VANDERBILT UNIVERSITY

INSTITUTE FOR SOFTWARE
INTEGRATED SYSTEMS

Developing and Maintaining the Assurance of Software
with Open-Source Components:
Challenges and Tools

Gabor Karsai

Institute for Software-Integrated Systems
Vanderbilt University

Supported by DARPA Assured Autonomy Program

Fundamental Research - Contract FA8750-18-C-0089

Outline

>

The challenge:

High-assurance System Software; CI/CD + Open Source Software?
Paradigm for assured software

Artifacts: models + implementation + assurance arguments

Challenges of CI/CD

Continuous evolution =2 Continuous assurance
Dynamic maintenance of assurance arguments

CAID: Next-gen development — CI/CA/CD

Integration/coordination across tools
Example scenario
Results
Assurance argument construction, editing, and review
Integrating development tools — with dependency tracking
Conclusions

Fundamental Research - Contract FA8750-18-C-0089

The challenge

» High-assurance Software Systems

Safety-/mission-critical systems
where consequences of failures are
catastrophic

Examples

Advanced Driver Assistance Systems
(ADAYS)

Cockpit automation systems

Power grid / protection systems
Healthcare CPS

» On the other hand...

Continuous Integration / Continuous
Delivery

Agile development
» Often includes...

Open-source software

Continuously evolving (e.g., Linux)

Sprint 1 Sprint 2
Create & automate Create & automate
all test cases; all test cases;
create test data create test data

LA (r{RATION LA (rerAnION
2 WEEKS (3] 2 weeks
Execute unit & Execute unit &

component test component test

PRODUCT SCOPE SCOPE OF ITERATION

Fundamental Research - Contract FA8750-18-C-0089

System safety engineering today

» Often post-development
» Independent safety review
. Statement G Oal
» Often mandated by government regulations T
. (n+1)/2
» Challenge: Software as a ‘system integrator’] Strategy
<.
K. Subgoal
Goal Structuring Notation : : = Keraming
g Holds forn =1 Holds for n =k+1 >

A graphical tool to represent logical argument

Solution

égvidence)

Sk+1= (k+1)k+2)/2

Sk+1

= Sk + (k+1)
= k(k+1)/2 + (k+1)
= (k+1)(k+2)/2

4+1 types of nodes:
Goal:What we want to prove (‘safety claim’)
Assumption/Context: Under what circumstances
Strategy: How we go about proving the goal
Solution: Evidence to support a goal
Sub-goals: decomposition of a higher level goal

Assurance argument:

* ‘Documentation’ for HASS?
* Applicable to open-source?!

Source: http://www.goalstructuringnotation.info/

4 Fundamental Research - Contract FA8750-18-C-0089

http://www.goalstructuringnotation.info/

Engineering Artifacts needed for Assurance

.

Model artifacts
Requirements
Specifications
Design models

Implementation artifacts
Code
Tests
Tooling
Documentation

Assurance artifacts
Assurance arguments
Evidence

Proofs
Test results

Documents

Expectations: functions, performance, behavior, ...
Precise formulation of requirements

Representation of design decisions on architecture, functions, interfaces, ...

‘Production code’ ... maybe generated
Unit/system-level tests to show lack of flaws
Tools and their ‘settings’ used to build the system

Code-level and end-user documentation
Claims and logical (possibly informal) arguments for their validity
Formal logical arguments / models checked

Reproducible records of test runs

Other evidence sources (e.g. datasheets, etc.)

Fundamental Research - Contract FA8750-18-C-0089

Observations

I. The artifacts are produced (and
maintained) in a continuous
development process

Version controlled, continuous
development and integration

The artifacts are in complex
dependency relationships

Explicit representation and

management of these dependencies is
inevitable

Fundamental Research - Contract FA8750-18-C-0089

Example: Add a new ‘mission type’ for an
Autonomous Underwater Vehicle (AUV)

» Task: Underwater infrastructure (pipeline) inspection
» Requirements:

Descend close to sea floor

Find the infrastructure (cable, pipe, etc.) object

Inspect object, up to a distance, limited by battery
charge

Monitor battery charge and control surfaces for
degradation

Safely return home, under all scenarios

» Steps:
Add new sensor: Side-Scan Sonar
Spec: performance, safety, etc. ... goals
Change software architecture
Integrate new sensor
Update autonomy logic
Devise new tests/verification regimes
Revise ‘safety assurance arguments’

