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UAVs and Their Applications

* Unmanned Aerial Vehicles (UAVs), aka drones, have multidisciplinary applications
* Big tech companies are including and utilizing the many advantages UAVs bring with them
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Research Objectives and Statistics FIU

=  Introduction . . . UAV industry projected to
- Research objectives RO-1: Comprehensive Security Analysis of UAV M be $91.23 b»illllioonjby 5030 (1)
Systems in the Face of Adversarial Machine

Learning Threats

¢ Conducting a thorough analysis and evaluation of Attacks can have severe
UAV systems, focusing specifically on their consequences: mission
robustness in security when confronted with thwarting, UAV

sophisticated adversarial machine learning threats. intercepting/hijacking, etc.

RO-2: Enhancing UAV IDSs’ Resilience in

Response to Adversarial Samples: applications, security, and [3)
X Developing and implementing Strategies to mission precision are vital
significantly enhance the resilience of IDSs for for UAVs
UAVs, explicitly identifying and mitigating the
impact of meticulously crafted adversarial samples. ,
IDS: intrusion detection system
ﬂ https://www.fortuneszinessinsights.com/industrv—
reports/unmanned-aerial-vehicle-uav-market-101603
\ https://hackaday.com/2015/10/15/hijacking-

guadcopters-with-a-mavlink-exploit/
© https://fieldlogix.com/news/gps-drone/
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https://www.fortunebusinessinsights.com/industry-reports/unmanned-aerial-vehicle-uav-market-101603
https://www.fortunebusinessinsights.com/industry-reports/unmanned-aerial-vehicle-uav-market-101603
https://hackaday.com/2015/10/15/hijacking-quadcopters-with-a-mavlink-exploit/
https://hackaday.com/2015/10/15/hijacking-quadcopters-with-a-mavlink-exploit/
https://fieldlogix.com/news/gps-drone/

Motivation

"

Introduction

-- Motivation
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@ The New York Times

Microsoft Created a Twitter Bot to Learn From Users. It
0 Quickly Became a Racist Jerk. (Published 2016)

The bot, @TayandYou, was put on hiatus after making offensive statements based on

users' feedback, like disputing the existence of the.

The input data (tweets and
interactions from users)

— was tainted with harmful

content, leading the Al to

produce undesired outputs.

S Softpedia News

9 Google reCAPTCHA Cracked in New Automated Attack

A trio of security researchers have devised a new automated attack that can break the
CAPTCHA systems employed by Google and Facebook.

Some Real-Life Attack Instances

Researchers modified the audio
CAPTCHAs slightly to mislead the
— speech-to-text APl used for
verification, achieving a high success
rate in breaking the CAPTCHA.

https://www.nytimes.com/2016/03/25/technology/microsoft-created-
a-twitter-bot-to-learn-from-users-it-quickly-became-a-racist-jerk.html

@https://news.softpedia.com/news/google—recaptcha—cracked—in—new—
automated-attack-502677.shtml



https://www.nytimes.com/2016/03/25/technology/microsoft-created-a-twitter-bot-to-learn-from-users-it-quickly-became-a-racist-jerk.html
https://www.nytimes.com/2016/03/25/technology/microsoft-created-a-twitter-bot-to-learn-from-users-it-quickly-became-a-racist-jerk.html
https://news.softpedia.com/news/google-recaptcha-cracked-in-new-automated-attack-502677.shtml
https://news.softpedia.com/news/google-recaptcha-cracked-in-new-automated-attack-502677.shtml
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GPS Spoofing Attack Simulation

m Attack
Illustration

--Simulation

"

So, what is the
existing
detection

mechanism for
this?
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Problem Formulation (1/3)

