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Source Count

S&P 465
Sec 35
CSF 327
Google 241

Total 1,068

Source Count
Drebin 180
Mobile-Sandbox 210
Total 280

Type Count
Permission 132
API	method 11,373
Intent 189
Total 11,694

Evaluation

Rank Feature Type Behaviors
1 sendTextMessage API	method Subscribe	premium-rate	service
2 SEND_SMS Permission Send	SMS	message
3 BOOT_COMPLETED Intent Register	for	related	system-wide	event
4 RECEIVE_SMS Permission Block	incoming	SMS	message
5 onStart API	method Call	sendTextMessage method

……

195	features

0.00 0.02 0.04 0.06 0.08 0.10
FDlse PRsitive 5Dte

0.80

0.85

0.90

0.95

1.00

T
ru

e
 P

R
si

ti
v
e
 5

D
te

FeDture6Pith

Drebin

Ø Are	the	features	useful?

Ideal	performance

92.5%	true	positive
1%	false	positive

• ROC	curve	of	real-world	malware	detection

Equivalent	performance	as	
the	state-of-the-art	technique	(Drebin)

• 18	“false	positives”:
Mislabeling	apps (8)
Security	apps	(2)

Intercept	phone	calls
filter	messages

Parental	supervision	app	(1)
Track	child’s	location

banking	app	(1)
unknown	(6)

Ø How	good	is	the	ranking?
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FeatureSmith is	able	to	assign	high	rank	to
the	features	with	high	mutual	information.

Feature MI Ranking
FeatureSmith Keyword-

TF
BOOT_COMPLETED 0.27 3 151

SEND_SMS 0.26 2 9
READ_PHONE_STATE 0.22 11 16

startService 0.18 60 37
RECEIVE_BOOT_COM

PLETED
0.17 54 351

Features	with	highest	mutual	information
also	on	the	top	of	the	list	by	FeatureSmith

Ø What	is	the	benefit?
ü Fill	the	semantic	gap

Feature getNetworkOperatorName
Behavior Send	to	malicious	server

Read	network	operator	name
Reference “As	an	example	,	SUSI identifies	as	source	the	

unprotected getNetworkOperatorName(	)	
method	in	the TelephonyManager class	,	which	
returns	the	name	of	the	network	operator	or	
carrier. Our	study	reveals	malware	samples	
that	use	this	method	for	reading	out	the	
network	operator	name	and	sending	it	to	a	
malicious	server.”	[Rasthofer et	al.
NDSS	14’]

ü Overlooked	features	from	
manual	feature	engineering

Excluded	from	Drebin feature	set:
• getSimOperatorName
• getNetworkOperatorName
• getCountry

False	negatives:
• Gapussin (downloader)

Feature
Smith

Is	able	to
Identify	

them

ü Overlooked	signatures	from
data	driven	selection

• Uncommon	patterns
createFromPdu,	getOriginatingAddress

• Alternative	implementations
onLocationChanged,	onNmeaReceived

• Potential	threat
isMusicActive

More	information:	featuresmith.org

Example
“Zsone malware	is	designed	to	send	SMS	messages	
to	certain	premium	numbers.”

Behaviors:
• Zsone malware	send	SMS	message
• Zsone malware	send	to	certain	premium	number

Behavior	
extraction

Zsone
Send	SMS	message

Identify	execution	path

SEND_SMS

sendTextMessage

Thread.start

Semantic	network
construction

Malware	keeps	evolving
• Increasing	vulnerabilities
• Different	strategy

Unstructured	data	sources
• Security	literature
• Malware	report

Can	we	engineer	features	to	detect	the	
malware	by	mining	the	security	literature?


