently classified
each bug as a vulnerability or as not a vulnerability. If a
bug was classified as a vulnerability, it was then added to
the set of vulnerabilities taken from the Mozilla Security
Advisories. We record the same vulnerability information for
vulnerabilities mined from Bugzilla, with the exception of
labeling the Mozilla Security Report field as Not Applicable.

To link source code files in Mozilla Firefox with a vulnera-
bility, the authors inspected the Bugzilla Entry for each identi-
fied vulnerability in Mozilla’s Bugzilla database. For each bug,
we specifically looked for a diff attached to the bug that had
been positively reviewed by a security team member (indicated
by the sec-approval+ tag), a release manager (indicated by
approval-X or review+ tags). In some cases, multiple diffs
were included as part of the fix for a vulnerabilities. These diffs
would be labeled “Part 1”, “Part 2”, et cetera in the bug report

3https://bugzilla.mozilla.org/



attachments. If all the diffs had reviews from a security team
member or a release manager, we inspected them for source
code files modified in fixing the vulnerability. If one of the
parts did not have an associated review, it was not inspected.

Each reviewed diff was then run through a string parser
which looked for strings formatted in source code format;
*.cpp, *.c, *.h, et cetera. We recorded each of these occur-
rences and associated them with the Bugzilla entry the diff
was attached to.

In the case that the same file appears in multiple vulner-
abilities, we took the following steps for classification and
severity analysis. For classification, we recorded the list of
all classifications for that particular file. For severity, we
recorded the highest observed severity classification seen in
our dataset. As an example: the source code file “foo.cpp”
could be classified as being associated with both Code Quality
and Uncontrolled Resource Consumption vulnerabilities, but
would be assigned the highest severity score between the two
vulnerabilities.

When inspecting individual diffs for each bugfix, we specif-
ically removed files from the ”test” directory or with ”test” in
the name unless the bug specifically dealt with user access
to test materials for Mozilla Firefox. We removed these files
because many bugs also featured updates to test cases for
Firefox, which are not included in the scope of our study.

In some cases, files were moved or have been refactored
out of Mozilla Firefox since the bug report was issued. For
files flagged in bug reports that were not found in source
control, we performed manual inspection to see if the lines
of code modified was still in place in source control using
grep and other search tools. If the lines of code were found
in another file, we changed the entry in the vulnerable code
list to match the current file in source control. If it was not
found, we discarded that file from the vulnerable code list.

We identified 63 bugs with 232 files with vulnerability
fixes from the Mozilla Foundation Security Advisories blog
from June 2016 to December 2016. From our Bugzilla mining
effort using keywords, we identified 308 bugs with their
related source code files for potential inclusion in our set of
vulnerabilities. Each rater looked at the information in the
bug reports, such as the title of the bug, the change that
fixes the bug, the description of the bug, or the comments
in the bug. For each bug, the rater specified whether the bug
should also be considered a vulnerability (TRUE/FALSE), and
the classification of the vulnerability if it was declared as
such, from the set of classifications above. After classifying
these files, we were left with 88 bugs, associated with 111
source code files changed to fix a vulnerability. The inter-
rater reliability between the two authors when classifying
vulnerable files was κ = 0.6. We added these 111 files to
the 232 files found on the Mozilla Security Advisories blog,
resulting in a final list of 343 source code files that were
involved with a vulnerability. We discarded 14 source code
files from our list and changed 8 source code files based on the
movement of code to another source code file or the removal
of code from the system. Finally, we removed duplicate source

code file entries in our list, resulting in 271 files with at least
one vulnerability.

B. Crash Dump Stack Trace Collection

To collect crash dump stack trace data for RASA, we use
Mozilla Crash Reports [35], a site for querying Mozilla’s
crash report database. Mozilla provides an API for bulk crash
collection efforts, leveraging their SuperSearch feature for
collection of crashes under specific parameters.

We used SuperSearch generate the URL for our API calls.
We searched for Firefox crashes for the nightly build of
Firefox along with the public releases at the time of our study
(59.0al 58.0b, and 57.0). We first collected a set of crash
ID’s matching our search parameters, and then applied string
parsing to the individual crash ID’s. For each crash ID, we
checked the “crashing thread” for the crash and recorded all
source code files involved with that thread. We then checked
the list of source code files from the “crashing thread” against
source code files found in Mozilla Firefox source control. If
a file was not found in source control, we discarded it. Some
source code files were from other Mozilla products, indicating
integration with other products. In some cases, crashes were
classified incorrectly by Mozilla Crash Reports. Finally, some
third party code was also included in crashes, such as driver
files, source code from underlying software like Rust4, or
plugins for the Firefox browser. While vulnerabilities may also
be present in other Mozilla products or third party code, we
considered these source code files out of scope.

