Language Models
for Formal Proof

Talia Ringer
UIUC Computer Science

Proof Assistants

Proof Assistants

Proof Engineer Proof Assistant

Program

SpeC|ﬁcat|on

Proof

Proof Assistants

Proof Engineer Proof Assistant

Program

SpeC|ﬁcatlon

Proof

g
|

Proof Assistants

Proof Engineer Proof Assistant

Program

SpeC|ﬁcat|on

Proof

g
|

Proof Assistants

Proof Engineer Proof Assistant

() Program
g Specification
N |Fa
)

(@’ Proof >
T p—
- v

Then vs. Now

Then vs. Now

Proof Engineer Proof Assistant

() Program
g Specification
N |Fa
)

S 5 Proof .
<8 ﬂ
SAN | v

Then vs. Now @ ////é

Then vs. Now

nar *EXP_COM(}
har *RV_TIME()

int summary(

{
char *str = |
st board »board = ot s
int ret = 9§

char *ptr_shu!!e'cvuﬂo

Compilers

Machine Learning
Systems Operating Systems Quantum Optimizers

Talia Ringer, Karl Palmskog, llya Sergey, Milos Gligoric and Zachary Tatlock (2019),
QED at Large: A Survey of Engineering of Formally Verified Software, Foundations
and Trends in Programming Languages: Vol. 5, No. 2-3, pp 102-281.

11

Then VS Now 20+ person-years

~1,000,000 LOP

Proof Engineers Proof Assistant
03 O L
i

Confidentiality

S 3 Integrit
)
%lg Proof .
lil
) - /

Proof automation makes it
easier to develop and
maintain verified systems
using proof assistants.

Traditional automation:

+ predictable

+ dependable

+ understandable

- limited In scope

- takes expertise to extend

Language models:

- unpredictable

- not dependable

- not understandable

+ not very limited in scope

+ takes little expertise to extend

Best of both worlds?

+ predictable

+ dependable

+ understandable

+ not very limited in scope

+ takes little expertise to extend

Not that h
Now vs. Future ot that mhc

work, lots of help?

Proof Engineers Proof Assistant
03 O L
i

Confidentiality

S 3 Integrit
)
%lg Proof .
lil
) - /

1. Proof Assistants

2. Traditional Automation
3. LM-Based Automation
4. Best of Both Worlds

5. Opportunities

1. Proof Assistants
2. Traditional Automation
3. LM-Based Automation

4. Best of Both Worlds
5. Opportunities

Proof Engineer Proof Assistant

ﬂ — .
Specification
ﬂ <>

G Proof o
ﬂ ‘
v

Proof Assistants (Part 1 of 5)

List Zip Preserves Length

Proof Assistant

n =

Zip preserves

N [
»
\ Proof ey
v

Proof Assistants (Part 1 of 5)

- \
List Zip Preserves Length //yf

Proof Assistant

n =

Zip preserves

N [
»
\ Proof ey
v

Proof Assistants (Part 1 of 5)

Coq

n =

Zip preserves

N[
>
\ Proof o
v
| pum—]

Proof Assistants (Part 1 of 5)

Coq (Translated)

!73 -

Zip preserves

\ Proof o
v
EQ . -

Proof Assistants (Part 1 of 5)

List Zip Preserves Length

list<T> =
|1 []:list<T>
lcons: T — list<T> — list <T>

Proof Assistants (Part 1 of 5) _

List

list <T>

Proof Assistants (Part 1 of 5) _

List

list <T> ;=
1[]: list<T>

Proof Assistants (Part 1 of 5) _

List

list <T> :=
| []: list <T>
| T — list<T>

1
82—

Proof Assistants (Part 1 of 5) _

List

list <T> ;=
| []:list<T>
lcons : T — list <T> — list <T>

a8 8

Proof Assistants (Part 1 of 5) _

List Zip Preserves Length

length <T> (I : list <T>) : nat :=
if | =[] then
0
else
1 + length (tail I)

Proof Assistants (Part 1 of 5) _

List Length

length <T> (I : list <T>) : nat :=
if | =[] then
0

Proof Assistants (Part 1 of 5) _

List Length

length <T> (I : list <T>) : nat :=
if | =[] then
0

else
1 + length (tail I)

length = 2
length = 3

Proof Assistants (Part 1 of 5) _

List Zip
Coq

n =

Zip preserves

N[
>
\ Proof o
v
| pum—]

Proof Assistants (Part 1 of 5)

List Zip Preserves Length

zip <A, B> (11 : list <A>) (12 : list) : list <(A, B)> :=
if 11 =[]orl2=[]then
[]

else
(head I1, head 12) :: (zip (tail 11) (tail 12))

Proof Assistants (Part 1 of 5) _

List Zip

zip <A, B> (11 : list <A>) (12 : list) : list <(A, B)>

Proof Assistants (Part 1 of 5) _

List Zip

zip <A, B> (11 : list <A>) (12 : list) : list <(A, B)>

a8
a—a—a

Proof Assistants (Part 1 of 5) _

List Zip

zip <A, B> (11 : list <A>) (12 : list) : list <(A, B)>

Proof Assistants (Part 1 of 5) _

List Zip

zip <A, B> (11 : list <A>) (12 : list) : list <(A, B)>

Proof Assistants (Part 1 of 5) _

List Zip

zip <A, B> (11 : list <A>) (12 : list) : list <(A, B)>

Proof Assistants (Part 1 of 5) _

List Zip
zip <A, B> (11 : list <A>) (12 : list) : list <(A, B)> :=

if11T=[]orl2=[]then
[]

Proof Assistants (Part 1 of 5) _

List Zip

zip <A, B> (11 : list <A>) (12 : list) : list <(A, B)> :=
if11T=[]orl2=[]then
[]

else
(head I1, head 12)

B-—HB—0O

—

Proof Assistants (Part 1 of 5) _

List Zip

zip <A, B> (11 : list <A>) (12 : list) : list <(A, B)> :=
if11T=[]orl2=[]then
[]

else
(head I1, head 12) :: (zip (tail I1) (tail 12))

Proof Assistants (Part 1 of 5) _

List Zip Preserves Length
Coqg

Us

Zip preserves

\ length /
| e
\ Proof >
v
| p—

Proof Assistants (Part 1 of 5)

List Zip Preserves Length

Theorem zip_preserves_length :
V <A, B> (11 : list <A>) (12 : list),

Proof Assistants (Part 1 of 5) _

List Zip Preserves Length

Theorem zip_preserves_length :
Vv <A, B> (11 : list <A>) (12 : list),
length |11 = length 12 —

length = 3

length = 3

Proof Assistants (Part 1 of 5) _

List Zip Preserves Length

Theorem zip_preserves_length :
Vv <A, B> (11 : list <A>) (12 : list),
length |1 = length [12 —
length (zip 11 12) = length I1.

length = 3

Proof Assistants (Part 1 of 5) _

List Zip Preserves Length

Theorem zip_preserves_length :
Vv <A, B> (11 : list <A>) (12 : list),
length |1 = length [12 —
length (zip |11 12) = length I1.

length = 3

Proof Assistants (Part 1 of 5) _

List Zip Preserves Length

Theorem zip_preserves_length :
Vv <A, B> (11 : list <A>) (12 : list),
length (zip 11 12) = min (length I1) (Ilength 12).

length = 3

Proof Assistants (Part 1 of 5) _

List Zip Preserves Length
Coqg

n =

Zip preserves

length >

Goal

Proof Assistants (Part 1 of 5)

List Zip Preserves Length
Coqg

n =

Zip preserves

length >

Goal

4 D A(
9 B —
/ \Q _\ O 47

Proof Assistants (Part 1 of 5)

List Zip Preserves Length e “/’///%

@Proof
-
CI - !

Goal

Us Coq

Proof Assistants (Part 1 of 5)

Proof Assistants (Part 1 of 5)

2. Traditional Automation
3. LM-Based Automation

4. Best of Both Worlds
5. Opportunities

S
L)
IS
Ille)
o =

B

P;oof Automation

Traditional Automation (Part 2 of 5) _

S
L)
IS
Ille)
o =

B

P;oof Automation®

Traditional Automation (Part 2 of 5) .

Proof Automation*
Coqg

n =

Zip preserves

length >

Goal

Traditional Automation (Part 2 of 5)

Proof Automation*
Coqg

n =

Zip preserves

length >

Goal

Traditional Automation (Part 2 of 5)

Proof Automation® < 0////%

Traditional Automation (Part 2 of 5)

Proof Automation® < 0////%

Traditional Automation (Part 2 of 5)

Proof Automation® /////%

prove the
base case

@ 5 Subgoal

Us

Traditional Automation (Part 2 of 5)

Proof Automation® /0////%

prove the
base case

@ 5 Subgoal

Us

Traditional Automation (Part 2 of 5)

Proof Automation® /////%

now the
hext case

@ 5 Subgoal

Us

Traditional Automation (Part 2 of 5)

Proof Automation” < / //%

¢

Us

Traditional Automation (Part 2 of 5)

Proof Automation® < ////%

Traditional Automation (Part 2 of 5)

Proof Automation® /////%

Traditional Automation (Part 2 of 5)

Proof Automation’

\
¢

Us

Traditional Automation (Part 2 of 5)

Proof Automation’

¢

Us

Traditional Automation (Part 2 of 5)

Proof Automation’

Traditional Automation (Part 2 of 5)

Traditional Automation (Part 2 of 5)

Traditional Automation (Part 2 of 5)

List Zip Preserves Length

intros T1 T2 11. induction 1;! as [|t; t1; IHt14].
- auto.?
- intros 12. induction 12 as [|t, tlp, IHtl,].
+ intros H. auto.*
+ intros H. simpl. rewrite IHtl;; auto.®

1=l

fun (T; Tp : Type) (17 : list T1) (1 : list Tp) =>
list_rect®! (fun (1; : list Ty) => ...)
(fun (1 : 1list Tp) _ => eq_refl)?

(fun (tq : Ty) (813 ¢ List Ty) (THEL; : <) (Ao : list Tp) =>
listirect® (fun (1 : list Tp) => ...)
(fun (H : ...) => eq_sym H)*
(fun (tp : T7) (tlp : list Tp) (IHtly : ...) =>
fun (H : ...) => eq_rect_r ... eq_refl (IHtl; ...)%)
1,3)
Tt

2. 7

Traditional Automation (Part 2 of 5)

List Zip Preserves Length

induction 12%

Traditional Automation (Part 2 of 5)@8

List Zip Preserves Length

intros 12. induction 123 as [|t, tl, IHtl,].
+ intirosa H. fanto:!
+ intros H. simpl. rewrite IHtl;; auto.®

Induction => Induction Principles

list_rect® (fun (1, : list Tp) => ...)
(fun (H : ...) => eq_sym H)*
(fun (t2 : T7) (tlp : list Tp) (IHtl, : ...) =>
fun (H : ...) => eq_rect_r ... eq_refl (IHtl; ...)®)
1,%)

Traditional Automation (Part 2 of 5)

Kinds of Automation
Tactic languages

Traditional Automation (Part 2 of 5) _

Kinds of Automation

Tactic languages
Reflection

Custom tactics
Custom proof modes
Proof procedures
Plugins

Proof repair
Hammers

Traditional Automation (Part 2 of 5) _

A

This automation can do
basically anything, yet still
preserve correctness.

Traditional Automation (Part 2 of 5) _

De Bruijn Criterion

Traditional Automation (Part 2 of 5) _

A

< Checking the Proof

Producing the Proof e

Traditional Automation (Part 2 of 5) _

o

< Checking the Proof

Producing the Proof e

Traditional Automation (Part 2 of 5) _

.

S~ Checking the Proof
Search Procedures AR -
Producing the Proof Tho

Traditional Automation (Part 2 of 5) _

(%\

< Checking the Proof

~

Search Procedures S o
~
S

Domain-Specific Heuristics TS ~

Producing the Proof e

Traditional Automation (Part 2 of 5) _

S Checking the Proof

~

Search Procedures S o
~
S

Domain-Specific Heuristics TS ~

Proof Transformations RN

Producing the Proof e

Traditional Automation (Part 2 of 5) _

o

< Checking the Proof

Traditional Automation (Part 2 of 5) _

A

S Checking the Proof

~

Search Procedures S o
~
S

Domain-Specific Heuristics S~ ~

~
~
~

Proof Transformations RN

~
~

Producing the Proof chatcer "~

~
~

Traditional Automation (Part 2 of 5) _

o

N Checking the Proof
e ~ Small & Human-Readable Logic Checker
~ . -
~ g -
Search Procedures RN

~
~
~

Domain-Specific Heuristics S~ ~

~
~
~

Proof Transformations RN

~
~

Producing the Proof chatcer "~

~
~

Traditional Automation (Part 2 of 5) _

A

< Checking the Proof

S Small Logical Kernel

~

Search Procedures S o
~
S

Domain-Specific Heuristics S~ ~

~
~
~

Proof Transformations RN

~
~

Producing the Proof chatcer "~

~
~

Traditional Automation (Part 2 of 5) _

Small Logical Kernel

Traditional Automation (Part 2 of 5)

Small Logical Kernel

Traditional Automation (Part 2 of 5)

Small Logical Kernel

Traditional Automation (Part 2 of 5)

A
With de Bruijn, as long as

you don't touch the kernel,
your automation is safe.