» Integrate these into the CI/CD

7 Fundamental Research - Contract FA8750-18-C-0089

Vision:
Continuous Assurance-Integrated Development

» Tools:

» Modeling tools for capturing
requirements, formalizing specifications,
and representing designs in high-level
models

» Development tools for code and test
construction (generation),
static/dynamic code analysis, model and
code verification, documentation

i II Code
P I"Od UCtIOﬂ Modeling e As_s;::ce

Tools T

» Assurance tools for constructing,
reviewing, and archiving assurance
evidence data sets

Artifact
Repository

Model Repository Code Repository

} 8 Fundamental Research - Contract FA8750-18-C-0089

Notional use case:
Autonomous Underwater Vehicle (AUV)

» Requirements:
Descend close to sea floor s
Find the infrastructure (cable, pipe, etc.)
Inspect object, up to a distance, limited by battery charge
Monitor battery charge and control surfaces for degradation
Safely return home, under all scenarios

» Software functions for the ‘Safe return’:
Monitor battery health and compute remaining useful charge
Continuously estimate/plan safe return trajectory
Control vehicle movement and switch to ‘return-to-home’ mode, if
needed

» Elements of an assurance argument for the ‘Safe return’ use case:
(1) correct estimation of remaining useful charge in the battery,
(2) correct calculation of the safe return trajectory,
(3) correct reaction of the vehicle controller to critical battery
charge levels under all foreseeable modes of operation, and
(4) the correct integration of the above

Tool use case:Traceability

Requirement = System function = Software model = Software component = Test case = Test result
(evidence) = Supported assurance claim

e Tracking the impact of a change (forward propagation)

* Dependency analysis (backward propagation)

* History of changes (append-only log of versions/changes)

9

Fundamental Research - Contract FA8750-18-C-0089

Implementation:

Assurance Case

Q, search
~ BLUEROV
> HARDWARE
> MISSION
v PERCEPTION
» OBSTACLE_PERCEPTION
» FDIR
~ PIPE_PERCEPTION
[SSS
~ LEC2
~ LECZ _LEFT
O generic_artifact_0
O generic_artifact_1
O rov_artifact_0
O rov_anifact_1
O ground_rover_artifacts_0
O ground_rover_artifacts_1
3 LECZ RIGHT
> AM_VAE_LEC2
GROUND_ROVER
ROV
~ CONTINGENCY
> HAZARDS
~ SAFETY
~ FAILSAFES
> LOW_BATTERY
> RETURN_TO_HOME
« PIPE_LOST
O Test_results
PoseSatisfactory
LEC2AMSatisfactory
Ssssatisfactory
MISSION_PIPE_TRACK
> SURFACE
> SENSOR_LOSS
>
>

GEOFENCE
ESTOP
v BEHAVIOR_TREE
~ MISSION_EXECUTION
v MISSION
» GEMNERAL
» WAYPOINT_FOLLOWING
~ PIPE_TRACKING
O Perception_metrics

©

Configure view @

GROUND_ROVER @)(

(Laberz @)(ROV @)

Expression

['rciude Parents [7] Include Subtrees

[ExpandAn [Highiight Matches

CLEAR APPLY SAVEAS NEW

Construction Tool

: ,.:. o
- BLUEROV
]
-] r BLUER
Name BLUEROV
@ Summary
HwW BLUEROV
This context is representing real BlueROV system ROOT
world hardware related parts only
Labsis
b4 O’ Add labels
‘ ®
'
I| solvedBy
'
1 CONTINGENCY Q
[
@ L HARDWARE Q
- - - MISSION @
HARDWARE MISSION PERCEPTION CONTINGENCY
Hardware subsystem - nat present in Mission execution subsystem Perception is satisfied by the LECs Contingency management subsystem PERCEPTION @
the simulation and AMs -Failsafes, hazards, safey and high
wel autonomy
+Goal +Strategy + Solution
Link with existing .. -
@ 5 3 3 2

@

ROV

Created 28 days ago

APPLY DELETE

nConextor

+ Assumption + Context + Justification

Link with existing ..

