
Our Approach

We debloat by tracing which files are accessed while running tests, unpacking the 

image, removing unused files, and then packing remaining files to create a new image.

Future Work
• Quantify impact on container security

• Integrate binary hardening and debloating 

using GrammaTech's GTIRB rewriting 

tools (https://grammatech.github.io/prj/gtirb/)

• Language-specific debloating (Python, Node.js, etc.)

• Investigate better debloating specifications:

– Enhancing or extending test suites

– Using non-executable specifications

• Debloat alternative targets beyond Linux 

containers, such as VMs, Windows containers, or 

firmware

Debloating Results

• 20%-87% size reduction in open-source case studies

• Alpine-based postgres, even with a slim base image, is 

reduced by 20%

DYKONDO: Debloating Container Images for Reduced Attack Surface and Edge Deployments

https://www.grammatech.com/ research@grammatech.com

Jonathan Dorn, Zachary Fry, and Adam Seitz (GrammaTech, Inc.)

Motivation and State of the Art
What’s wrong with containers?

• Bloat results in containers that are often hundreds of megabytes or gigabytes in size.

• Large containers result in a large attack surface and impact resource requirements 

such as bandwidth for deployment and storage, which can limit their use on edge 

devices.

How are containers debloated today?

• Developers manually rewrite Dockerfiles to generate small images.

• Manual approaches may be incomplete or inconsistent and risk removing files that are 

required by the application.

Remaining/Removed Files

Containerization is a standard method for enhancing portability and reliability in commercial and government deployments. However, container images 

often balloon to hundreds of megabytes or gigabytes in size, resulting in a large attack surface and onerous resource requirements to run. 

Automatically debloating images reduces attack surface and resource requirements to enable deployment at the edge. 

1300

424.9

252.5
168.6

239.6 204.4

0

200

400

600

800

1000

1200

1400

grafana/oncall:1.3.94 postgres:16.1 postgres:16.1-alpine

Si
ze

 (
M

B
)

Original

Debloated

This material is based upon work supported by the Office of Naval Research (ONR) under Contract No. N00014-21-

C-1032. Any opinions, findings and conclusions or recommendations expressed in this material are those of the 

author(s) and do not necessarily reflect the views of the ONR.

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited. Approved, DCN#0543-1756-24

Other requests for this document must go through Dr. Ryan Craven, 703-696-7824 ryan.craven@navy.mil, Office of 

Naval Research.

0 50 100 150 200 250 300 350 400 450
Size (MB)

PostgreSQL Bitcode (remaining) PostgreSQL Bitcode (removed)
Locale Data (removed) Perl (removed)
Compiled (remaining) Compiled (removed)
C/C++ Header Files (removed) Other (remaining)
Other (removed)

postgres:16.1-alpine

postgres:16.1

https://grammatech.github.io/prj/gtirb/
https://www.grammatech.com/
mailto:research@grammatech.com

	Slide 1: DYKONDO: Debloating Container Images for Reduced Attack Surface and Edge Deployments