Traditional Automation (Part 2 of 5) .

A

With de Bruijn, as long as
you don't touch the kernel,
your automation is safe.”

(If your specification is OK,
your kernel has no bugs, and

you don't introduce axioms)
Traditional Automation (Part 2 of 5) .

A
With de Bruijn, as long as
you don't touch the kernel,
your automation is safe.”
The kernel and specification

are the core trusted pieces,

vetted by humans. Jm,
Traditional Automation (Part 2 of 5) .

Traditional automation:

+ predictable

+ dependable

+ understandable

- limited In scope

- takes expertise to extend

Traditional Automation (Part 2 of 5) .

Traditional proof repair:

+ predictable

+ dependable

+ understandable

- limited In scope

- takes expertise to extend

Traditional Automation (Part 2 of 5) _

PROOF REPAIR

roof Repair

Talia Ringer

Chair of the Supervisory Committee:
Dan Grossman
Computer Science & Engineering

The days of verifying only toy programs are long bone The last two
decades have marked a new era of verification at scs*~ - :
guarantees to large and critical s
Proof engineering is for verified systems what softy
for unverified systems. Still, while proof engineer
engineering—is about both development and maint

/stems—an era (

Adapting Proof Automation to Adapt Proofs

Nathaniel Yazdani
University of Washington, USA

Talia Ringer
University of Washington, USA

Ornaments for Proof Reuse in Coq
Talia Ringer

University of Washington. USA

tringerfics. washington.edu

Nathaniel Yazdani

engineering technologies so far have focused on di
it comes to maintaining these systems, proof engil
behind software engineering.

This thesis p!
ing verified s P h D Thes I s
engineers typically use to Interactively guiae to¢
machine-checked proof. When a s

John Leo
Halfaya Research, USA

Abstract

We extend proof automation in an interactive theorem prover
to analyze changes in specifications and proofs. Our approach
leverag
to search for a patch that can be applied to other specifica-
tions and nraofs that need ta change in analogons wavs

s the history of changes to specifications and proofs

Dan Grossman
University of Washington, USA

the search

)) “le.

This in tur to
““CPP 2018

Despite is-

tants is brivuc. Lveu a wunos wias
orem can break many dependent proofs. This is a major
ants based

€ W a ueiGUL UL ie-

University of Washington, USA

proof about the system, traditional
proof from scratch. Proof repair,

10w proofs,

nyazdani@es washington.edu stead, it is

with sup-
John Leo tomation: it determines how the sy . ! E:
Halfaya Research, USA information to help fix the broken ¢ Proof Repalr across Type Equlvalences [20)). This

» program-

»ofbhalfava.ory Proof repair in this thesis works by
leo@halfaya.org PE { Talia Ringer RanDair Porter Nathaniel Yazdani on that ac-

University of Washington University of Washington Northeastern University # program-
USA USA USA |
tringer@cs.washington.edu randair@uw.edu yazdani.n@husky.neu.edu

algorithms with program transform:
ing and the transformations operat¢
proofs called proof terms. Thanks to
g i 2 £ John Leo
differencing and the transformatio R 5
alfaya Research
results in dependent type theory. Fq UsA USA
< f E leo@halfaya.org djg@cs.washington.edu
ternalizes univalent transport from
novel transformations over equaliti¢
This approach is realized inside ¢
Coq proof assistant. Case studies st
use that this proof repair tool suite |

Dan Grossman
University of Washington, USA
djges.washington.edu Dan Grossman
University of Washington

Abstract {

Ornaments express relations between inductive types with the same in¢

Abstract 1 Introduction

implement fully automatic proof reuse for a particular class of ornaments in | Program verification with interactive theorem provers has

We describe a new approach to automatically repairing bro-
comea long way since its inception, especially when it comes
to the scale of programs that can be verified. The seL4 [21)

verified operating system kernel, for example, is the effort

ken proofs in the Coq proof assistant in response to changes

how such a tool can give programmers the rewards of using indexed inductive

in types. Our approach combines a configurable proof term

away many of the costs. The plugin works directly on Coq code; it is the i 5
. ‘ . transformation with a decompiler from proof terms to sug-

It is also the first tool tg gested tactic scripts. The proof term transformation imple- of a team of proof engineers spanning more than a million
E P ; i F g F g
quivalen

references to the old version of the changed type and does

for a non-embedded dependently typed language.

ornaments: To lift a function or proof, the user must provide only the sourg on real Proof dev elopmentm ments transport acre in a way that removes lines of proof, costing over 20 person-years. Given a famous

1977 critique of verification [12] (emphasis ours):
type. and the source function or j of the math .. S ——

ornaments, our approach produces II I P 201 9 erms than a more general approach

to proof reuse in Coq.

not rely on axioms beyond those Coq assumes.

We have implemented this approach in Pumpkix Pi, an
extension to the Puspkin Parcu Coq plugin suite for proof
repair. We demonstrate Pumpkin Pi’s flexibility on eight
case studies, including supporting a benchmark from a user
study, easing development with dependant fmac narting

functions and proofs between unary
204 supporting sn industral proct P I D I
between Coq and other verification t

A sufficiently fanatical researcher might be will-
ing to devote two or three years to verifying a
significant piece of software if he could be as-
sured that the software would remain stable.

we conld arens that, over 40 years, either verification has

esearchers have become more fanatical.
ZO Z ‘I all has changed (emphasis still ours):
programs need to be maintained

and modifiedThere is no reason to helieve that

SR

raditional Automation (Part 2 of 5

Proof Repair

Coqg Standard
Library

Culprit m—)

Traditional Automation (Part 2 of 5)

Proof Repair

You have changed a
datatype, and now the
standard library is broken!

Traditional Automation (Part 2 of 5) .

Proof Repair

451 functions & proofs,

25 seconds A

A
You have changed a

datatype, and now the
standard library is broken!

Traditional Automation (Part 2 of 5) .

Proof Repair

list <T> :=
| []:list<T>
|cons : T — list<T> — list <T>

Traditional Automation (Part 2 of 5) _

Proof Repair

list <T> :=
|cons : T — list<T> — list <T>
| []:list<T>

Traditional Automation (Part 2 of 5) _

Proof Repair

list <T> :=
|cons : T — list<T> — list <T>
| []:list<T>

&

(* Repair all 451 functions & proofs: *)
Repair Module Old.list New.list in StdLib.

Traditional Automation (Part 2 of 5) _

Traditional proof repair:

+ predictable
+ dependable

Traditional Automation (Part 2 of 5) _

Proof Repair — Predictable

PUMPKIN Pi supports
any change described
by a type equivalence.

Traditional Automation (Part 2 of 5) _

Proof Repair — Predictable

PUMPKIN Pi supports
any change described
by a type equivalence.

The Univalent Foundations Program. 2013. Homotopy

Type Theory: Univalent Foundations of Mathematics.
Institute for Advanced Studly.

Traditional Automation (Part 2 of 5) _

Equivalences

— swap A
Old.list T New.list T
— _—
swap_back

Traditional Automation (Part 2 of 5) _

Equivalences

— swap | —A
| :0ld.list T New.list T
— _—

swap_back (swap |)

Traditional Automation (Part 2 of 5) _

Equivalences

— swap (swap_back) —™=a
Old.list T | :New.list T
W _——

swap |

Traditional Automation (Part 2 of 5) _

Equivalences

— update e
old new
W _—

revert

Traditional Automation (Part 2 of 5) _

Equivalences =

Traditional Automation (Part 2 of 5)

.u
Qq -
\J))
||[g>)
4
.,o -

.llll
'llll

Equivalences
old type type .
. oq P{!MPKIN /

Traditional Automation (Part 2 of 5)

Qq o
\J))
||[g>)
" -

.llll
'llll

Equivalences |

y

old type type
. oq P{!MPKIN /

old function function Coq

or proof or proof
-] M

Traditional Automation (Part 2 of 5)

Proof Repair - Dependable

PUMPKIN Pi is
flexible & useful
for real scenarios.

Traditional Automation (Part 2 of 5) _

Proof Repair - Dependable

Equivalences
are even more expressive
than they may sound.

Traditional Automation (Part 2 of 5) _

Proof Repair - Dependable

Adding New Information

Traditional Automation (Part 2 of 5)

Traditional proof repair:

+ predictable
+ dependable
+ understandable

Traditional Automation (Part 2 of 5) _

Traditional proof repair:

+ predictable
+ dependable
+ understandable” (for type nerds)

Traditional Automation (Part 2 of 5) _

Proof Repair — Understandable

~ A
w“w_.

Transport: Rewriting
across Equivalences

The Univalent Foundations Program. 2013. Homotopy
Type Theory: Univalent Foundations of Mathematics.
Institute for Advanced Studly.

Traditional Automation (Part 2 of 5) _

Proof Repair — Understandable

Transport as a
Proof Term Transformation

Traditional Automation (Part 2 of 5) _

Proof Repair — Understandable

For type nerds:
Deconstruct Equivalence
(Lambek’s Theorem)

Traditional Automation (Part 2 of 5)

Traditional proof repair:

+ predictable

+ dependable

+ understandable” (for type nerds)
- limited In scope

Traditional Automation (Part 2 of 5) _

Proof Repair - Limited Scope

Proof Repair across Quotient Type Equivalences

Internal and External Views

COSMO VIOLA, University of llinois Urbana-Champaign, USA
MAX FAN, University of Illinois Urbana-Champaign, USA
TALIA RINGER, University of lllinois Urbana-Champaign, USA

Proofs in proof assistants like Coq can be brittle, breaking easily in response to changes in the terms and types
those proofs depend on. To address this, recent work introduced an algorithm and tool in Coq to automatically
repair broken proofs in response to changes that correspond to type equivalences. However, many changes
remained out of the scope of this algorithm and tool—especially changes in underlying behavior. We extend
this proof repair algorithm so that it can express certain changes in behavior that were previously out of
scope. We focus in particular on equivalences between quotient types—types equipped with a relation that
describes what it means for any two elements of that type to be equal. Quotient type equivalences can be
used to express interesting changes in representations of mathematical structures, as well as changes in the
underlying implementations of data structures—two use cases highlighted by our case studies.

We extend this algorithm to support quotient type equivalences in two different ways: (1) internally to
cubical type theory (applied to Cubical Agda), and (2) externally to CIC,, (applied to Coq). While our ap
proach in Coq comes equipped with prototype automation, it suffers notably from Coq’s lack of quotient
types—something we circumvent using Coq'’s setoid machinery and an extension to the proof repair algo
rithm to support the corresponding new proof obligations. In contrast, while our approach in Cubical Agda
is completely manual, it takes advantage of cub:cal type theory's internal quotient types, which makes the
algorithm straightforward. Furt®--—--- 3 *=~f- 3w sl Bt itoeend —— =05 of correctness of repaired proofs,

something not possible in N“‘U N d er S u b m I SS I o n ween these two approaches, and

demonstrate these tradeoffs on proot repair case studies tor previously unsupported changes.

Traditional Automation (Part 2 of 5)

Quotient Type Equivalences

- S - e o
==
—

’l
~—————————__—

Traditional Automation (Part 2 of 5) _

Traditional proof repair:

+ predictable

+ dependable

+ understandable” (for type nerds)
- limited In scope

- takes expertise to extend

Traditional Automation (Part 2 of 5) _

Proof Repair - Hard to Extend

One PhD student,
one undergraduate,
one advisor,

2.5 years.

Traditional Automation (Part 2 of 5)

Proof Repair - Hard to Extend

One PhD student,
one undergraduate,
one advisor,

2.5 years.

Is this sustainable?

