
FeatureSmith:	Automatically	Engineering	Features	for	
Malware	Detection	by	Mining	the	Security	Literature

Ziyun Zhu,	Tudor	Dumitraș
University	of	Maryland,	College	Park

{zhuziyun,	tdumitra}@umiacs.umd.edu

Approach

Scientific
Literature

Collect
features

Extract
Behaviors

Collect
malware

Weighted
Behaviors

Filtering	and	weighting

Semantic
Network

Compute	colocation

Explanation

Data	flow
Computation

Features

Malware

Behaviors

Android
Doc

Malware
Sources

Source Count

S&P 465
Sec 35
CSF 327
Google 241

Total 1,068

Source Count
Drebin 180
Mobile-Sandbox 210
Total 280

Type Count
Permission 132
API	method 11,373
Intent 189
Total 11,694

Evaluation

Rank Feature Type Behaviors
1 sendTextMessage API	method Subscribe	premium-rate	service
2 SEND_SMS Permission Send	SMS	message
3 BOOT_COMPLETED Intent Register	for	related	system-wide	event
4 RECEIVE_SMS Permission Block	incoming	SMS	message
5 onStart API	method Call	sendTextMessage method

……

195	features

0.00 0.02 0.04 0.06 0.08 0.10
FDlse PRsitive 5Dte

0.80

0.85

0.90

0.95

1.00

T
ru

e
 P

R
si

ti
v
e
 5

D
te

FeDture6Pith

Drebin

Ø Are	the	features	useful?

Ideal	performance

92.5%	true	positive
1%	false	positive

• ROC	curve	of	real-world	malware	detection

Equivalent	performance	as	
the	state-of-the-art	technique	(Drebin)

• 18	“false	positives”:
Mislabeling	apps (8)
Security	apps	(2)

Intercept	phone	calls
filter	messages

Parental	supervision	app	(1)
Track	child’s	location

banking	app	(1)
unknown	(6)

Ø How	good	is	the	ranking?

� �� �� �� �� ��� ��� ��� ���
)HDWXUH�5DQNLQJ

���

���

���

���

���

���

���

���

&
X
P
X
OD
WL
Y
H
�P
X
WX
D
O�
LQ
IR
UP
D
WL
R
Q

)HDWXUH6PLWK

.H\ZRUG�7)

FeatureSmith is	able	to	assign	high	rank	to
the	features	with	high	mutual	information.

Feature MI Ranking
FeatureSmith Keyword-

TF
BOOT_COMPLETED 0.27 3 151

SEND_SMS 0.26 2 9
READ_PHONE_STATE 0.22 11 16

startService 0.18 60 37
RECEIVE_BOOT_COM

PLETED
0.17 54 351

Features	with	highest	mutual	information
also	on	the	top	of	the	list	by	FeatureSmith

Ø What	is	the	benefit?
ü Fill	the	semantic	gap

Feature getNetworkOperatorName
Behavior Send	to	malicious	server

Read	network	operator	name
Reference “As	an	example	,	SUSI identifies	as	source	the	

unprotected getNetworkOperatorName(	)	
method	in	the TelephonyManager class	,	which	
returns	the	name	of	the	network	operator	or	
carrier. Our	study	reveals	malware	samples	
that	use	this	method	for	reading	out	the	
network	operator	name	and	sending	it	to	a	
malicious	server.”	[Rasthofer et	al.
NDSS	14’]

ü Overlooked	features	from	
manual	feature	engineering

Excluded	from	Drebin feature	set:
• getSimOperatorName
• getNetworkOperatorName
• getCountry

False	negatives:
• Gapussin (downloader)

Feature
Smith

Is	able	to
Identify	

them

ü Overlooked	signatures	from
data	driven	selection

• Uncommon	patterns
createFromPdu,	getOriginatingAddress

• Alternative	implementations
onLocationChanged,	onNmeaReceived

• Potential	threat
isMusicActive

More	information:	featuresmith.org

Example
“Zsone malware	is	designed	to	send	SMS	messages	
to	certain	premium	numbers.”

Behaviors:
• Zsone malware	send	SMS	message
• Zsone malware	send	to	certain	premium	number

Behavior	
extraction

Zsone
Send	SMS	message

Identify	execution	path

SEND_SMS

sendTextMessage

Thread.start

Semantic	network
construction

Malware	keeps	evolving
• Increasing	vulnerabilities
• Different	strategy

Unstructured	data	sources
• Security	literature
• Malware	report

Can	we	engineer	features	to	detect	the	
malware	by	mining	the	security	literature?