Once third party and unknown code was removed from
the “crashing thread”, we saved the remaining source code
file names to a running “crashing code” list. If a particular
source code file had not been seen yet in the “crashing code”
list, we added that source code file to the list. If a particular
source code file was already seen, we incremented a counter
associated with that source code file. For files that occurred
multiple times in the “crashing thread” of a crash, we only
increment the associated “crashing code” counter once. After
parsing the crashes, the “crashing code” list and the associated
counters represent RASA for Mozilla Firefox.

We started collection of historical crash data on November
12, 2017 and finished on November 22, 2017. A total of
1,141,519 crashes were parsed while collecting crash dump
stack traces.

VI. RESULTS

In this section, we present the results of our study.

A. Coverage of Vulnerability Classifications

The distribution of coverage of different classifications of
vulnerabilities by crashing code can be seen in Figure 3. The
coverage of all vulnerabilities for our data set was 85.3%,
meaning 85.3% of vulnerabilities in our dataset occurred in
crashing code. Therefore, 85.3% was used as a baseline for
each individual classification of vulnerability. Classifications
of vulnerabilities with a higher percentage of coverage would

4https://www.rust-lang.org/en-US/



Fig. 3. Distribution of classifications of vulnerabilities occurring on crashing code versus classifications occurring on non-crashing code. The total number
of vulnerabilities in this classification is next to the classification label in parenthesis. The percentage of vulnerabilities covered for a specific classification is
next to the label. Vulnerability classifications with no entries in our dataset are omitted.

represent strengths of the RASA approach, while categories
with a lower percentage of coverage would represent weak-
nesses of the approach. In our study, four of the vulner-
ability classifications are lower than the baseline value of
85.3%: Traversal, Protection Mechanism Failure, Resource
Management Error and Other. Based on this result, these
four classifications would represent weaknesses of the RASA
approach, or classifications of vulnerabilities the approach is
more likely to miss. The remaining categories would represent
strengths of the approach, or classifications of vulnerabilities
the approach is more likely to cover.

B. Coverage of Vulnerability Severity

The distribution of coverage of different severities of vul-
nerabilities by crashing code can be seen in Figure 4. In
our results, we see little variation between the four differ-
ent categories of severity, based on our previously defined
baseline of coverage at 85.3%. Vulnerabilities classified as
Critical and Low featured higher coverage, while High and
Moderate vulnerabilities featured lower coverage. Based on
these results, using RASA does not seem to offer any benefits
or drawbacks in terms of finding more severe vulnerabilities.
The vulnerabilities not covered by RASA are relatively evenly
distributed in terms of severity.

We also split our vulnerability data into two sets; the
publicly reported vulnerabilities on the Mozilla Security Advi-
sories blog, and the mined vulnerabilities from Bugzilla. We
then counted the number of vulnerabilities in each severity

level for each set of vulnerabilities to see if any differences
existed in severity distribution between the two sets. Of the
232 vulnerable files from the security reports blog, 136 of
them were classified as critical, 59 were classified as high, 27
were classified as moderate, and 10 were classified as low. Of
the 111 vulnerable files from keyword-based mining, 55 were
classified as critical, 4 were classified as high, and 51 were
classified as normal/moderate. There was an initial expectation
that vulnerabilities classified by the Mozilla team as Critical
would be more likely to be reported on the blog, but this does
not seem to be the case.

Based on the overall distribution of severity ratings for
vulnerabilities done by the Mozilla Firefox team, there seems
to be a bias towards rating vulnerabilities as Critical. Over
60% of the files associated with vulnerabilities were classified
as Critical at least once. The lack of stratification of severity
ratings for vulnerabilities suggests a possible issue with the
scale used by the Mozilla team for rating severity.

VII. DISCUSSION

In this section, we discuss the results from our study on
Mozilla Firefox, along with some conclusions drawn about the
use of vulnerabilities as an oracle for vulnerability prediction
models.

