
Our Approach

We debloat by tracing which files are accessed while running tests, unpacking the 

image, removing unused files, and then packing remaining files to create a new image.

Future Work
• Quantify impact on container security

• Integrate binary hardening and debloating 

using GrammaTech's GTIRB rewriting 

tools (https://grammatech.github.io/prj/gtirb/)

• Language-specific debloating (Python, Node.js, etc.)

• Investigate better debloating specifications:

– Enhancing or extending test suites

– Using non-executable specifications

• Debloat alternative targets beyond Linux 

containers, such as VMs, Windows containers, or 

firmware

Debloating Results

• 20%-87% size reduction in open-source case studies

• Alpine-based postgres, even with a slim base image, is 

reduced by 20%
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Motivation and State of the Art
What’s wrong with containers?

• Bloat results in containers that are often hundreds of megabytes or gigabytes in size.

• Large containers result in a large attack surface and impact resource requirements 

such as bandwidth for deployment and storage, which can limit their use on edge 

devices.

How are containers debloated today?

• Developers manually rewrite Dockerfiles to generate small images.

• Manual approaches may be incomplete or inconsistent and risk removing files that are 

required by the application.

Remaining/Removed Files

Containerization is a standard method for enhancing portability and reliability in commercial and government deployments. However, container images 

often balloon to hundreds of megabytes or gigabytes in size, resulting in a large attack surface and onerous resource requirements to run. 

Automatically debloating images reduces attack surface and resource requirements to enable deployment at the edge. 
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