Traditional Automation (Part 2 of 5)

3. LM-Based Automation

4. Best of Both Worlds
5. Opportunities

Language models:

- unpredictable

- not dependable

- not understandable

+ not very limited in scope

+ takes little expertise to extend

LM-Based Automation (Part 3 of 5) _

)

)

022

)

Aug -

I(”\,Pl I 2

)

4.10370vz

Ig Interes

PRoofster: Automated Formal Verification

Arpan Agrawal
University of Illinois
Urbana-Champaign, IL, USA
arpan2 @illinois.edu

Shizhuo Zhang
University of Illinois

Emily First
University of

Zhanna Kaufman

Amberst, MA, USA

University of
Amberst, MA, USA

Tom Reichel
University of Illinois
Urbana- Champa:gn. IL, USA

efirst@cs.umass.edu

Timothy Zhou
University of [Tlinois

Urbana-Champaign, IL, USA Urbana-Champaign, IL, USA

edn

du

umass.edu reichel

Alex Sanchez-Stern
University of Massachusetts
Amherst, MA, USA

.umass.edu

Passport: Improving Automated Formal Verification Using
Identifiers

ALEX SANCHEZ-STERN*
EMILY FIRST", University of Massachusetts Amherst, USA
TIMOTHY ZHOU, University of Hlinois Urbana-Champaign, USA
ZHANNA KAUFMAN, University of Massachusetts Amherst, USA
YURIY BRUN, University of Massachusetts Amherst, USA

TALIA RINGER, University of Illinois Urbana-Champaign, USA

, University of Massachusetts Amherst, USA

Formally verifying system properties is one of the most effective ways of improving system quality, but
its high manual effort requirements often render it prohibitively expensive. Tools that automate formal
verification, by learning from proof corpora to suggest proofs, have just begun to show their promise. These
tools are effective because of the richness of the data the proof corpora contain. This richness comes from
the stylistic conventions followed by communities of proof developers, together with the powerful logical
systems beneath proof assistants, However, this richness remains underexploited, with most work thus far
focusing on architecture rather than on how to make the most of the proof data.

In this paper, we develop Passport, a fully-automated proof-synthesis tool that systematically explores
how to most effectively exploit one aspect of that proof data: identifiers. Passport enriches a predictive Coq
mudel used lw\. pnmt synthesis Iw:lw with three new encoding muh.mmns tux |denl|l|en ulr\.,un \l)l.dl!llld[\

TOPLAS Vol.
No. 12,

45, Issue 2:

ormation

p 1-30, 2023:::

M-Based Automation (Part 3 o

Yuriy Brun
University of Massachusetts
Amherst, MA, USA
brun@cs.umass.edu

effective but extremely
ware quality. Verifying
n requires significantly
the first place, despite

Cog, aiding the process.

1 the synthesis of formal

exists for practitioners.

d tool aimed at assisting
ocess via proof synthesis.
fying a property of a
tally synthesize a formal

& Whon it ic nmahla o

E Demo 2023:

(A,

.edu

Talia Ringer
University of Illinois
Urbana-Champaign, IL, USA
tringer@illinois.edu

Meanwhile, it took 11 person-years to write the proofs required
to verify the seL4 microkernel [17], which represents a tiny
fraction of the functionality of a full kernel.

Recent work has aimed to simplify the process of writing

proofs [2], [6], [7], [9], [10], [14], [11], [23], [24], [30].

Some formal verification can even be fully automated via
proof synthesis. For example, CogHammer [4] uses a set
of precomputed mathematical facts to attempt to “hammer”

out a proof.

ASTactic [30], P

(23],

TacTok [71. Diva [61. and Passport [241 learn a predictive model

10del to guide
om scratch.
ists for practi-

Baldur: Whole-Proof Generation and Repair
with Large Language Models

Emily First
University of Massachusetts
Ambherst, MA, USA
efirst@cs.umass.edu

Talia Ringer
University of Illinois Urbana-Champaign
IL, USA
tringer@illinois.edu
ABSTRACT

Formally verifying software propertics is a highly desirable but
Iabor-intensive task. Recent work has developed methods to auto.
formal verification using proof assistants, such as Coq and

clle/HOL, c.g., by training a model to pr
at a time, and using that model to scarch thro

ct one proof step

h the space of

possible proofs. This paper introduces a new method to auton

formal verification: We u models, trained on natu:

ed on proofs, to generate

ge
whole proofs for theorems at once, rather than one stcp a a time
We combine this proof generation model with a fine-tuned repair
model to repair generated proofs, further incre:
As its main contributions, this paper demonstre
that: (1) Whole-proof generation using transformers s possible and
is as effective as search-based techniques without requiring costly
search. (2) Giving the learned model additional context, such as a
prior failed proof attempt and the ensuing error message, results
in proof repair and further improves automated proof generation.
(3) We establish a new state of the art for fully automated
synthesis. We reify our method in a prototype, Baldur, and evaluate
it on a benchmark of 6,336 Isabelle/HOL theorems and their proofs.
In addition to empirically showing the effectiveness of whole-proof
generation, repair, and added context, we show that Baldur im:
e-of-the-art tool, Thor, by automatically generat
dditional 8.7% of the theorems. Together, Baldur
d Thor can prove 6

ing proving power.
s for the first time

proof

proves on the st
roofs for

% of the theorems fully auto

paper paves the way for new research into using larg
models for automating formal verification.

Markus N. Rabe
Google, Inc.
CA,

mrabe@google.com

Yuriy Brun
University of Massachusetts
Amherst, MA, USA
brun@cs.umass.edu

As a result, recent research has focused on automated proof syn
thesis, which

Th
thesis. The first is to use hammers, such as S

1 lead to fully automating formal verification.

e taro proclaing spproaches fic automating proof sy
dgehammer (64]
for the sabelle proof ssistant. Harmmers eratively apply known

mathematical facts using heuristics. The second is to use search-
based neural theorem provers. such as DeepHOL [4). GPT- [66)
TacticZero (91), Lisa [34], Evariste (42), Diva [20), TacTok [22),
and ASTactic [96). Given a partial proof and the current proof state
(which consists of the current goal to prove and the list of known
assumptions), these tools use neural networks to predict the next
individual proof step. They use the proof assistant to evaluate the
proposed next proof steps, which returns a new set of proof states.
Neural theorem provers rely on diverse neural architectures, such

enet (4, raph neural networks [62), short long-term
memory models [20], and language models with the transformer
architecture (27, 6]

In this paper, we propose Baldur, a different, simpler approach to

models (LLMs),

fine-tuned on proofs, can produce entire proofs for theorems. LLMs

proof synthesis. We show that using large langy

remarkably cffective across a wide varicty of applications, including
question answering, and text and code generation (7, 1. Here, we
show their remarkable effectiveness for whole proof generation.

The main contributions of our work are

© We develop Baldur, a novel method that generates
whole formal proofs using LLMs, without using ham:
mere ar commntationally expensive scarch

repair task and demonstrate that

ESEC/FSE 2023 -

spirically on a large benchmark that

Distinguished Paper

Batsve. rux camupic, SR s wse o cour

times as long as the compiler code itself [47),

ipervised Models:

example, of
the above-mentioned search-based tools, all but one have neither
DunuNE g Large r rourn incpan wataset

Tom Reichel &

University of lllinois Urbana-Champaign, USA
R. Wesley Henderson &

Radiance Technologies, Inc., Huntsville, AL, USA
Andrew Touchet &

Radiance Technologies, Inc., Huntsville, AL, USA
Andrew Gardner* &

Radiance Technologies, Inc., Huntsville, AL, USA
Talia Ringer* =

University of lllinois Urbana-Champaign, USA

Abstract

We introduce a new, large proof-repair dataset and benchmark suite for the Coq proof assistant. The
dataset is made up of Git commits from dozens of open-source projects with old and new versions of

definitions and proofs aligned across commits. Building this dataset was a significant undertaking,

highlighting a number of challenges and gaps in existing infrastructure. We discuss these challenges

and gaps, and we provide r community can address them
Our hope is to make it e o that machine-learning tools
for proofs will move to targ iitably across proof assistants.

2012 ACM Subject Classification Computing methodologies — Machine learning: Software and its

parameters. By contras, existing toos that use (LILMs fo theorem

First Project: Passport

PRoofster: Automated Formal Verification

Arpan Agrawal

University of Illinois

Urbana- Champaxgn IL, USA
arpan2 @i

inois.edu

Shizhuo Zhang
University of Ilinois

Urbana-Champaign, IL, USA Urbana-Champaign, IL, USA

Passport: Improving Automated Formal Verification Using .

Identifiers

ALEX SANCHEZ-STERN*, University of Massachusetts Amherst, USA
EMILY FIRST", University of Massachusetts Amherst, USA

TIMOTHY ZHOU, University of Illinois Urbana-Champaign, USA
ZHANNA KAUFMAN, University of Massachusetts Amherst, USA
YURIY BRUN, University of Massachusetts Amherst, USA

TALIA RINGER, University of Illinois Urbana-Champaign, USA

Formally verifying system properties is one of the most effective ways of improving system quality, but
its high manual effort requirements often render it prohibitively expensive. Tools that automate formal
verification, by learning from proof corpora to suggest proofs, have just begun to show their promise. These
tools are effective because of the richness of the data the proof corpora contain. This richness comes from
the stylistic conventions followed by communities of proof developers, together with the powerful logical
systems beneath proof assistants, However, this richness remains underexploited, with most work thus far
focusing on architecture rather than on how to make the most of the proof data.

In this paper, we develop Passport, a fully-automated proof-synthesis tool that systematically explores
how to most effectively exploit one aspect of that proof data: identifiers. Passport enriches a predictive Coq

mml:l used ln, pxuu synthesis I\ml\ with 1]11cc new ﬂlwdul-' muh.mmm lm ulmuhun L(lI:'L,UI‘v \\)quvuldx\
TOPLAS VO| 45, Issue 2:
°

ormation

No. 12, pp 1-30, 2023:::

University of

Emily First Zhanna Kaufman Tom Reichel
University of University of Illinois
Amberst, MA, USA Amberst, MA, USA Urbana- Champalg;u. IL, USA

efirst@cs.umass.edu umass.edu reichel: is.edu

Talia Ringer
University of Illinois
Urbana-Champaign, IL, USA
tringer@illinois.edu

Alex Sanchez-Stern
University of Massachusetts
Amberst, MA, USA
du umass.edu

Timothy Zhou
University of ITlinois

Yuriy Brun
University of Massachusetts
Amherst, MA, USA
brun@cs.umass.edu

fective but extremely Meanwhile, it took 11 person-years to write the proofs required
are quality. Verifying o verify the seL4 microkernel [17], which represents a tiny
h‘:‘}i‘:';s I;‘E"";““'Z fraction of the functionality of a full kernel.
0, mdni thi gm Recent work has aimed to simplify the process of writing
he synthesis ol' formal Proofs [2], [6], [7], [9], [10], [14], (1], [23], [24], (30].
xists for practitioners. Some formal verification can even be fully automated via
tool aimed at assisting proof synthesis. For example, CoqHammer [4] uses a set
:;"g"': 1;‘;‘;‘::‘_{;‘“;?“; of precomputed mathematical facts to attempt to “hammer”
Ty omibeame aowmal OUt @ pIoof. ASTactic [30], 23],
When it is unable to. TacTok [7], Diva [6], and Passpon 124] leam & predictive model
aigh tree from a corpus of exist
dg

al arch)
rt lati
tioners to use these Coq proof-synthesis tools. For example, of

the above-mentioned search-based tools, all but one have neither

Qmmmw

Tom Reichel &

University of Illinois Urbana-Champaign, USA
R. Wesley Henderson &

Radiance Technologies, Inc., Huntsville, AL, USA
Andrew Touchet &

Radiance Technologies, Inc., Huntsville, AL, USA
Andrew Gardner* &2

Radiance Technologies, Inc., Huntsville, AL, USA
Talia Ringer* &

University of Ilinois Urbana-Champaign, USA

33—

Baldur: Whole-Proof Generation and Repair
with Large Language Models

Emily First
University of Massachusetts
Amherst, MA, USA
efirst@cs.umass.edu

Talia Ringer
University of Illinois umm -Champaign

mnger@uune.s edu

ABSTRACT
Formally veriying softwase propesties is o highly desiable but
task. Recent work b thods to auto-
‘mate formal verification using proof assistants, such as Coq and
Tsabelle/HOL, e.g, by training a model to predict one proof step
at a time, and using that model to search through the space of
possible proofs. This paper introduces a new method to automate
formal verification: We use large language models, trained on natu-
ral language text and code and fine-tuned on proofs, to generate
whale proofs for theorems at once, rather than one step at a time.
‘We combine this proof generation model with a fine-tuned repair
model o repair generaied profs futher incrasing proving pover

Markus N. Rabe
Google, Inc.
CA,USA
mrabe@google.com

Brun
University of Massachusetts
Amherst, MA, USA
brun@cs.umass.edu

As a resul, recent research has focused on automated proof syn-
thesis, which can lead to fully automating formal verification.
There are two promising approaches for automating proof syn-
thesis. The first is to use hammers, such as Sledgehammer [64]
for the Isabelle proof assistant. Hammers iteratively apply known
‘mathematical facts using heuristics. The second is to use search-
based neural theorem provers, such as DeepHOL [4], GPT-f [66],
TacticZero [91], Lisa [34]. Evariste [42], Diva [20], TacTok [22],
and ASTactic [96]. Given a partial proof and the current proof state
(which consists of the current goal to prove and the list of known
assumptions), these tools use neural networks to predict the next
individual proof step. They use the proof assistant to cvaluate the
proof steps, which returns a new set of proof states.

paper time
dm.m and
techniques without ing costly

search. (2) Giving the learned model additional context, such as a
prior failed proof attempt and the ensuing error message, results
in proof repair and further improves automated proof generation.
(3) We establish a new state of the art for fully automated proof

Neural theorem provers rely on diverse neural architectures, such
as Wavenet [4, 84], graph neural networks (62], short long-term
‘memory models [20], and language models with the transformer
architecture [27, 66].