A. Results

Some of the results of comparing code coverage of crashes
to vulnerabilities has unintuitive results. In particular, we were
surprised to see that Resource Management Errors had a



Fig. 4. Distribution of severity of vulnerabilities occurring on crashing
code versus severities occurring on non-crashing code. The total number of
vulnerabilities for a specific severity is in parenthesis next to the label. The
percentage of vulnerabilities covered for a specific severity is next to the label.

lower coverage rate than the baseline (78.9% versus 85.3%).
Upon further inspection, the subset of vulnerabilities based on
memory corruption issues had a particularly low coverage rate,
with only two of the seven memory corruption issues being
in crashing code. Our expectation was that crashes would do
particularly well with memory corruption issues, as memory
corruption issues can also cause crashes. Another classification
with a lower coverage rate than the baseline of 85.3% was
Traversal issues, summarized by CWE as:

“Weaknesses in this classification can be used to access files
outside of a restricted directory (path traversal) or to perform
operations on files that would otherwise be restricted (path
equivalence). Files, directories, and folders are so central to
information technology that many different weaknesses and
variants have been discovered. The manipulations generally
involve special characters or sequences in pathnames, or the
use of alternate references or channels.”

As the use of special characters or sequences can cause
crashes if they are not properly escaped, this was also a
surprise. Part of this result could be explained by the low
number of vulnerabilities in this classification, with only two
having this property. For both of these failures in coverage,
future work may be able to determine if this is statistical noise
or an issue with using crash dump stack traces as a security
metric.

One interesting observation of our results is that 162 of
the 271 vulnerabilities in our study were classified as critical,
the highest possible level of severity. The high number of
critical vulnerabilities indicates a significant skew in terms
of the rating of vulnerabilities by the Mozilla team. If this
observation holds for other software projects, it could indicate
a potential issue with the rating of vulnerabilities in terms

of their overall impact. If most vulnerabilities are rated as
critical, then vulnerabilities are harder to distinguish from one
another. Ideally, vulnerability severity classification should be
more evenly distributed to draw meaningful conclusions about
the distribution of vulnerabilities in a software system.

RASA covers vulnerabilities of a variety of different clas-
sifications. There is little variation in the coverage of vulner-
abilities of different severity ratings compared to the baseline
coverage, leading us to conclude that RASA does not perform
particularly well or particularly poorly in the coverage of
the most severe security issues for Mozilla Firefox. Based
on these results, we can recommend the use of RASA for
prioritizing security efforts for Firefox, and practitioners can
have confidence that they will not disproportionally miss
the most severe issues in their product. The development
of additional vulnerability datasets with classification and
severity considerations would help determine whether this
result generalizes to other products.

B. Oracles for Vulnerability Studies

One consequence of this work is a closer examination of
oracles for vulnerability prediction or attack surface modeling
studies. Previous studies in the the vulnerability prediction and
attack surface modeling space have used historical vulnerabil-
ities as an oracle for representing known vulnerable code [3],
[4], [16], [15], [14]. The use of historical vulnerabilities as
an oracle for vulnerable code follows from defect prediction
research, which uses historical defect data as an oracle.

However, differences between vulnerability datasets and de-
fect datasets raises the question on whether the two approaches
should be evaluated by the same metric. Kononenko et al.
found that the chance for an individual file or function to have
a defect in a software system can be as high at 50% [36]. Our
Mozilla Firefox vulnerability dataset has a vulnerability rate
of less than 1%. As historically defective code is significantly
more prevalent than historically vulnerable code, the data
imbalance problem means that vulnerability prediction work
using a historical oracle may never rise to the predictive power
of defect prediction models.

A study by the authors on vulnerability severity using
data from the Fedora operating system was discussed with
practitioners at the Symposium and Bootcamp on the Science
of Security (HoTSoS 2018) [37] To quote one practitioner:

“If my team has always known that the ‘Example’ function
could have a vulnerability introduced by a developer, we’re
extra careful to check that function and the associated func-
tionality for a possible vulnerability whenever it’s changed. If
we do our job and keep a vulnerability from being shipped
to users in that function, then a prediction model based
on observed vulnerabilities is never going to include the
‘Example’ function.’

