2024 HIGH CONFIDENCE SOFTWARE AND SYSTEMS CONFERENCE

THEME: ASSURED OPEN SOURCE AND MEMORY SAFETY

Formal Verification of AWS-LibCrypto

Work completed by AWS and Galois, Inc. through collaboration

Speaker: Yan Peng (she/her)

Applied Scientist
Amazon Web Services, Inc.

adWs

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
R > 9

Outline

1. AWS-LibCrypto

2. Formal Verification Overview

3. Cand x86 Verification using SAW
4. Arm Verification

5. s2n-bignum

6. Cl and Proof Maintenance

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
R > 9

AWS-LibCrypto (AWS-LC)

Open-source Open-source
Language Transport ~ Applications
Abstractions Libraries f

AWS SDKs
AWS-LC-RS (Rust) | . .

- AWS-LC ACCP (Java)
AWS Services

CPython (Python) S |QUIC
« An open-source general-purpose cryptographic library owned and
maintained by AWS

« Forked from BoringSSL and optimized for AWS use cases
« FIPS 140-3 validated

« Support multiple platforms for customer needs
aws

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
R > 9

4

Performance Optimization

« Cryptographic primitives have cumulative

performance and cost impact over network 88% 4

connections

« Algorithm level:

- EC: windowed double-and-add scalar point multiplication

« AES-GCM: Karatsuba multiplication & aggregated reduction
« Micro-architecture level:

« Access to all machine instructions
- Precise control over the scheduling of operations - parallelism

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
R > 9

Safety Mechanisms

- Cryptography is the foundation for protecting customer data
« David A. Wheeler — How to Prevent the next Heartbleed [1]

“Do not use just one of these tools and techniques to develop secure software.”

- Testing and dynamic analysis: positive and negative unit tests, fuzz tests, Clang
sanitizers, Valgrind, etc.
« Also, formal verification

- Use of automated logical reasoning to prove properties of a program or system
- Properties: memory safety and functional correctness

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
R > 9

Highly-optimized open-source cryptographic
library is challenging to verify

- Written in multiple languages (C, assembly for various platforms)

« Use of multiple formal verification tools is often unavoidable
* Proof integration

« Highly-optimized
« Each optimization requires some proof effort to prove soundness

Large proof terms, we want to build robust automation using SAT/SMT
Some optimization could not be automatically solved, need user guidance

- Formal proofs need to catch up with new changes/optimizations

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
R > 9

unbounded proof

Verified Algorith ms % Verified up to API

SHA-2 384, 512 SandyBridge+ 1000 150s
SHA-2 384 Neoverse-n1 SAW, Prototype Arm 2600 230s
Neoverse-v1 Verification Tool

HMAC SHA-384 SandyBridge+ SAW 1000 327s
AES-KW(P) 256 SandyBridge+ SAW 700 215s

Elliptic Curve P-384 SandyBridge+ SAW, Coq, HOL-Light 2400+20000 620s

Keys and

Parameters

ECDSA P-384, SHA-384 SandyBridge+ SAW 1500 703s(~11mins)

ECDH P-384 SandyBridge+ SAW, Coq, HOL-Light 400 423s

HKDF HMAC-SHA384 SandyBridge+ SAW 700 220s

Te—

. SandyBridge+ : x86_64 with AES-NI, CLMUL and AVX Total ~ 10,000 SAW
aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

N7

AWS-LC Formal Verification Workflow

(AArch64) (C functions)
functions

Assembler Coq
" ot0r « Establish *
011101 mathematical LLVM
010101 : IR
o10101 properties (X86_'64)
Elf loader Gallina spec functions
- Assembler
* Functional correctness . Y
) \/ * Functional correctness
* Memory region bounds » Memory safety check 8??181
and alignment checks |* Cryptol > y 4 < 010101
spec 010011}
. g . g —
Arm Verification SAW

Assumed

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
R > 9

Verifying C and x86_64 using SAW

Compositional proof

SAW
100101 Built-in proof tactics
X86 =1 Gio101
010011’,
By Symbolic (
| CFG Execution"LSAWCOTeimpl Whata
4 II » DSL for SMT =(Solvers)
Symbolic L(
v Execution 'fAWCOTBCTy ptOJ
g

Cryptol Specification

- Unbounded proofs — improved comparing to previous results

« Does not support Arm (64bit)

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
R > 9

Verifying Arm Assembly

Symbolic & Concrete
Simulation
Bounded analysis +
Unbounded proofs

OCaml
A Neihd OCaml ELF
rm o10101 |
010011 Loader | | _/ \/ = __T»__ =
7 Arm State I Ver|f|cat|on : N OCaml SMT | SMT Sol
Executable Automatic I_C_ofd_'tlofs_.: | Interface] (OIVErS
| translation | / I
\/ User o
- Guidance SMT Proof Obligations
Cryptol Specification OCaml Specification

Structure sharing and

-~
-
S<

memorization

/’ Assertions attached \ Common subexpression

)) elimination
\ to instructions /
/

~ -
~~a -

« Memory safety: memory access is within bounds and correctly aligned
« Implemented in OCaml, currently exploring Lean

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
R > 9

Integrating Arm Proofs with SAW

| SAW

Verify C function through '\ Cryptol | — Cimpl |

compositional proof | spec — 'mp i

| calls calls |

Assume correctness of % cryptol| o/ Assumed . l

| Crypto —— rm im !

assembly | spec — P |
Automatic translation of Automatic o
Cryptol spec to OCaml —— translation 010107

Verify Arm assembly using | oCaml| ./ | mm Arm impl o

translated spec — i she — |

i OCaml !

aws
5 © 2024, Amazon Web S

ervices, Inc. or its affiliates. All rights reserved.