UAV IDS Learning Benign and Attack Spaces

® Normal GPS Data
B Restricted Zone GPS Data e TT TS S~
/,/ .l \\\
© S e s, > Comprehensive UAV data
/ 4 o I N . . .
poo s e N \ collection is challenging
/ " g o .
"=  Problem 5| :' A I B ":.Lf; ‘, O extensive flight time
. - .\ I .
Formulation 3 AN _’i"' LA O operational coverage
= g~ g8 v . .
= NS L A QO variable environmental
g 4 . " \’.!__-*’/ // .y
X M . . conditions
S e - TN - < expensive
o~ ,’ PY \\\ < . .
£ 3 e P SN % time consuming
= S e e S s N > Collected data
_9-—qe XN .
& ! ”,'. . .r’/ odo e 00 | W sparse and limited
I é oo \ | .
20t . oA L A B * benign
/ . .
\ Ve ':;)—,‘"I o / “* malicious
\ N ° 4
1 \\\ ® ‘~.__.-—” ,//
\\\ .”/
1 2 3 4 5 6

GPS Metric 1 (e.g., latitude)
4/11/24 9



Problem Formulation (2/3)

[llustration of False Positives with Cluster Boundaries

» |IDS misclassifies data points
W false positive
+** a benign GPS
coordinate
identified as an
attacked sample
» Reason
W less accurate boundaries
due to data sparsity
+» false positive data
points lie closer to
or outside the
boundaries
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Problem Formulation (3/3)

lllustration of False Negatives with Cluster Boundaries
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Proposed Solution for Enhanced

Resilience

UAV IDS Learning Benign and Attack Spaces

Illustration with Tightened Normal Cluster and Adversarial Regularization
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Case Study (Crafting Samples)

—  Original
=== Adversarial

» Adversarial attacks subtly alter GPS signals, 0.6 A
causing IDS to misidentify benign signals as
threats or miss actual threats, risking UAV

0.4

0.2

Scaled Altitude

security. o
» Perturbations (6sp5) are optimized to craft 00 25 50 75 100 125 150 175 200
signals without exceeding the defined Sameles
threshold (egps), maintaining stealth and Yadv _
= (Case Study causing misclassification. = x + € sign(V.J (%, ¥true))
_ Crafting Adversarial Example (Epsilon = 0.35) fof PGD
Samples 06 | T mavercaria
gnin||56p5|| subject to: IDS(GPSyyig + 8gps) # IDS(GPSyrig) o
GPS £ 0.4
Constraint: ||8;ps|| < €gps %0_2
b

0.0

>The constraint "5GPS”SEGPS makeS the 00 25 50 7.5 10.0 125 150 17.5 20.0
adversarial perturbation go undetected by Samples
the IDS. Projected Gradient Descent (PGD) refines
K perturbations iteratively within the allowed range for
a stronger adversarial example.
13
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Impact of Adversarial Samples

.

» The IDS is tested against both FGSM and PGD attacks
¢ variable perturbation limit, €.
¢ variable mix ratios = ratios of benign and adversarial samples in the dataset

» PGD attacks trigger a sharper decline (i.e., over 50%) compared to FGSM (i.e., 30%)
» FGSM causes notable decrease after e = 0.5

» PGD degrades performance immediately and significantly with € = 0.1.

Accuracy vs Mix Ratio and Epsilon (FGSM)  Accuracy vs Mix Ratio and Epsilon (PGD)
Case Study

--Impact
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Proposed Framework

» Data Augmentation with GANs: Origin I AN
% InfoGAN and WGAN leverage original data to E D;gg:t Training £
produce synthetic samples, augmenting the -— o
training dataset for model resilience.
» Autoencoder Retraining: A S~ Y. I
. . . . ugmente ‘
“* The autoencoder is retrained with a mix of Dataset > al
original and GAN-generated data to represent
weak points in data distribution better. l
» Adversarial Regularization:

+»» Adversarial samples are used as regularizers in
"  Methodology training, bolstering the autoencoder's
robustness and anomaly detection.

Autoencoder Retraining

Adversarial Sample

» Optimization and Performance Evaluation: )
Incorporation

+* The autoencoder’s loss now includes a
regularization term penalizing adversarial
reconstruction. Hence, the model is less

\ sensitive to input manipulations.