®ROV || GROUND_ROVER
Created 28 days ago

Fundamental Research - Contract FA8750-18-C-0089

Implementation:
Assurance Case Construction Tool

» The central canvas showcases a tree-graph, typically a single-rooted tree with a top-level goal, like
the BlueROV AUV in this example ().

» Users can navigate through the tree using the expand/collapse buttons (2).The blue outline around a
node indicates its selection, and its properties (3) and relationships (4) become editable in the right-
hand panel. The action buttons in (3) let the user filter the model to display only a graph's subtree
and quickly locate the line in the textual document where the node is defined.

» Any edits made in the graphical editor are instantly synchronized with the textual model and the
associated .gsn files. The VS Code extension tracks these updates, adding them to an undo stack.This
feature allows users to undo or redo their changes without needing to navigate through the textual
.gsn files (5).

» Each node can be assigned a set of labels that can be referenced from a view (6).The view's core
component is the expression, a logical operation (and, or, not) based on the labels defined in the
model. Essentially, a view acts as a filter, displaying only nodes with labels that satisfy the specified
expression (7). These views are saved with the model and can be reapplied to the main graph.

» The left panel displays a compact overview of the GSN model as a tree browser (8). Users can
navigate this tree similarly to the main canvas, with node selection and editing available through
sections (3) and (4).A search field at the top allows users to see an expanded, filtered view of the
tree browser, displaying only matches and their parent nodes. By default, the search field filters by
name, but other options can be selected.

» To edit the information/details (10), users can bring up a multi-line text editor (note: only the access
point is shown here, not the actual editor).

H Fundamental Research - Contract FA8750-18-C-0089

Implementation: Tool Architecture for

Assurance Provenance
Design
MEEEERN WebGME

Assurance
GSN — Argument
\ model server

git repo

Test results
git repo

depi server
database

Source code
git repo

12 Fundamental Research - Contract FA8750-18-C-0089

Assurance Provenance:
Architecture models

Vehicle software architecture model

GME » TestProject » master » Vehicle

»- ©- % © M- H- # N L @ ® Q. &
= - Al
System model Veni
+ VehicleHealthMgmt
—
! T BT sensor_msgs/BatteryState
& - nav_msgs/odometry WaypointPlanner
UAV L—p{ BatteryS.. Goal
J odom Odom
= nav_msgs/odometry
"= / —${ WorldState
Componant Vehicle WPPath
o WPPath
Simem cume lgeometry_msgs/PoseStamped
-E nav_msgs/odometry
‘ehicle_Interfaces/WaypointPath
av_msgs/odometry
Venicle_Intertaces/ Waypoint WorldModel Navigation
msgs/image
camera IOdom OE;e\t\efrl\Aap 'T\nlerfacefWundMap gzam’P i
sensor_msgs/Image mages stacle Vinterface/ObstacleMap =Wap
Simulator
mera WPPath
Simulati hitect del
camera
AirSimoutputWrapper Airsim Env Simulation AirSiminputWrapper WPPath
Odom simoutput e Output AP| Call pat API call WP ¢
L——4 Camera
odom

13 Fundamental Research - Contract FA8/50-18-C-008Y

Assurance Provenance:
Global dependencies

Edit Selection View G Run Terminal Help A cloned-re

@ EXPLORER = Depi

~ CLONED-REPOS

DEPI BLACKBOARD cumenty empty .

o_mocel_results

wp_cirl_resuits v

ua_test_runs, ©

pts.git

eval_autonomy.py

_battery.py

eval_obs avoi

A

eval_plannerpy

X

ld_model.oy

webgme:TestProject

> OUTLINE
> TIMELINE

¥ I main &

Fundamental Research - Contract FA8750-18-C-0089

Assurance Provenance:
Dependency after a change

Run Terminal Help

~ planner

~ planner

DEPENDANTS GRAPH

BatteryPredictionTests

£ cloned-rep

battery results

TestPlanner

planner_results

TestAutonomy

autonomy _results

ControlTests

eval-

wp_ctrl_results

TestModelUpdates

eval-

(e

world_model_results

ObstacleAvoidanceTests|

obstacle_avoidance_res

eval-

— Branch
main

uav_test_runs

Fundamental Research - Contract FA8750-18-C-0089

Assurance Provenance:
Dependencies ‘cleaned’