Use of Coq for Mathematical Reasoning

« ECDH verification workflow

s2n-bignum & fiat-crypto SAW v Coq
; Cryptol
P-384 Field ECDH API functions spec |
runctions A P-384 Point —/
AN iy — Cryptolimps = Gorous
Assumed correct in SAW N P-384 Field translation

Functions

« Mathematical reasoning and induction is easier in a theorem prover

« We want: the group multiplication used in the ECDH implementation is in the correct group
of P-384 points

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
R > 9

s2n-bignum

- An open-source library developed at AWS AWS-LC
- Efficient implementation of low-level big Asm implementations.

number operations

« Written in constant-time fashion

s2n-bignum

. Supports both X86_64 and aarch64 Asm implementations
« Formally verified in HOL-Light

Formal verification

adWs

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
R > 9

Formal verification enables fearless
performance optimization

RSA2048 sign 496
RSA3072 sign 126
RSA4096 sign 55555555555555 78
0 100 200 300 400 500 600
& With s2n-bignum m Before s2n-bignum
RSA2048 verify & 18836
RSA3072 verify
RSA4096 verify =
0 5000 10000 15000 20000

W Before s2n-bignum

& With s2n-bignum

12868

Curve25519 point mul

0 2000 4000 6000 8000 10000 12000 14000

& With s2n-bignum m Before s2n-bignum

* RSA sign: 30%~80%; verify: 30%~75%
e Curve25519 point mul: 98%

« Fine tuning for the micro-architecture

e Curve255109:
* Lenngren’'s X25519 optimization[2]
« SLOTHY[3]

Note: performance (op/sec) measured on Graviton2 using benchmarking tool provided in AWS-LC

adWs

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
R > 9

14

Continuous Integration and Proof Maintenance

« Formal verification needs to run relatively fast
« Formal verification of open-source libraries requires continuous effort
* Formal proofs need to catch-up with new optimizations

« Total Cl run time 30min:

> - Saw-x86_64: 17mins
is a submodule of]
- Saw-aarch64: 2mins
< v « Cog: 28mins (mostly building fiat-crypto)
is run in the Cl of - Arm Verification: 9mins
AWS-LC AWS-LC
Verification
All changes to AWS-LC « Requires reasonable effort for proof
requires all formal Mmaintenance
verification to pass]
before submitting « Year 2023, around 16/616(PRs) fixes
adws © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. ° L L M ?

N7

15

Summary and Lessons Learnt

Summary: We formally verified several critical algorithms in the open-source
cryptographic library AWS-LC

« These proofs are open-source and run in the continuous integration

Lessons Learnt:

« Verifying highly-optimized cryptographic library is a challenging task that
requires multiple formal techniques/tools

« Formal verification enables fearless performance optimization
« Formal verification of open-source libraries requires continuous effort

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights res
\/‘7

16

Open-source cryptography @ AWS
https://aws.amazon.com/security/opensource/cryptography

Thank you!

AWS-LC
https://github.com/aws/aws-Ic

Yan Peng AWS-LC-verification

yppe@amazon.com https://github.com/awslabs/aws-lc-verification

s2n-bignum
https://github.com/awslabs/s2n-bignum

aWS © 2024, Amazon Web S
N

ervices, Inc. or its affiliates. All rights reserved.

17

https://aws.amazon.com/security/opensource/cryptography

References

(1] https://dwheeler.com/essays/heartbleed.html
2] https://qithub.com/Emill/X25519-AArch64/blob/master/X25519 AArch64.pdf
3] https://qithub.com/slothy-optimizer/slothy

aWS © 2024, Amazon Web Services, Inc . or its affiliates. All rights reserved . 18

https://dwheeler.com/essays/heartbleed.html
https://github.com/Emill/X25519-AArch64/blob/master/X25519_AArch64.pdf
https://github.com/slothy-optimizer/slothy

aws
~—

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

HOW THE HEARTBLEED BUG WORKS:

, ARE YOU STiLL THERE?
'ser Meg wants these 6 letters: POTATO.

SERVER, ARE YOU ?
IF 50, REFLY *POTRTO" (6 LETTERS).

ﬁ) O

0

SERVER, ARE. YOU STILL THERE?
IF 50, REPLY "BIRD" (4 LETTERS).

J

Hmm...

SERVER, ARE YOU STiLL THERE?
IF S0,REPLY "HAT™ (500 LETTERS).

7

er Meg wants these 500 letters: HAT.

ctions page. Eve (administrator) van| o
ts to set Server’s master key to "148 [o]
35038534°. T wants pages about " o
snakes but. not too long'. User Karen

wants to_change account. password to

Source: https://xkcd.com/1354/

19