B

Regularized Autoencoder
Model

e
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Evaluating Adversarial Attack Defense FI'U Y,

Comparison of model performance under FGSM attack

N
o

» The initial IDS model's adversarial accuracy
decreases with higher epsilon values

s*drops to as low as 0.016042 for FGSM and
0.220658 for PGD attacks

o o
[ oo

Adversarial Accuracy
o
=

» GAN-augmented IDS shows enhanced resiliency 02 | g Vanila 0
. . —8— IDS with GAN
**maintains over 0.99 accuracy for FGSM and 00 | &= mwnneﬂ\wdv‘\'*‘_,_.
PGD attacks at € values up to 0.25 S R
Q:Qa noted decrease at h|gher E, partlcularly o Comparison of model performance under PGD attack
for FGSM 00

= Evaluati | , .
__?Qula on » The adversarially regularized IDS remains stable

across varying epsilon values

o
oo

o
o

o
3}

**indicates superior resilience provided by
adversarial learning | o= Vanila s

=8~ |DS with GAN
=8— DS with GAN + Adv

Adversarial Accuracy
o
(=]

=1
~

o
w
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Evaluation

» For GPS spoofing attacks, the original IDS
had an accuracy of 0.9476 and an FPR of
0.0523.

» GAN augmentation improved accuracy to
0.9845 and reduced FPR to 0.0154.

» The integration of GAN and adversarial
learning in IDS yielded the highest
accuracy (0.9957) and the lowest FPR
(0.0042).

» In GPS jamming attacks, all models
exhibited high accuracies (0.9942 to
0.9977) and low FPRs, with the GAN-
augmented and adversarially trained
model achieving the lowest FPR of
0.0023.

Comparison of IDS Models under GPS spoofing

Accuracy

IDS with GAN

Comparison of IDS Models under GPS jamming

Accuracy

~

IDS with GAN

Evaluating Impact on Real GPS Attacks FIU'

0.05
0.04
0.0BE
0.02

0.01

IDS with GAN + Adv

0.05
0.04
0.03 E
0.02

0.01

IDS with GAN + Adv



Evaluating Necessity of the Proposed SoIFIU

» The original IDS displayed 1.05 .
the lowest accuracies against Em s oA Dt 0%
FGSM and PGD attacks. P Adv. Samples

- Y Samples
» GAN data augmentation
alone significantly improved
IDS accuracy, particularly for
PGD attacks.

» Combining GAN data
augmentation with
adversarial learning resulted 0.00

0.99 0.99

o
~J
(9]

0.68

o o
~ o))
[ o

Average Detection Rate
=
o

L Evaluation

. . FGSM PGD
--RQ3 in further improvements, Attack Type

especially for FGSM attacks.
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Evaluating IDS Model Performance

» The initial IDS model showed MSE
values between 0.008927 and
0.007868, indicating a moderate fit .,
to the data with room for
improvement.

0.121

o 0.10{

» GAN augmentation improved the .
model's performance, reducing MSE ¢
to a range between 0.006594 and 0.061

0.002299, suggesting a better fit to 0.04]

m Evaluation the data. . I

0.08;

» Combining GAN data augmentation 0.0 e

H H H Initial Model GAN-Augmented GAN+ADV samples
with adversarial samples yielded the Mol

lowest MISE values (approximately
0.002309 to 0.002104).

--RQ4
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Conclusion

» In this work, we have highlighted the vulnerabilities of current IDS for
UAVs against GPS spoofing and jamming attacks and proposed a
framework using GANs and adversarial sample-based regularization.

» Under FGSM and PGD adversarial attacks, the detection rates for our

improved IDS are 93.78% and 99.39%, respectively, outperforming the
baseline rates of 26.14% and 62.6%.

» Additionally, our resilient IDS demonstrated an accuracy of 99.57%
against GPS spoofing, substantially better than the conventional IDS
accuracy of 94.76%.

» Importantly, the false positive rate was also reduced to 0.42% compared
to the previous 5.23%.

» In future research, we will explore techniques like deep reinforcement
=  Conclusion learning, and study adaptability to other domains.

.
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