In this paper, we propose Baldur, a different, simpler approach to
proof synthesis. We show that using large language models (LLMs),
fine-tuned on proofs, can produce entire proofs for theorems. LLMs
are scaled-up transformer models trained on a large amount of text
data, including natural language and code, that have proven to be

dudi
7. 14]. Here, we

synthesis. We reify our method in a prototype, Baldur, and evaluate
i 4 Fene b lle/HOL the d their proofs.
In addit ly showing f whole proof
generation, repair, and added context, we show that Baldur im
proves on the tool, Thor, generat-

ing proofs for an additional 8.77% of the theorems. Together, Baldur
and Thor ean it of the theorems fully automatically. This
paper paves the way for new research into using large language
‘models for anhmulmg formal verification.

ESEC/FSE:2

quality software. For example, CompCert, a C compiler \rnfed

is s U b itous GCC
g
<o <

‘bitive. For example,
times as long as the compiler code tself [47].

ipervised Models:

taset

using the Bepiee theorem prover [81), was the only com-
LLVA

text and [
shww i semmackale lfctivencss foe whole prul gracraion

The main contributions of our work are:

* We develop Baldur, a novel method that generates
‘whole formal proofs using LLMs, without using ham-
‘mers or computationally expensive search.

f repair task and demonstrate that

Bakdis i e it el e kel gl
i art for theorem proving.

v of
erva [48], one with 8 billion parameters and anoMer with 62 billion
parameters. By contrast, existing tools that use (L)LMs for theorem

1+ We introduce a new, large proof-repair dataset and benchmark suite for the Coq proof assistant. The
15 dataset is made up of Git commits from dozens of open-source projects with old and new versions of
ant undertaking,
these challenges

1 definitions and proofs aligned across commits. Building this dataset was a signifi
v highlighting a mumber of challenges and gaps in cmmg infrastructure. We discus

1 and gaps, and we provide s for o
10 Our hope is to make it easi nilial)sets ay nai]
2 for proofs will move to targ th asiff that m

a1 2012 ACM Subject Cl —+ Machine learning; Software and its

t community can address them.
'so that machine-learning tools

uitably across proof assistants.

Computing

M-Based Automation (Part 3 o0

First Project: Passport

Addition of real
numbers is
commutative

Next Tactic }

LM-Based Automation (Part 3 o

First Project: Passport

Category Vocabulary
Indexing

forall r1 r2: R, Subword Sequence

Rplusr1r2=Rplusr2r1 422 Modeling

\ & Path Elaboration

LM-Based Automation (Part 3 o

First Project: Passport

Encoded
Proof State Core Model

100101110100
— [011001001101 | ——— —[Next Tactic]

4 N

Proof State

LM-Based Automation (Part 3 o

First Project: Passport

Language models:

+ not very limited in scope
+ takes little expertise to extend

LM-Based Automation (Part 3 of 5) _

First Project: Passport - Big Scope

e Yang and Deng 2019

e Mathematical formalizations, proven correct
programs, and Coqg automation libraries

e 123 open-source Coq projects

e Trained on 97 projects (57,719 theorems)

e Tested on 26 projects (10,782 theorems)

CoqGym
I

LM-Based Automation (Part 3 o

First Project: Passport - Big Scope

We can prove 45% more theorems than before!

2000

1820

1740

1500
1259

1000

theorems proven

500

0

LM-Based Automation (Part 3 o

First Project: Passport - Big Scope

Diversity brings even higher returns!
647% more theorems than the baseline!

2000 2000 179 2000
+
c 1590 c g 1500 +179
[o
§ 1500 1282 § 1500 ‘S ; +105 +102 +161
= 1117 a + ‘
1046 £ 1000
2 967 972 RaA 2 [
qE) 1000 {==- GE) 1000 5
o <] 2 500
(V] (] o
S 500 £ 500 *
kS * 0 \o S) Q) G QO
P . & ERRe s C’“,(\9 ‘(\6\“6
0 0 S X 0% o
A ® ¢ e &\s o O RS &
«0‘:‘5‘(\ X\’O 6‘\)6 XO\O\O @ \; 5 <<\‘(3\ \’0 ‘\)(, C?\ Nl N\ 0‘\»0\\ ‘6\9860
Moy x0° o

(a) The impact of category vocabulary indexing (b) The impact of subword encoding on each (c) The impact of fully-qualified path encod-
on three identifier categories (without subwords of the categories of identifiers (with category ing of type constructors and global definitions
or paths): local variables, type constructors, and vocabulary indexing but without paths). (with category vocabulary indexing but without
global definitions. subwords).

LM-Based Automation (Part 3 o

First Project: Passport - Easy to Extend

e Some easy Python scripts on top of
someone else’s existing project

e Parallelized work for different extensions
between me and five other authors

e Undergraduate implemented most
challenging extension in an order of weeks

e Scripts were simple and fun enough that |
got excited when writing one In between
drafting thesis chapters, ran into a couch,
and broke my big toe

LM-Based Automation (Part 3 o

First Project: Passport

Language models:

- unpredictable

- not dependable

- not understandable

+ not very limited in scope

+ takes little expertise to extend

LM-Based Automation (Part 3 of 5) _

First Project: Passport - Confusion

e Somehow, the name of the user running the
training script impacted the file order, which
impacted the results of training a model on
identical data in an identical way

e We found a nondeterminism bug in Pytorch

e Some combinations of extensions worked
mysteriously poorly, even though all
together they helped

o Apparently this is just life with even small
LMs? s this life now? Help?

LM-Based Automation (Part 3 o

More in the Paper!

PRoofster: Automated Formal Verification

Arpan Agrawal

University of Illinois

Urbana- Champaxgn IL, USA
arpan2 @i

inois.edu

Shizhuo Zhang
University of Ilinois

Urbana-Champaign, IL, USA Urbana-Champaign, IL, USA

Passport: Improving Automated Formal Verification Using .

Identifiers

ALEX SANCHEZ-STERN*, University of Massachusetts Amherst, USA
EMILY FIRST", University of Massachusetts Amherst, USA

TIMOTHY ZHOU, University of Illinois Urbana-Champaign, USA
ZHANNA KAUFMAN, University of Massachusetts Amherst, USA
YURIY BRUN, University of Massachusetts Amherst, USA

TALIA RINGER, University of Illinois Urbana-Champaign, USA

Formally verifying system properties is one of the most effective ways of improving system quality, but
its high manual effort requirements often render it prohibitively expensive. Tools that automate formal
verification, by learning from proof corpora to suggest proofs, have just begun to show their promise. These
tools are effective because of the richness of the data the proof corpora contain. This richness comes from
the stylistic conventions followed by communities of proof developers, together with the powerful logical
systems beneath proof assistants, However, this richness remains underexploited, with most work thus far
focusing on architecture rather than on how to make the most of the proof data.

In this paper, we develop Passport, a fully-automated proof-synthesis tool that systematically explores
how to most effectively exploit one aspect of that proof data: identifiers. Passport enriches a predictive Coq

mml:l used ln, pxuu synthesis I\ml\ with 1]11cc new ﬂlwdul-' muh.mmm lm ulmuhun L(lI:'L,UI‘v \\)quvuldx\
TOPLAS VO| 45, Issue 2:
°

ormation

No. 12, pp 1-30, 2023:::

University of

Emily First Zhanna Kaufman Tom Reichel
University of University of Illinois
Amberst, MA, USA Amberst, MA, USA Urbana- Champalg;u. IL, USA

efirst@cs.umass.edu umass.edu reichel: is.edu

Talia Ringer
University of Illinois
Urbana-Champaign, IL, USA
tringer@illinois.edu

Alex Sanchez-Stern
University of Massachusetts
Amberst, MA, USA
du umass.edu

Timothy Zhou
University of ITlinois

Yuriy Brun
University of Massachusetts
Amherst, MA, USA
brun@cs.umass.edu

fective but extremely Meanwhile, it took 11 person-years to write the proofs required
are quality. Verifying o verify the seL4 microkernel [17], which represents a tiny
h‘:‘}i‘:';s I;‘E"";““'Z fraction of the functionality of a full kernel.
0, mdni thi gm Recent work has aimed to simplify the process of writing
he synthesis ol' formal Proofs [2], [6], [7], [9], [10], [14], (1], [23], [24], (30].
xists for practitioners. Some formal verification can even be fully automated via
tool aimed at assisting proof synthesis. For example, CoqHammer [4] uses a set
:;"g"': 1;‘;‘;‘::‘_{;‘“;?“; of precomputed mathematical facts to attempt to “hammer”
Ty omibeame aowmal OUt @ pIoof. ASTactic [30], 23],
When it is unable to. TacTok [7], Diva [6], and Passpon 124] leam & predictive model
aigh tree from a corpus of exist
dg

al arch)
rt lati
tioners to use these Coq proof-synthesis tools. For example, of

the above-mentioned search-based tools, all but one have neither

Qmmmw

Tom Reichel &

University of Illinois Urbana-Champaign, USA
R. Wesley Henderson &

Radiance Technologies, Inc., Huntsville, AL, USA
Andrew Touchet &

Radiance Technologies, Inc., Huntsville, AL, USA
Andrew Gardner* &2

Radiance Technologies, Inc., Huntsville, AL, USA
Talia Ringer* &

University of Ilinois Urbana-Champaign, USA

33—

Baldur: Whole-Proof Generation and Repair
with Large Language Models

Emily First
University of Massachusetts
Amherst, MA, USA
efirst@cs.umass.edu

Talia Ringer
University of Illinois umm -Champaign

mnger@uune.s edu

ABSTRACT
Formally veriying softwase propesties is o highly desiable but
task. Recent work b thods to auto-
‘mate formal verification using proof assistants, such as Coq and
Tsabelle/HOL, e.g, by training a model to predict one proof step
at a time, and using that model to search through the space of
possible proofs. This paper introduces a new method to automate
formal verification: We use large language models, trained on natu-
ral language text and code and fine-tuned on proofs, to generate
whale proofs for theorems at once, rather than one step at a time.
‘We combine this proof generation model with a fine-tuned repair
model o repair generaied profs futher incrasing proving pover

Markus N. Rabe
Google, Inc.
CA,USA
mrabe@google.com

Brun
University of Massachusetts
Amherst, MA, USA
brun@cs.umass.edu

As a resul, recent research has focused on automated proof syn-
thesis, which can lead to fully automating formal verification.
There are two promising approaches for automating proof syn-
thesis. The first is to use hammers, such as Sledgehammer [64]
for the Isabelle proof assistant. Hammers iteratively apply known
‘mathematical facts using heuristics. The second is to use search-
based neural theorem provers, such as DeepHOL [4], GPT-f [66],
TacticZero [91], Lisa [34]. Evariste [42], Diva [20], TacTok [22],
and ASTactic [96]. Given a partial proof and the current proof state
(which consists of the current goal to prove and the list of known
assumptions), these tools use neural networks to predict the next
individual proof step. They use the proof assistant to cvaluate the
proof steps, which returns a new set of proof states.

paper time
dm.m and
techniques without ing costly

search. (2) Giving the learned model additional context, such as a
prior failed proof attempt and the ensuing error message, results
in proof repair and further improves automated proof generation.
(3) We establish a new state of the art for fully automated proof

Neural theorem provers rely on diverse neural architectures, such
as Wavenet [4, 84], graph neural networks (62], short long-term
‘memory models [20], and language models with the transformer
architecture [27, 66].

In this paper, we propose Baldur, a different, simpler approach to
proof synthesis. We show that using large language models (LLMs),
fine-tuned on proofs, can produce entire proofs for theorems. LLMs
are scaled-up transformer models trained on a large amount of text
data, including natural language and code, that have proven to be

dudi
7. 14]. Here, we

synthesis. We reify our method in a prototype, Baldur, and evaluate
i 4 Fene b lle/HOL the d their proofs.
In addit ly showing f whole proof
generation, repair, and added context, we show that Baldur im
proves on the tool, Thor, generat-

ing proofs for an additional 8.77% of the theorems. Together, Baldur
and Thor ean it of the theorems fully automatically. This
paper paves the way for new research into using large language
‘models for anhmulmg formal verification.