The above discussion point suggests that using historical
vulnerabilities as an oracle for VPMs may introduce bias in the
validation process. In particular, the VPMs may not consider
parts of a software system with the worst issues, because the
team maintaining the software may be catching vulnerabilities



before they are shipped. On one hand, this could be considered
a feature: for teams who are already performing proactive
security review and testing, highlighting areas of the codebase
they are currently not inspecting and testing carefully could
have immediate benefits. In that case, not covering the known
dangerous areas of the codebase is fine, because the team
already knows functions like the above ‘Example’ function
are an issue.

However, a bias towards uninspected areas of the codebase
has several negative consequences. First, for the experienced
practitioner above, the hypothesized VPM missing a key
function like the ‘Example’ function lowers their trust in the
tool. If a VPM misses the obvious things, why should they
trust the rest of the results? For less experienced professionals
or teams just starting secure engineering processes, missing
the obvious could have immediate critical consequences for
the team. If you rely on these prediction models to build your
basic understanding of the security concerns in a system, then
the team may not realize what parts of their systems have
critical security issues until those issues have been exploited.
Based on these observations, one important branch of future
research may be on the oracles used to evaluate vulnerability
prediction models.

One possibility is to model the impact of vulnerabilities if
they occur in a specific part of the codebase or with specific
resources in the system. The practice of Threat Modeling
is widely used in industry to determine potential threats,
and has been used by the research community for security
requirements development [38]. Applying Threat Modeling to
systems highlight areas of the system where a vulnerabilities
would cause the most damage. For example, one organization
has a policy that mandates security review and testing if code
is modified or written that manipulates Personally Identifiable
Information (PII). While a vulnerability may not have occurred
in that place before, a vulnerability related to PII would
be costly for their organization. Pairing data flow analysis
while locating critical data in systems could result in another
approach for prioritizing security testing and review efforts
based on the potential consequences of a failure. For example,
a function that handles critically sensitive information could
be reviewed and tested after every change, while code that
handles less sensitive data could be tested less often.

VIII. LIMITATIONS AND FUTURE WORK

Several threats to validity exist for this study. First, our
classification system for vulnerabilities could be flawed, as
it relies on the opinion of the people profiling the vulnerabili-
ties. The approach for identifying potential vulnerabilities not
mentioned on the Mozilla Security Advisories blog is based
on keyword-based and human classification. There may be
inaccuracies in that dataset, such as missing vulnerabilities
or bugs misclassified as vulnerabilities. We mitigated this
possibility by using two raters, and having the two raters
resolve their differences in classification. In the case where
the raters could not come to a consensus, we excluded that
potential vulnerability from the dataset.

We used the top level CVE definitions of vulnerabilities
for our study, as described in section IV. As the landscape
of security vulnerabilities changes, these classifications of
vulnerabilities may also change. Vulnerability datasets should
be periodically updated as changes are made to vulnerability
classification systems. In addition, analysis of the distribution
of severity scores in a publicly reported system as the National
Vulnerability Database (NVD) would confirm or deny the
concept that vulnerability severity ratings tend to be skewed,
as seen in our Mozilla Firefox dataset.

Some of the bugs described Mozilla Security Advisories
blog are marked as private in the Mozilla Bugzilla database.
Marking a vulnerability as private hides the vulnerability from
public view, as only authorized accounts can see information
about the vulnerability. Without the diff that fixes the vulner-
ability, we cannot include that vulnerability in our dataset.

Our study describes the use of crash dump stack traces
to approximate vulnerable code, and the coverage of various
classifications of vulnerabilities. Our study only covers one
such approach for approximating vulnerable code. Other ap-
proaches, such as the ones created by Munaiah et al. [22]
and Younis et al. [39], may cover different classifications
of vulnerabilities. One possible result from a replication of
this study using other techniques is the discovery of com-
binations of approaches that result in better coverage, as
different techniques might do a better job of covering different
classifications of vulnerabilities.

A single missing vulnerability can be catastrophic for an
organization. Because no published VPM to our knowledge
claims 100% coverage of historical vulnerabilities, practi-
tioners may decide not to take the results of such models
into consideration. One of our observations while explaining
RASA to practitioners is that framing the approach as a
prioritization scheme rather than a prediction model improved
practitioner reaction to the tool. Further research into the reac-
tion of practitioners to vulnerability prediction models when
framed as absolute measures versus prioritization methods
could help determine what barriers are preventing prediction
model adoption in industry.
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