) File Edit Selection View Run

EXPLORER
~ CLONED-REPOS
I-res

> autonomy_results

> planner results

orld_model_r

README.md
ipts

> common_interf:
> ebt
> planner
vanderbilt_interface
nderbilt_utils
d_model

> OUTLINE
> TIMELINE

< P main

Terminal Help

DEPENDANTS GRAPH

BatteryPredictionTests

battery_results

TestPlanner

planner_results

TestAutonomy

ControlTests

wp_ctrl_results

TestModelUpdates

eval-result:

(worid model resut)

world_model_results

eval-result

ObstacleAvoidanceTests|

obstacle_avoidance_res

ults

eval-result:

P cloned-repos

~ Branch
main

uav_test_runs

exec_scenarios.py

estdata.git te:

b

runs.git

Fundamental Research - Contract FA8750-18-C-0089

Provenance:
claim linked to evidence

Assurance
Assurance

File Edit Selection View Run Terminal Help =

loned-repos

DBEmoe -

aph X m

GROUPS GROUF GRAFH ;:

0

u
a
ol
)
N

TestAutonomy

N
o

> planner_results

)] @

rid_model_re UAVTracks uuID
EEEE Cop i va - Drone can cste
README. target(s) D
al-scripts
Name TestAutonomy
Summary
Evaluation of drone mission
performance in different
scenarios
rface Info Add info text
m_interface
> common_interfac * ° Lapels
EAushees Autonomy CameraPerception Planner
High-level autonomy (EBT) works Camera Perception is working as Planner works satisafactorily Add label -
~ planner safisat: expected
~ planner EDIT LABELS
Status NotReviewed ~ &
2
.gitignore
R Lcense State
% packagexml
Evidence @
ObstacleAvoidance BatteryResouceMgmt WaypointControl TestAutonomy
nderbilt_interf: + Obstacle avoidance is operational Baftery/Resource management is ypoint controller is working as Evaluation of drane mission
nderbilt_u working as expected expected perfarmance in different S Comments +ADD
d_model -
fa
pt wa
README.md -
- 1 1 1
-
> OUTLINE [..]

> TIMELINE

2023 Vanderbilt Un|

Fundamental Research - Contract FA8750-18-C-0089

Implementation:

Tool architecture

@Code \

Tool A Ext. Tool B Ext.

[Tool Repo Client] [Tool Repo Client

[Depi gRPC Client] Depl gRPC Client

)
)

Depi Extension (git built-in)

[Depi gRPC Client]
.

User-end tool:VS Code IDE

- GSN Extension — A/C editing

- webgme Extension — Model editor
- depi Extension — Dependencies

/ Tool Repository Host\ /Repository Monitor \

e.g. webhook

[

event

WebHook Service Http Server

e

|

o] (Come)

(
L
=
— —’4_,___,_——-——[Tool Repo Client
Repo >

Depi gRPC Client

Depi Server

|
L4

Depi Storage ‘gitea’— git repo server

[—

- git monitor
webgme — model editor server

Depi gRPC Server]‘f Server side:

I
|
!
I
'
I
el
Il
I
'
'
'
'
1

- gme monitor
GSN Extension —A/C editing

S (oS '

e i - gsn monitor

| JSON I doltDB - depi Extension — Dependencies
......... - Blackboard for editing

- Database backend
Fundamental Research - Contract FA8750-18-C-0089

Summary

» HASS requires complex ‘documentation’
Models for requirements, specifications, design
Implementation: code, tests, tools/settings, docs...
Structured assurance arguments + evidence
Artifacts are linked via complex dependency relationships
Complicating factor: Open-Source components (that evolve)
» Agile development processes necessitate version control
Linear/branching versioning + merge,...
» Tooling:
Assurance case editor
Dependency tracking database
Event monitors: git, webgme, gsn, ...
Server: Linux + docker containers ; Client: VS Code + extensions
» Challenges:
Complexity of relations
Management for concurrent updates

Continuous Integration/Assurance/Deployment ...

A new paradigm for software development where continuous assurance is an integral part of
the sustaining engineering process?

19 Fundamental Research - Contract FA8750-18-C-0089