ESEC/FSE:2

quality software. For example, CompCert, a C compiler \rnfed

is s U b itous GCC
g
<o <

‘bitive. For example,
times as long as the compiler code tself [47].

ipervised Models:

taset

using the Bepiee theorem prover [81), was the only com-
LLVA

text and [
shww i semmackale lfctivencss foe whole prul gracraion

The main contributions of our work are:

* We develop Baldur, a novel method that generates
‘whole formal proofs using LLMs, without using ham-
‘mers or computationally expensive search.

f repair task and demonstrate that

Bakdis i e it el e kel gl
i art for theorem proving.

v of
erva [48], one with 8 billion parameters and anoMer with 62 billion
parameters. By contrast, existing tools that use (L)LMs for theorem

1+ We introduce a new, large proof-repair dataset and benchmark suite for the Coq proof assistant. The
15 dataset is made up of Git commits from dozens of open-source projects with old and new versions of
ant undertaking,
these challenges

1 definitions and proofs aligned across commits. Building this dataset was a signifi
v highlighting a mumber of challenges and gaps in cmmg infrastructure. We discus

1 and gaps, and we provide s for o
10 Our hope is to make it easi nilial)sets ay nai]
2 for proofs will move to targ th asiff that m

a1 2012 ACM Subject Cl —+ Machine learning; Software and its

t community can address them.
'so that machine-learning tools

uitably across proof assistants.

Computing

M-Based Automation (Part 3 o0

ince Then

04.10370v2 [cs.PL] 2 Aug 2022

Passport: Improving Automated Formal Verific
Identifiers

ALEX SANCHEZ-STERN*, University of Massachusetts Amherst, USA
EMILY FIRST*, University of Massachusctts Amherst, USA

TIMOTHY ZHOU, University of Illinois Urbana-Champaign, USA
ZHANNA KAUFMAN, University of Massachusetts Amherst, USA
YURIY BRUN, University of Massachusetts Amherst, USA

TALIA RINGER, University of Illinois Urbana-Champaign, USA

Formally verifying system properties is one of the most effective ways of imprq
its high manual effort requirements often render it prohibitively expensive. To(
verification, by learning from proof corpora to suggest proofs, have just begun to §
tools are effective because of the richness of the data the proof corpora contain. 7
the stylistic followed by of proof developers, together |
systems beneath proof assistants. However, this richness remains underexploited,
focusing on architecture rather than on how to make the most of the proof data.

PRoofster: Automated Formal Verification

Arpan Agrawal Emily First

Zhanna Kaufman Tom Reichel

University of Illinois
Urbana-Champaign, IL, USA
arpan2 @illinois.edu

University of
Amberst, MA, USA
efirst@cs.umass.edu

Shizhuo Zhang Timothy Zhou
University of Illinois University of [Tlinois
Urbana-Champaign, IL, USA Urbana-Champaign, IL, USA

hizhuo2@illi illinoi

University of
Amherst, MA, USA

Alex Sanchez-Stern Talia Ringer
University of Massachusetts
Amherst, MA, USA

.umass.edu

is.edu du

Yuriy Brun
University of Massachusetts
Amherst, MA, USA
brun@cs.umass.edu

Abstract—Formal verification is an effective but extremely
work-intensive method of improving software quality. Verifying
the correctness of software systems often requires signifi

University of Illinois
Urbana-Champaign, IL, USA

umass.edu reichel .edu

University of Illinois
Urbana-Champaign, IL, USA
tringer@illinois.edu

Meanwhile, it took 11 person-years to write the proofs required
to verify the seL4 microkernel [17], which represents a tiny

more effort than implementing them in the first place, despite

the cxistence of proof assistants, such as Cog, aiding the process.

Recent work has aimed to fully automate the synthesis of formal

verification proofs, but little tool support exists for practitioners.

This paper presents PRoofster, a web-based tool aimed at assisting

developers with the formal verification process via proof synthesis.

Phoofster inputs a Coq theorem specifying a property of a
software system and attempts to automatically synthesize a formal
Proof of the correctness af hat mennarts Whan i ic nmahia fn

produce a proof, PRoofs
its synthesis explored, wi
online at htps://proofster

PRoofster is available at wuups.syousursaszaninima.

fraction of the of a full kernel.

Recent work has aimed to simplify the process of writing
proofs (2], [6], [7], [9], [10], [14], [11], [23], [24], [30].
Some formal verification can even be fully automated via
proof synthesis. For example, CogHammer [4] uses a set
of precomputed mathematical facts to attempt to “hammer”

out a proof. ASTactic (30], F

(23],

TacTok [71. Diva [61. and Passport [241 learn a predictive model

10del to guide
om scratch.

ists for practi-
or example, of

Baldur: Whole-Proof Generation and Repair
with Large Language Models

Emily First
University of Massachusetts
Ambherst, MA, USA
efirst@cs.umass.edu

Talia Ringer
University of Illinois Urbana-Champaign
IL, USA
tringer@illinois.edu
ABSTRACT
Formally verifying software properties is a highly desirable but
labor-intensive task. Recent work has developed methods to auto

by training a model to predict one proof step
at a time, and using that model to search through the space of
possible proofs. This paper introduces a new method to automate

models, trained on natu:

ed on proofs, to

whole proofs for theorems at once, rather than one step at a time.
We combine this proof generation model with a fine-tuned repair
model to repair generated proofs, further incre:

As its main contributions, this paper demonstre
that: (1) Whole-proof generation using transformers s possible and
is as effective as search-based techniques without requiring costly
search. (2) Giving the learned model additional context, such as a
prior failed proof attempt and the ensuing error messay

in proof repair and further improves automated proof ge
(3) We establish a new state of the art for fully automated
ify our method in a prototype, Baldur, and evaluate
it on a benchmark of 6,336 Isabelle/HOL theorems and their proofs.

proof

synthesis. We

In addition to empirically showing the cffcctiveness of whole-proof
generation, repair, and added context, we show that Baldur im
proves on the state-of-the-art tool, Thor, by automatically generat
dditional 8.7% of the theorems, Together, Baldur
ally. This
language

Thor can prove 65.7% of the theorems fully auto

paper paves the way for new research into using larg
models for automating formal verification.

'ESEC/FSE 2023

q

Markus N. Rabe
Google, Inc.
CA,

mrabe@google.com

Yuriy Brun
University of Massachusetts
Amherst, MA, USA
brun@cs.umass.edu

As a result, recent rescarch has focused on automated proof syn-
thesis, which can lead to fully automating formal verification.

‘There are two promising approaches for automating proof syn-
thesis. The first is to use hammers, such as S
for the I
mathematical facts using heuristics. The second is to use search
based neural theorem provers, such as DeepHOL (4], GPT-f [66),
TacticZero [91), Lisa 34, Evariste [42], Diva (20, TacTok [22],
and ASTactic [96). Given a partial proof and the current proof state
(which consists of the current goal to prove and the list of known
al networks to predict the next
e proof assistant to evaluate the
proposed next proof steps, which returns a new set of proof states.

belle proof assistant. Hammers iteratively apply known

assumptions), these tools use

individual proof step. They use

Neural theorem provers rely on diverse neural architectures, such

s Wavenet [, raph neural networks [62), short long-term

memory models [20], and language models with the transformer
architecture (27, 6]

In this paper, we propose Baldur, a different, simpler approach to

ge models (LLMs),

for theorems. LLMs

proof synthesis. We show that using

fine-tuned on proofs, can produce entire pro

are scaled-up transformer models trained on a large amount of text

€ proven to be
remarkably effective across a wide variety of applications, including
question answering, and text and code generation [7, 14]. Here, we

show their remarkable effectiveness for whole proof geny

The main contributions of our work are:

 We develop Baldur, a novel method that generates
whole formal proofs using LLMs, without using ham
mere o commntationally expensive search

repair task and demonstrate that

spirically on a large benchmark that

Distinguished Paper

times as long as the compiler code itself [47),

ipervised Models:

parameters. By contrast, existing tools that use (L)LMs for theorem

In this paper, we develop Passport, a fully-automated proof-synthesis tool tha the above-mentioned search-based tools, all but one have neither
how to most effectively exploit one aspect of that proof data: identifiers. Passport eRFICHes 4 predictive Coq TTDUNUNE a Large T roun nwepan - wd
model used by proof-synthesis tools with three new encoding mechanisms for identifiers: category vocabulary Tom Reichel &
P deli lah ot
indexing, subword seq and path We compare Passport to three existing base toals University of Illinois Urbana-Champaign, USA
™\ ic, Y. n head-yllh ompaifiko i N
prilved @ ool e o be XA of th > e 4 s R. Wcsjley Henderson & X
erlanc ol o, y P 55 e (1 Mre s Ban tha Lo = « Radiance Technologies, Inc., Huntsville, AL, USA
e ements. Finally, together, these base tools and Passport togls enhanced with i Andrew Touchet &
sgmuore thelln® Pan they bas@Rhols W ssport™ s Radiance Technologies, Inc., Huntsville, AL, USA
@ that venfp lay a nff iiPID s Andrew Gardner* &
higher-quality software. o Radiance Technologies, Inc., Huntsville, AL, USA
u Talia Ringer* &
University of lllinois Urbana-Champaign, USA
5 Abstract
We introduce a new, large proof-repair dataset and benchmark suite for the Coq proof assistant. The
15 dataset is made up of Git commits from dozens of open-source projects with old and new versions of
1 definitions and proofs aligned across commits. Building this dataset was a significant undertaking,
1 highlighting a number of challenges and gaps in existing infrastructure. We discuss these challenges
w and gaps, and we provide r community can address them.
1w Our hope is to make it e: o that machine-learning tools
2 for proofs will move to ta iitably across proof assistants.

2012 ACM Subject Classification Computing methodologies — Machine learning: Software and its

M-Based Automation (Part 3 o0

04.10370v2 [CS.PL] 2 Aug 2022

econd Project: Proofster

Passport: Improving Automated Formal Verifi
Identifiers

ALEX SANCHEZ-STERN*, University of Massachusetts Amherst, USA
EMILY FIRST*, University of Massachusctts Amherst, USA

TIMOTHY ZHOU, University of Hlinois Urbana-Champaign, USA
ZHANNA KAUFMAN, University of Massachusetts Amherst, USA
YURIY BRUN, University of Massachusetts Amherst, USA

TALIA RINGER, University of Illinois Urbana-Champaign, USA

Formally verifying system properties is one of the most effective ways of imp;
its high manual effort requirements often render it prohibitively expensive. Ti
verification, by learning from proof corpora to suggest proofs, have just begun to
tools are effective because of the richness of the data the proof corpora contain,
the stylistic followed by of proof developers, together
systems beneath proof assistants. However, this richness remains underexploite:
focusing on architecture rather than on how to make the most of the proof data.

In this paper, we develop Passport, a fully-automated proof-synthesis tool th

PRoofster: Automated Formal Verification

Zhanna Kaufman

University of University of University of Illinois
Amberst, MA, USA Amherst, MA, USA Urbana- Champa:gn. 1L, USA
efirst@cs.umass.edu umass.edu reichel3@i] .edu

Arpan Agrawal Emily First Tom Reichel
University of Illinois
Urbana-Champaign, IL, USA

arpan2 @illinois.edu

Shizhuo Zhang Timothy Zhou
University of Illinois University of Ilinois University of Massachusetts University of Illinois
Urbana-Champaign, IL, USA Urbana-Champaign, IL, USA Amherst, MA, USA Urbana-Champaign, IL, USA

shizhuo2@illinois.edu ttz2 @illinois.edu umass.edu tr

Alex Sanchez-Stern Talia Ringer

er@ilinois.edu

Yuriy Brun
University of Massachusetts
Amherst, MA, USA
brun@cs.umass.edu

Abstract—Formal verification is an effective but extremely Meanwhile, it took 11 person-years to write the proofs required
work-intensive method of improving software quality. Verifying (o verify the seL4 microkernel [17], which represents a tiny
the correctness of software systems often requires significantly . yion of the functionality of a full kernel.
tmprs effort than dnplecsenting fhem b the frst place, deqyite Recent work has aimed to simplify the process of writing
the existence of proof assistants, such as Coq, aiding the process. pity the pi &
Recent work has aimed to fully automate the synthesis of formal Proofs [2], [6], [7], (9], [10], [14], [11], [23], [24], (30].
verification proofs, but little tool support exists for practitioners. Some formal verification can even be fully automated via
This paper presents PRoofster, a web-based tool aimed at assisting proof synthesis. For example, CoqHammer [4] uses a set
developers with the formal verification process via proof synthesis. of precomputed mathematical facts fo attempt (o “hammer”
Phoofster inputs a Coq theorem specifying a property of a P proof ASTactic [30] 23]
software system and attempts to automatically synthesize a formal . -2 ¥ o o
proof of the correctness af that nranarty Whan it ic nnakla ta TacTok [71. Diva [61. and Passport [241 learn a predictive model

produce a proof, PRoofs 10del to guide
its synthesis explored, wi m scratch,
hint to enable PRoofster e m O ists for practi-
online at https://proofster

or example, of
the above-mentioned search-based tools, all but one have neither

PRoofster is available at uups./ yvusuwe Ao,

how to most effectively exploit one aspect of that proof data: identifiers. Passp.

model used by proof-synthesis tools with three new encoding mechanisms for identifiers: ca(egorv vocabulary
mdcxmg. subwonl se qucncc modclmg. and path claboration. We comparr Pa sspon to three cxlshng base tools

g n head- omp:
of th nl:. .
Ices y pi 38% more (Ran the

d

emems Fmall together, these base loolsan Passport tog enhance Wil
ore th@ln® Pan they |\ W ssport®
that ventp pro

higher-quality sol\ware,

M-Based Automation (Part 3 o0

- - .

