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Two Weaknesses of Today’s Foundation Models
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Biased and hallucinated explanations (Weakness 2):

Foundation models, such as CLIP, often hallucinate wrong 
rationales for their explanations.


Not secure when handling open-world tasks (Weakness 1): 

Foundation models, like CLIP, are general purpose models. They 
can perform zero-shot recognition by retrieving language.
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Foundation models, such as LLAVA, mini-GPT4, and BLIP, rely on CLIP 
representation. CLIP will be a single point of failure because adversarial 
attacks that break CLIP will also fool those multi-modal LLM models. Secure 
CLIP vision encoder will be crucial.

Idea 1: Integrating Language Prior for Zero-Shot 
Adversarial Robustness

Idea 2: Integrating LLM and Web Knowledge to 
reduce Hallucinations on Explanations

Key Idea: Align vision representations to the correct rationales by 
incorporating knowledge from LLM reasoning and the Web.

Align foundation model’s vision representations with the rationales
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Contrastive Learning
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Results: We can correct the hallucinations in foundation models 
and produce the right explanations, improving accuracy by 20%.

• Traditional robust training methods, like adversarial training, align 
vision representations with one hot label.


• Can only secure the task it has been adversarially trained on, but 
cannot generalize robustness to novel tasks.

Key Idea: Align vision representations to language representations 
during adversarial training. The inherent structure in language allows 
adversarial robustness transfer to zero-shot tasks.
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However,  they are vulnerable under adversarial input.
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Improving zero-
shot adversarial 
robustness over 16 
datasets by an 
average of 24%.

Key Results:

Training to secure foundation models:
• Training data for foundation models can be biased.

• Do not incorporate all knowledge correctly and extensively.
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LLM
1. A crater at the top

2. A cone shaped mountain

3. Smoke Belowing from crater
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This creates concerns when applying foundation models to applications where 
explanations are crucial, such as medical diagnosis.


CLIP retrieves incorrect rationales for explanations

Pipeline: LLM Reasoning

Web Knowledge