Tom Reichel &
University of Illinois Urbana-Champaign, USA
tici

spor e s R. Wesley Henderson &
[+ Radiance Technologies, Inc., Huntsville, AL, USA
5po
ormation Andrew Touchet &
erall, our s Radiance Technologies, Inc., Huntsville, AL, USA
leading to » Andrew Gardner* &

Radiance Technologies, Inc., Huntsville, AL, USA

Talia Ringer* &
University of lllinois Urbana-Champaign, USA

Abstract

Baldur: Whole-Proof Generation and Repair
with Large Language Models

University of Massa
Ambherst, MA, USA
efirst@cs.umass.edu

Talia Ringer
University of Illinois Urbana-Champaign
IL, USA
tringer@illinois.edu
ABSTRACT
Formally verifying software properties is a highly desirable but
labor-intensive task. Recent work has developed methods to auto-

proof assistants, such as Coq and

ct one proof step

formal verific
ral la ex ne
bl proafsfor theoeers st ance ether e oaé scp at & e
We combine this proof generation model with a fine-tuned repair
model to repair generated proofs, further incre:
As its main contributions, this paper demonstre
that: (1) Whole-proof generation using transformers s possible and
is as effective as search-based techniques without requiring costly
search. (2) Giving the learned model additional context, such as a
prior failed proof attempt and the ensuing
in proof repair and further improves automa

ify our method in a prototype, Baldur,
of 6,336 Isabelle/HOL theorems and their proofs

generation, repair, and added context, we show that Baldur im:
proves on the state-of-the-art tool, Thor, by automatically generat
idditional 8.7% of the theorems. Together, Baldur
ally. This

d Thor can prove 65.7% of the theorems fully auto

paper paves the way for new research into using larg
models for automating formal verification.

ESEC/FSE 2023

Markus N. Rabe

ogle, Inc

mrabe@google.com
Yuriy Brun
University of Massachusetts
Amherst, MA, USA

brun@cs.umass.edu

As

ult, recent research has focused on automated proof syn

There are two promising

thesis. The first is to use hammers, such as Sle

for the Isabelle proof assistant. Hammers iteratively apply known
mathematical facts using heuristics. The second is to use search-
based neural theorem provers. such as DeepHOL [4). GPT- [66)
TacticZero [91), Lisa [34], Evariste [42), Diva [20], TacTok [

and ASTactic [96]. Given a partial proof and the current proof state
(which consists of the current
assumptions), these tools use neural networks to predict the next
individual proof step. They use the proof assistant to evaluate the
proposed next proof steps, which returns a new set of proof states.

to prove and the list of known

Neualtheorem provers rely on diverse neuralarchitectures, such
cnet [4. raph neural networks (62], short long-term
memory models [20), and language models with the transformer

architecture (27, 6]
In this paper, we propose Baldur, a differe

simpler approach to
models (LLMs),

fine-tuned on proofs, can produce entire proofsfor theorems. LLMs

proof synthesis. We show that using larg

1p transformer models trained on a large amount of text

and code, that have proven to be

remarkably effective across a wide

question answers

arity of applications, including

ind text and code generation [7, 14). Here, we

show their remarkable effectiveness for whole proof generation.

The main contributions of our work are:

© We develop Baldur, a novel method that generates
whole formal proofs using LLMs, without using ham:
mere ar commntationally expensive scarch

and demonstrate that

repair ta:

spirically on a large benchmark that

Distin uished Paper

Yimes aslong as the compiler code iself [47]

pervised Models:

:aset

We introduce a new, large proof-repair dataset and benchmark suite for the Coq proof assistant. The

highlighting a number of challenges and gaps in existing infrastructure.

dataset is made up of Git commits from dozens of open-source projects with old and new versions of
definitions and proofs aligned across commits. Building this dataset was a significant undertaking,

We discuss these challenges
community can address them.
o that machine-learning tools

and gaps, and we provide r
Our hope is to make it e
for proofs will move to targ i

iitably across proof assistants.

2012 ACM Subject Classification Computing methodologies — Machine learning: Software and its

parameters. By contras, existing toos that use (LILMs fo theorem

Second Project: Proofster

@ https://proofster.cs.umass.edu Q

G

PRoofster

Enter a Coq theorem to prove, or select an example from the drop-down menu

Enter your own theorem

Following the theorem statement, start the proof with “Proof.” and “Admitted.”
Proofster will attempt to replace “Admitted.” with a Coq proof.

Proofster it!

e » i 3 » ;L ‘“ =
e\/FM/sg o j""’ﬁ'a,‘: ¥ j.”./\:,m Lﬂ§§ER
2 University of

Massachusetts
Ambherst

https://proofster.cs.umass.edu/

LM-Based Automation (Part 3 o

Second Project: Proofster

ive ev: nat = Prop :=
| ev.B : ev B
| ev_SS (n: nat) (H: evn) : ev (S (S n)).

ev_inversion: f (n: nat),
ev n—>

(n =8) V (exist ,n=5(5n") A evn').

n:nat H:evn

n=8YV (ex :nat, n=S(Sn') Aevn')

n:nat H:evn

orall : nat,
evn -
n=08Y\ (exist :nat, n=S (Sn') Aevn') »
S(Sn) =8V
(exi :nat, S(Sn) =S (Sn') Aevn')
t H1.

n:nat H:evn nB :nat HB : evnd HI :nB =28

S(SmB) =8V
(exi :nat, S(Sn@) =S (Sn') Aevn')
S(SnB) =8V
(exist :nat, S(SnB) =S (Sn') Aevn')

LM-Based Automation (Part 3 o

Third Project: PRISM

04.10370v2 [cs.PL] 2 Aug 2022

Passport: Improving Automated Formal Verific
Identifiers

ALEX SANCHEZ-STERN*, University of Massachusetts Amherst, USA
EMILY FIRST", University of Massachusctts Amherst, USA

TIMOTHY ZHOU, University of Hlinois Urbana-Champaign, USA
ZHANNA KAUFMAN, University of Massachusetts Amherst, USA
YURIY BRUN, University of Massachusetts Amherst, USA

TALIA RINGER, University of Illinois Urbana-Champaign, USA

Formally verifying system properties is one of the most effective ways of impr¢
its high manual effort requirements often render it prohibitively expensive. To(
verification, by learning from proof corpora to suggest proofs, have just begun to §
tools are effective because of the richness of the data the proof corpora contain. 7
the stylistic followed by ities of proof developers, together 1
systems beneath proof assistants. However, this richness remains underexploited,
focusing on architecture rather than on how to make the most of the proof data.
In this paper, we develop Passport, a fully-automated proof-synthesis tool tha

PRoofster: Automated Formal Verification

Arpan Agrawal Emily First

Emily First

Amherst, MA, USA
efirst@cs.umass.edu

Talia Ringer

University of Illinois Urbana-Champaign

IL, USA
tringer@illinois.edu

ABSTRACT

mate formal verification using
Isabelle/HOL, e.g, by traini

at a time, and usin

Zhanna Kaufman Tom Reichel

possible proofs. This pap

University of
Amberst, MA, USA
efirst@cs.umass.edu

University of Illinois
Urbana-Champaign, IL, USA
arpan2 @illinois.edu

Shizhuo Zhang Timothy Zhou
University of Illinois University of [linois
Urbana-Champaign, IL, USA Urbana- Champalgn, IL, USA

shizhuo2@illinois.edu is.edu

University of University of Illinois
Amberst, MA, USA Urbana- Champalg;u, IL, USA

umass.edu reichel .edu

Talia Ringer
University of Illinois
Urbana-Champaign, IL, USA
tringer@illinois.edu

Alex Sanchez-Stern
University of Massachusetts
Amherst, MA, USA

.umass.edu

is as effective

Yuriy Brun
University of Massachusetts
Amherst, MA, USA
brun@cs.umass.edu

Abstract—Formal verification is an effective but extremely
work-intensive method of improving software quality. Verifying
the correctness of software systems often requires significantly
more effort than implementing them in the first place, despite
the existence of proof assistants, such as Cog, aiding the process.
Recent work has aimed to fully automate the synthesis of formal

verification proofs, but little tool support exists for practitioners.

This paper presents PRoofster, a web-based tool aimed at assisting

developers with the formal verification process via proof synthesis.

Phoofster inputs a Coq theorem specifying a property of a
software system and attempts to automatically synthesize a formal
proof of the correctness of that property. When uu —

produce a proof, PRoofst

its synthesis explored, vl g

hint to enable Pﬁoﬂfsﬁe::l\ ﬂlem%?g
online at https://proofster. M

PhRoofster is available at https:/youtu. bE/XQAI“lRfW]

how to most effectively exploit one aspect of that proof data: identifiers. Passport enriches a predictive Coq
model used by proof-synthesis tools with three new encoding mechanisms for identifiers: category vocabulary
indexing, subword sequence modeling, and path claboration. We compan‘ Passport to three existing base toals

ced
ements. Finally, together, these base tools and Passpo;

ore the@lkms an lh:pp nls W,

@ that ient

higher-quality software.

M-Based Automation (Part 3 o0

P ‘ r n head- omp:
km § of thy ¢ Jpols.]1“5
ools auto: ly p! 38% more Ran the ol too , WiTHo!
tools enhanced wif
ssport’s
lipru

identifier i
B

e2:

o
e
=2
5

g
H
g

synthesis. We

proves on the st

and Thor can prove 65.7% of the theorems fully a

paper paves the way for new research into usi
Meanwhile, it took 11 person-years to write the proofs required model for automating formal verifcation
to verify the seL4 microkernel [17], which represents a tiny
fraction of the functionality of a full kernel.

Recent work has aimed to simplify the process of writing
proofs (2], [6], [7], [9], [10], [14], [11], [23], [24], [30].
Some formal verification can even be fully automated via .
proof synthesis. For example, CogHammer [4] uses a set

TarTak 171 Thiva [A1 and Pacenart 1941 Tasen a nredictiva madal

of precomputed mathematical facts to attempt to “hammer” £
out a proof. ile, ASTactic [30], [231, n I s I n g
foo E

s a Toog s the compilr code tself [4

. Proof Repair Infrastructure for Supervised Models:
Building a Large Proof Repair Dataset

Tom Reichel &

University of Illinois Urbana-Champaign, USA

R. Wesley Henderson &
Radiance Technologies, Inc., Huntsville, AL, USA

Andrew Touchet &

Radiance Technologies, Inc., Huntsville, AL, USA
Andrew Gardner* &

Radiance Technologies, Inc., Huntsville, AL, USA

Talia Ringer* &
University of lllinois Urbana-Champaign, USA

Abstract
We introduce a new, large proof-repair dataset and benchmark suite for the Coq proof assistant. The
dataset is made up of Git commits from dozens of open-source projects with old and new versions of
definitions and proofs aligned across commits. Building this dataset was a significant undertaking,
highlighting a number of challenges and gaps in existing infrastructure. We discuss these challenges

and gaps, and we provide r community can address them
Our hope is to make it eas o that machine-learning tools
for proofs will move to targ iitably across proof assistants

2012 ACM Subject Classification Computing methodologies —+ Machine learning: Software and its

University of Massachusetts

Formally verifying software properties is a highly desirable but
labor-intensive task. Recent work has developed methods to auto-
roof assistants, such as Coq and
model to predict one proof step

that: (1) Whole-proof generation using transformers s possible and
search-based techniques without requiring costly
search. (2) Giving the learned model additional context, such as a
prior failed proof attempt and the ensuing error message, results
in proof repair and further improves automated proof generation.
) We esablsh 8 iew sate of the st fox oy sutomate proct
ify our method in a prototype, Baldur,
it on a benchmark of 6,336 Isabelle/HOL theorems and their pmni»

of-the-art tool, Thor, by automatically generat

ing proofs for an additional 8.7% of the theorems. Together, Baldur

Baldur: Whole-Proof Generation and Repair
with Large Language Models

Markus N. Rabe
Google, Inc.
C
mrabe@

google.com

Yuriy Brun
University of Massachusetts
Amherst, MA, USA

brun@cs.umass.edu

As a result, recent research has focused on automated proof syn

ormal verification.

thesis, which can lead to fully automat
‘There are two promising approaches for automating proof sy
thesis. The first is to use hammers, such as Sledgehammer [64]
for the Isabelle proof assistant. Hammers iteratively apply known
mathematical facts using heuristics. The second is to use search-
based neural theorem provers, such as DeepHOL (2], GPT-f [
TacticZero [91), Lisa (34), Evariste [42], Diva (20], TacTok [
and ASTactic [
(which consists of the current

). Given a partial proof and the current proof state
to prove and the list of known
ural networks to predict the next

assumptions), these tools use
individual proof step. They use the proof assistant to evaluate the
proposed next proof steps, which returns a new set of proof states.
Neural theorem provers rely on diverse neural architectures, such

Wavenet (4, &
memory models

). graph neural networks [62], short long-term

e models with the transformer

we propose Baldur, a different
We show that using large lan
roofs, can produce entire proofs for theorems. LLMs

pler approach to
e models (LLMs),

are scaled-up transformer models trained on a large amount of text

data, including natural I d code, that have proven to be

remarkably effective across a wid

ariety of applications, including
question answering, and text and code generation [7, 14]. Here, we

show their remarkable effectiveness for whole proof generation

The main contributions of our work are:
© We develop Baldur, a novel method that generates

whole formal proofs using LLMs, without us
eommntationally expensive search.
repair task and demonstrate that

ESEC/FSE 20237 - -

spirically on a large benchmark that

uished Paper

. By contras,existing tools that use (LILMs fo theorem

Third Project: PRISM

Dataset for proof repair models for Cog
Actual proof repairs by proof engineers
Collaboration with Radiance

Massive infrastructure undertaking

o Building many different projects

o .. with many different Coq versions

o .. for many different commits

o ..and aligning data across commit pairs
e WIP Training Repair Models

LM-Based Automation (Part 3 o

04.10370v2 [cs.PL] 2 Aug 2022

ourth Project: Baldur

PRoofster: Automated Formal Verification

Arpan Agrawal Emily First

Emily First

Amherst, MA, USA
efirst@cs.umass.edu

Talia Ringer

University of Illinois Urbana-Champaign

IL, USA
tringer@illinois.edu

ABSTRACT

Formally verify

mate formal verification using
Isabelle/HOL, e.g

Zhanna Kaufman Tom Reichel

University of University of Illinois

University of
Amberst, MA, USA
efirst@cs.umass.edu

University of Illinois
Urbana-Champaign, IL, USA
arpan2 @illinois.edu

Shizhuo Zhang Timothy Zhou
University of Ilinois University of [linois
Urbana-Champaign, IL, USA Urbana-Champaign, IL, USA

shizhuo2@illinois.edu illinois.edu

Amberst, MA, USA Urbana-Champaign, IL, USA

umass.edu reichel .edu

Talia Ringer
University of Illinois
Urbana-Champaign, IL, USA
tringer@illinois.edu

Alex Sanchez-Stern
University of Massachusetts
Amherst, MA, USA

.umass.edu

search-based techns

prior failed proof attempt and the ensuing

Passport: Improving Automated Formal Verific
Identifiers

ALEX SANCHEZ-STERN*, University of Massachusetts Amherst, USA
EMILY FIRST", University of Massachusctts Amherst, USA

TIMOTHY ZHOU, University of Hlinois Urbana-Champaign, USA
ZHANNA KAUFMAN, University of Massachusetts Amherst, USA
YURIY BRUN, University of Massachusetts Amherst, USA

TALIA RINGER, University of Illinois Urbana-Champaign, USA

Abstract—Formal verification is an effective but extremely
work-intensive method of improving software quality. Verifying
the correctness of software systems often requires significantly
more effort than implementing them in the first place, despite
the existence of proof assistants, such as Cog, aiding the process.
Recent work has aimed to fully automate the synthesis of formal
verification proofs, but little tool support exists for practitioners.
This paper presents PRoofster, a web-based tool aimed at assisting
developers with the formal verification process via proof synthesis.
Phoofster inputs a Coq theorem specifying a property of a
software system and attempts to automatically synthesize a formal
proof of the correctness of that property. When it is unable to

produce a proof, PRoofs ace
its synthesis explored, wi guidhe per
hint to enable PRoofster amesis ! wj
online at hitps:/proofster. 8 un S et d

PhRoofster is available at https://youtu.be/xQAi66IRfwl/

Formally verifying system properties is one of the most effective ways of impr¢
its high manual effort requirements often render it prohibitively expensive. To(
verification, by learning from proof corpora to suggest proofs, have just begun to §
tools are effective because of the richness of the data the proof corpora contain. 7
the stylistic conventions followed by communities of proof developers, together 1
systems beneath proof assistants. However, this richness remains underexploited,
focusing on architecture rather than on how to make the most of the proof data.
In this paper, we develop Passport, a fully-automated proof-synthesis tool tha
how to most effectively exploit one aspect of that proof data: identifiers. Passport enriches a predictive Coq
model used by proof-synthesis tools with three new encoding mechanisms for identifiers: category vocabulary
indexing, subword sequence modeling, and path elaboration. We compare Passport to three existing base tools

2

g han ic, Yoo fiodalolklin head-yMllh ompafio; t qutgmatic:
TOPLAS Vol 45; Issue:
enhanced Tools auto: ly proves 38% more theore: Ran the ol tools (3re! jout Passpol ©
e ements. Finally, together, these base tools and Passport tools enhanced with identifier information
clf sgeore th@lkms Jan the by bas@Rols w, ssport's g
s @ that fentpt lay a s iipm

erall, our
higher-quality software.

]

eading to .

]

M-Based Automation (Part 3 o0

Yuriy Brun
University of Massachusetts
Amherst, MA, USA
brun@cs.umass.edu

(3) We establish a new state of the art for fully automated proof

synthesis. We

of-the-art tool, Thor, by auto

ove 65.7% of the theorems fully a

paper paves the way for new research into usi

models for automating formal verification.

Meanwhile, it took 11 person-years to write the proofs required
to verify the seL4 microkernel [17], which represents a tiny

University of Massachusetts

¢ software properties is a highly desirable but
labor-intensive task. Recent work has developed methods to auto-
roof assistants, such as Coq and
model to predict one proof step

ies without requiring costly
search. (2) Giving the learned model additional context, such as a
rror message, results
in proof repair and further improves automated proof generation.

ify our method in a prototype, Baldur, and evaluate
ark of 6,336 Isabelle/HOL theorems and their proofs
he effectivencss of whole-proof
ext, we show that Baldur im

dditional 8.7% of the theorems. Together, Baldur

Baldur: Whole-Proof Generation and Repair
with Large Language Models

Markus N. Rabe
Google, Inc.
CA, US:

mrabe@google.com

Yuriy Brun
University of Massachusetts
Amherst, MA, USA
brun@cs.umass.edu

As a result, recent research has focused on automated proof syn

thesis, which can lead to fully automating formal verification

‘There are two promi automating proof syn
thesis. The first is to use hai hammer (64]
for the Isabelle proof assistant. Hammers iteratively apply known
mathematical facts using heuristics. The second is to use search
based neural theorem provers, such as DeepHOL (2], GPT-f [

TacticZero [91), Lisa (34), Evariste [42], Diva (20], TacTok [

and ASTactic [96). Given a partial proof and the current proof state

(which consists of the current goal to prove and the known

assumptions), these tools use neural networks to predict the next

individual proof step. They use the proof assistant to evaluate

proposed next proof steps, which returns a n

ph neural networks (62], short long-term
models with the transformer

memory models

architecture [

are scaled-up tr amount of text

data, includi ave proven to be

remarkabl

ctive across a wide variety of applications, including

question answering, and te code generatio Here, we

show their remarkable effectiveness for whole proof ger

The main contributions of our work are.
© We develop Baldur, a novel method that generates
whole formal proofs using LLMs, without us

re o commntationally expensive search.
repair task and demonstrate that

fraction of the functionality of a full kernel. 1 !
Recent wark hassimed 1o simpiy he proces of wriing ; Em
proofs (2], [6], [7], [9], [10], [14], [11], [23], [24], [30]. Z 1¢ proof assistant's error messages.

Some formal verification can even be fully automated via q
proof synthesis. For example, CogHammer [4] uses a set

TacTok 7], Diva [6], and Passport [24] learn a predictive model

of precomputed mathematical facts to attempt to “hammer” f‘ M e
out a proof. ile, ASTactic [30], [231, : I s I n g
P

piler is more than three times as long as the compiler code itself [

Proof Repair Infrastructure for Supervised Moaeis:
Building a Large Proof Repair Dataset
Tom Reichel &

University of Illinois Urbana-Champaign, USA
R. Wesley Henderson &

Radiance Technologies, Inc., Huntsville, AL, USA
Andrew Touchet &

Radiance Technologies, Inc., Huntsville, AL, USA
Andrew Gardner* &2

Radiance Technologies, Inc., Huntsville, AL, USA
Talia Ringer* &

University of Ilinois Urbana-Champaign, USA

We introduce a new, large proof-repair dataset and benchmark suite for the Coq proof assistant. The
dataset is made up of Git commits from dozens of open-source projects with old and new versions of
ignificant undertaking,
these challenges

definitions and proofs aligned across commits. Building this dataset was a s
highlighting a number of challenges and gaps in existing infrastructure. We

and gaps, and we provide re jgus for Lo theprogiassi t community can address them.
Our hope is to make it easifl to fiild sets ay narlsuiiglso that machine-learning tools
for proofs will move to targfll th@fasfff that m i nitably across proof assistants.

2012 ACM Subject CI —+ Machine learning; Software and its

Computing

spirically on a large benchmark that

uished Paper

By contrast, existing tools that use (L)LMs for theorem

Fourth Project: Baldur

e Using an LLM, one could, conceivably,
synthesize entire proofs at once.

e Collaborating with Google, we fine-tuned the
Minerva model to synthesize proofs in
Isabelle/HOL

e Evaluated on PISA dataset (theorems in
Isabelle/HOL)

LM-Based Automation (Part 3 o

Fourth Project: Baldur

0.4 ///l
w
g
=2 0.35
S
L
=
3
3 0.3
-
a,
(P
S
o
= . w
& 0.2 —o— Generate

- Generate+Repair
0.2 —o— Generate+Repair (no err msg)
0 5 10 15 20 25 30

number of proof attempts

LM-Based Automation (Part 3 o

Fourth Project: Baldur

e Baldur (without repair) can synthesize whole
proofs for 47.9% of the theorems, whereas
search-based approaches prove 39.0%.

e Baldur can repair its own erroneous proof
attempts using the error message from the
proof assistant, proving another 1.5%.

e Diversity continues to help. Together with
Thor, a tool that combines a model, search,
and a hammer, Baldur can prove 65.7%.

LM-Based Automation (Part 3 o

More in the Papers

Baldur: Whole-Proof Generation and Repair
with Large Language Models

Emily First
University of Massachusetts

Ambherst, MA, USA
efirst@cs.umass.edu

Talia Ringer

University of Illinois Urbana-Champaign
IL, USA

tringer@illinois.edu

ABSTRACT

Markus N. Rabe
Google, Inc.
CA,

mrabe@google.com

Yuriy Brun
University of Massachusetts
Amherst, MA, USA
brun@cs.umass.edu

As a result, recent research has focused on automated proof syn

)

)

20

)

)

PRoofster: Automated Formal Verification

Formally verifying software properties is a highly desirable but
Iabor-intensive task. Recent work has developed methods to auto-

for the Isabelle proof assistant. Hammers iteratively apply known

by training a model to predict one proof step

L] 2 Aug

Arpan Agrawal Emily First Zhanna Kaufman Tom Reichel at & time, and using that model to search through the space of st cithal e mlng heimietis Tl 1o o ek
University of Illinois University of University of University of Illinois possible proofs. This paper introduces a m-:"x;:;-‘rn:?‘rod et — 775::“\":?“[:: ol ooy ki v II“‘;'VI;\'.'“’U; I]Ti:‘T £ { 5
Urbana-Champaign, IL, USA Amberst, MA, USA Amherst, MA, USA Urbana- Champa:gn. IL, USA g ed an proofs, to gene and ASTactic [96]. Given a partial proof and the current proof state
arpan2 @illinois.edu efirst@cs.umass.edu umass.edu teichel3 @il Ledu :\h«.n p!ruulx;\»r!luﬂrcuu at once, ml:u]r m;.. one step u‘uum :»«‘::;)‘;hx:\x‘«:hn V«{hm::‘rr;m’::-i l\l«v nnlnm;nnli(:li\;(l:;’l ‘):)’L(n:x»\‘:
et el et meonts, Bt ncreving peovis epvey, ndividual proof siep. They s the proof asista o evalats the
Shizhuo Zhang Timothy Zhou Alex Sanchez-Stern Talia Ringer As its main contributions, this paper demonstr: l:“l“’;“‘:‘ next proof steps, i Im:munn et v;u(ﬂ vlr-ml \hh;‘
University of Illinois University of Ilinois University of Massachusetts University of Illinois bl ot i bt L oW oo (gt sl bworbe [84] et Vg lerer
Urbana Champmgn. IL, USA Urbana- Champalgn, IL, USA Amherst, MA, USA Urbana-Champaign, IL, USA scarch. (2) Giving the learned model additional context, such as a memory models (20), and language models with the transformer
e y du umass.edu ringer@illinois.edu prior failed)xrmﬂ:ltruu\pl and the ensuing crror message results Af'l'":*“;“ [2 IJ T ——
. o . . in proof repair and further improves automated proof gencration. n this paper, we propose Baldur ‘4 ifferent, simpler approach to
Passport: Improving Automated Formal Verification Using L Yariy Brun e
o g i o it on a benchmark of 6,336 Isabelle/HOL theorems and their proofs.
Identifiers University of Massachusetts In addition to empirically showing the cffectiveness of whole-proof
Amherst, MA, USA generation, repair, and added context, we show that Baldur im- remarkabl lw(ﬁl\ll\&Mrlm,t\\nl!r\ 1‘nehol applications, including
N ~ N % proves on the state-of-the-art tool, Thor, by automatically genera question answering, and text and code generation [7, 14). Here, we
ALEX SANCHEZ-STERN*, University of Massachusctts Amherst, USA brun@cs.umass.edu D oot o o wittcan] 875 o the et TogothrBuldns show thei remarkable ffctivencasfor whale proof generation.
EMILY FIRST®, University of Massachusctts Amherst, USA DT e e el e
TIMOTHY ZHOU, University of Hlinois Urbana-Champaign, USA effective but extremely Meanwhile, it took 11 person-years to write the proofs required models for automating formal verification. . \\; ;h';clnpll;.\]nlu: a iL:_ {v‘mhu: mt« u“’n
: = ware quality. Verifying to verify the seL4 microkernel [17], which represents a tiny Wil e e
| IFM) ity of Massac] J Aoy s mere ar commntationally expensive searc
ZH’\NI\I\ KAUFMAN, University of Massachusetts Amherst, USA | h]i‘g""l;“”"f:y fraction of the functionality of a full kernel. 1 repair task and demonstrate that
YURIY BRUN, University of Massachusetts Amherst, USA Con it o promis. Recent work has aimed to simplify the procss of witing F ple=snl it
TALIA RINGER, University of Illinois Urbana-Champaign, USA 1 the synthesis of formal Proofs [2], [6], [7], (9], [10], [14], (1], [23], [24], (30]. Z e proof assistant's error messages.
exists for practitioners. Some formal verification can even be fully automated via £ Sicaly o g b
Formally verifying system properties is one of the most effective ways of improving system quality, but d tool aimed :t assilslﬁl{g proof synthesis. For example, CoqHammer [4] uses a set u ° °
its high manual effort requirements often render it prohibitively expensive. Tools that automate formal Hoime o ey ot . of precomputed mathematical facts fo attempt to “hammer” z
verification, by learning from proof corpora to suggest proofs, have just begun to show their promise. These tally synthesize a formal O1t Proof. A ASTactic (30], P ot9001 (23], 2
tools are effective because of the richness of the data the proof corpora contain. This richness comes from B« -+ TecTok [71. Diva 161, and Passoort 1241 }“'“"‘fg“fe'l“;zm:ﬁfel . A e s s i © s v
the stylistic conventions followed by communities of proof developers, together with the powerful logical 14 . scra'fh e s long e compl codeslf 7], parameers. By conrash, xsing ol hat s (A o horem
systems beneath proof assistants, However, this richness remains underexploited, with most work thus far) e m O its for praci .
focusing on architecture rather than on how to make the most of the proof data. wexample, of IPErvised Models:
In this paper, we develop Passport, a fully-automated proof-synthesis tool that systematically explores | i the above-mentioned search-based tools, all but one have neither taset
how to most effectively exploit one aspect of that proof data: identifiers. Passport enriches a predictive Coq TTDUNUNE G Large T ruur wepan-wd

[cs.]

mudel used lv\ pnmt synthesis le\ with I]uc:- new emodmg umh.uuxmx 1ux uk-nuhen um,un \mdlmldn Tom Reichel &

University of Illinois Urbana-Champaign, USA

TOPLAS Vol. 45, Issue 2:
° s Radiance Technologies, Inc., Huntsville, AL, USA

ormation » Andrew Touchet &

erall, our Radiance Technologies, Inc., Huntsville, AL, USA
O Y y p - y eading to

Andrew Gardner* &

Radiance Technologies, Inc., Huntsville, AL, USA

Talia Ringer* =
University of lllinois Urbana-Champaign, USA

04.10370v:

5 Abstract

We introduce a new, large proof-repair dataset and benchmark suite for the Coq proof assistant. The

dataset is made up of Git commits from dozens of open-source projects with old and new versions of

definitions and proofs aligned across commits. Building this dataset was a significant undertaking,

highlighting a number of challenges and gaps in existing infrastructure. We discuss these challenges

and gaps, and we provide r community can address them
Our hope is to make it e o that machine-learning tools
for proofs will move to targ iitably across proof assistants.

2012 ACM Subject Classification Computing methodologies — Machine learning: Software and its

M-Based Automation (Part 3 o0

Language models:

- unpredictable

- not dependable

- not understandable

+ not very limited in scope

+ takes little expertise to extend

LM-Based Automation (Part 3 of 5) .

< Checking the Proof

S Small Logical Kernel

~

Search Procedures S o
~
S

Domain-Specific Heuristics S~ ~

~
~

Proof Transformations RN

Producing the Proof Lws e

LM-Based Automation (Part 3 of 5)

153

A
With de Bruijn, as long as

you don't touch the kernel,
your automation is safe.

LM-Based Automation (Part 3 of 5) _

A

With de Bruijn, as long as
you don't touch the kernel,
your automation is safe.”
But boy does this make the
development process suck.

LM-Based Automation (Part 3 of 5) .

Help at Every Stage
Spoiler! =

With de Bruijn, as long as
you don't touch the kernel,
your automation is safe.”

(If your specification is OK,
your kernel has no bugs, and

you don't introduce axioms)
LM-Based Automation (Part 3 of 5) _

4. Best of Both Worlds
5. Opportunities

Already Neurosymbolic

< Checking the Proof

S Small Logical Kernel

Search Procedures RS -
~
~

Domain-Specific Heuristics S~ ~

~
~
~

Proof Transformations RN

~
~
~

Producing the Proof Lws e

~
~

Best of Both Worlds (Part 4 of 5) _

But we want even more of
the benefits of both kinds of
automation.

Best of Both Worlds (Part 4 of 5) _

Observation: We can do
fairly well sometimes
without search. Maybe we
can use search at a higher
level than before and get
further returns?

Best of Both Worlds (Part 4 of 5) _

One idea: Move the search
process up in abstraction.

Best of Both Worlds (Part 4 of 5) _

One idea: Move the search
process up in abstraction.

Best of Both Worlds (Part 4 of 5) _

Proof Search

list_forall2_app

Best of Both Worlds (Part 4 of 5)

Conversational Action Search

Getting More out of Large Language Models for Proofs

vy o r - . - 9 U — o
Shizhuo Dylan Zhang', Emily First?, and Talia Ringer®

University of Illinois Urbana-Champaign, USA
2 i s ~ ror
“ University of Massachusetts Amherst, USA

Abstract

Large language models have the potential to simplify formal theorem proving and make
it more accessible. But how to get the most out of these models is still an open question.
To answer this question, we take a step back and explore the failure cases of these models
using common prompting-based technicmes Ounr talk will discuss these failure cases and

what they can teach us about ho\AITP 202305(* models.

Best of Both Worlds (Part 4 of 5

Conversational Action Search

Prove Theorem

Look Up Run Premise
Definition Selection
Write Proof] Write Proof

.

-,
[Revise Proof] [Invoke Critic] QED
\,

Best of Both Worlds (Part 4 of 5)

Conversational Action Search

Prove Theorem

Look Up Run Premise
Definition Selection
Write Proof] Write Proof

G
a

[Revise Proof] QED
G

Best of Both Worlds (Part 4 of 5)

Conversational Action Search

Prove Theorem
Look Up Run Premise
Definition Selection
Write Proof] Write Proof

G
a

[Revise Proof] QED
G

Best of Both Worlds (Part 4 of 5)

Conversational Action Search

$SS Context Size

Prove Theorem

Look Up Run Premise
Definition Selection
Write Proof] Write Proof

G
a

[Revise Proof] QED
G

Best of Both Worlds (Part 4 of 5)

Conversational Action Search

Promising Results

Best of Both Worlds (Part 4 of 5) _

Observation: Diversity in
models helps, and diversity
In technigues appears to
help, too. Let's keep taking
advantage of that.

Best of Both Worlds (Part 4 of 5) _

Soon: Best of both worlds
for proof repair, too.

Best of Both Worlds (Part 4 of 5) _

1. Proof Assistants

2. Traditional Automation
3. LM-Based Automation
4. Best of Both Worlds

5. Opportunities

So far I've assumed the
specification already exists.

Opportunities (Part 5 of 5) ..

What if LMs can help people
specify software too?

Opportunities (Part 5 of 5) .

What if LMs can help people
specify software too? This is
risky, but promising.

Opportunities (Part 5 of 5) .

Proof Engineer Proof Assistant

() Program
§ Specificati
pecification
ﬂ >
: 4{’
ﬂ‘

Opportunities (Part 5 of 5) .

Proof Engineer Proof Assistant

() Program

‘BN Specificati v
pecification
ﬂ >

g Proof y
ﬂ ‘
v

Opportunities (Part 5 of 5)

Help at Every Stage

Proof Engineer Proof Assistant

() Program

g S 6ot
pecification -
ﬂ ’

g Proof y
ﬂ ‘
v

Opportunities (Part 5 of 5) .,

Help at Every Stage

Proof Engineer Proof Assistant

g
ﬂ Program >
]

Specification

Opportunities (Part 5 of 5) .,

Help at Every Stage

Proof Engineer Proof Assistant

g
ﬂ Program >
]

Specification

Opportunities (Part 5 of 5)

Help at Every Stage

Proof Engineer Proof Assistant

g
ﬂ Program >
]

Specification

Opportunities (Part 5 of 5)

Help at Every Stage

Proof Engineer Proof Assistant

g Program

Opportunities (Part 5 of 5)

Help at Every Stage

Proof Engineer Proof Assistant

g Program

Opportunities (Part 5 of 5) .

Help at Every Stage

Proof Engineer Proof Assistant

g Program

g Specification
-
: 44
[[p—

v

Opportunities (Part 5 of 5) .

Help at Every Stage @\
R

With de Bruijn, as long as
you don't touch the kernel,
your automation is safe.”

(If your specification is OK,
your kernel has no bugs, and

you don't introduce axioms)
Opportunities (Part 5 of 5)

Help at Every Stage R
e\

With de Bruijn, as long as
you don't touch the kernel,
your automation is safe.”

(If your specification is OK,
your kernel has no bugs, and

you don't introduce axioms)
Opportunities (Part 5 of 5)

Key Challenge:
There is no oracle for a
specification!

Opportunities (Part 5 of 5)

Key Challenge:

What tools can best help
users make sense of
generated specifications?
What information presented
In what ways best helps
users ensure that they

match their intentions?
Opportunities (Part 5 of 5)

More Trustworthy Software

*EXP_COM()
*RV_TIME()

int summary(

{

char *str = |
st_board sboard = (98 I
int ret = 9§

->
/“0'“9/en(v
ed

char *ptr_Shutterceusss

Machine Learning
Systems Operating Systems Quantum Optimizers

189

Key Challenge:

What tools can best help
users make sense of
generated specifications?
What information presented
In what ways best helps
users ensure that they
match their intentions?

