
Optim(L): Generating Lazy APIs from
DAGs of Actions

Mark Tullsen & Sam Cowger
Galois, Inc.

May 2024, HCSS

Optim(L): Generating Lazy APIs from
DAGs of Actions

Mark Tullsen & Sam Cowger
Galois, Inc.

May 2024, HCSS

Thanks:

- SafeDocs (This work supported in part by DARPA awards
HR001119C0073 and HR001119C0079).

- Sergey Bratus (our PM)
- Peter Wyatt, PDF Association

© 2024 Galois, Inc.3

- Writing correct & safe PDF parsers

The Backstory

© 2024 Galois, Inc.4

- Writing correct & safe PDF parsers

- Writing correct & safe & useful PDF tools (!)
- A surprisingly different problem
- Needing not more / improved “parsing technology” but …

The Backstory

© 2024 Galois, Inc.5

- A Need Discovered
- What I needed, which wasn’t a better parser.
- (PDF, our use-case & running-example)

- Optim(L): Described & Applied
- Evaluates “DAGs of L Actions” optimally
- Can be instantiated to various “computation languages” L
- We instantiate L to an eXplicit Region Parser (XRP) to achieve our needs

- Optim(L): Capabilities
- Optim(L): Assessments

Outline

© 2024 Galois, Inc.6

Transformational vs. Reactive Systems

In On the Development of Reactive Systems (1985), Harel & Pneuli note:

“Our proposed distinction is between what we call transformational and reactive
systems.
…
A transformational system accepts inputs, performs transformations on them and
produces outputs.
…
Reactive systems, on the other hand, are repeatedly prompted by the outside world and
their role is to continuously respond to external inputs.”

© 2024 Galois, Inc.7

The PDF Problem?

(byte stream)

PDF DOM, …

monolithic
AST

parser
applic.
code

● Transformational System!

© 2024 Galois, Inc.8

The PDF Problem?

(byte stream)

PDF DOM, …

monolithic
AST

parser
applic.
code

● Transformational System!

In theory, but definitely not in practice!

© 2024 Galois, Inc.9

The PDF Problem is Actually …

Random
Access

File
Format

PDF
multi

entry-point parser
applic.
code

getHeader

getTrailer

getObject i

Control
Data

File is read
● on demand
● incremental

…etc…

● Reactive System!

© 2024 Galois, Inc.10

The PDF Problem is Actually …

Random
Access

File
Format

PDF
multi

entry-point parser
applic.
code

getHeader

getTrailer

getObject i

File is read
● on demand
● incremental

…etc…

● Reactive System!

The practice doesn’t look so elegant!
A theory, or more principled approach?

Control
Data

© 2024 Galois, Inc.11

Random-Access Formats and
Multi-Entry-Point Parsers

Random
Access

File
Format

MEP
Parser Server

PDF, ICC, zip,
ELF, …

Parser
Client

applic.
code

multi
entry point

parser

Random Access Formats with
- embedded file offsets
- embedded object lengths
- data at EOF
- …

APIs, e.g.,

ZIP:
get_toc,
get_file1,
...

PDF:
get_root,
get_metaData,
get_version,
get_page_1,
...

control

© 2024 Galois, Inc.12

Random-Access Formats and
Multi-Entry-Point Parsers

Random
Access

File
Format

MEP
Parser Server

PDF, ICC, zip,
ELF, …

Parser
Client

applic.
code

● safe?
● easy to use?
● ad hoc design for each format?
● the dreaded “shotgun parser”?

multi
entry point

parser

Random Access Formats with
- embedded file offsets
- embedded object lengths
- data at EOF
- …

APIs, e.g.,

ZIP:
get_toc,
get_file1,
...

PDF:
get_root,
get_metaData,
get_version,
get_page_1,
...

control

© 2024 Galois, Inc.13

Optim(L)

The Directed Acyclic Graph (DAG) view

© 2024 Galois, Inc.14

A

C

B

D

E

result

Dependence

Traditional, Monolithic Program

Action

Action

Action

Action

Action

Dependence

Dependence

Dependence Dependence

Dependence

© 2024 Galois, Inc.15

A

C

B

D

E

Traditional, Monolithic Program

Initial State: Actions not yet invoked

result

© 2024 Galois, Inc.16

A

C

B

D

E

Traditional, Monolithic Program

Final state: All Actions Are Invoked

result

What if … all we wanted was `(fst result).50` …?

© 2024 Galois, Inc.17

A

C

B

D

E

Optim(L): Multiple Entry Points

Initial State: Actions not yet invoked

NO single
result/main/…

● Entry points {C,D,E}.
● Or {A,B,C,D,E}?

○ User decides.

© 2024 Galois, Inc.18

A

C

B E

Optim(L): Demands invoke actions & update state

Intermediate state 1:
 Actions A, B, and C are invoked (results cached)

 Demand C

D

© 2024 Galois, Inc.19

A

C

B E

Optim(L): Demands invoke actions & update state

Intermediate State 2:
 B is already computed, so only E is invoked (results cached)

 Demand E

D

© 2024 Galois, Inc.20

Optim(L): Important

Not the same as “lazy evaluation”:
- Multi-entry points
- “Actions” on the nodes are not computations but

monadic actions.

© 2024 Galois, Inc.21

Optim(L)

Let’s see the code.

© 2024 Galois, Inc.22

Example Format: ICC

ICC - International Color
Consortium; ICCmax is a
color management profile;
used in PDF.

© 2024 Galois, Inc.23

ICC, The Traditional Approach

 pICC : Parser [TED]
 pICC = do

cnt <- pInt4Bytes
tbl <- pMany cnt pTblEntry -- parse cnt Table Entries
rsTeds <- except $ mapM getSubRegion tbl
teds <- mapM applyPTED rsTeds
return teds

 -- parse a Tagged Element Data (TED):
 applyPTED :: Parser TED
 applyPTED (sig,offset,size) =

withParseRegion offset size (pTED sig)

© 2024 Galois, Inc.24

Optim(L), L=XRP

[optimal|
icc : Region -> ICC
icc rFile =
 { (cnt,rRest) = <| pInt4Bytes @! rFile |>
 , tbl = <| pManySRPs (v cnt) pTblEntry @!- rRest |>
 , rsTeds = <| except $ mapM (getSubRegion rFile) (v tbl) |>
 , teds = <| mapM applyPTED rsTeds |>
|]

applyPTED r = pTED (region_width r) `appSRP` r

© 2024 Galois, Inc.25

Optim(L) with Lazy Vectors

[optimal|
icc_lazyVectors : Region -> ICC
icc_lazyVectors rFile =
 { (cnt,rRest) = <| pInt4Bytes @! rFile |>
 , rsTbl = generate (v cnt)
 <| \i-> regionIntoNRegions
 (v cnt) rRest (width pTblEntry) i |>
 , tbl = map rsTbl <| \r-> pTblEntry @$$ r |>
 , rsTeds = map tbl <| \r-> except $ getSubRegion rFile r |>
 , teds = map rsTeds <| applyPTED |>
 }

applyPTED r = pTED (region_width r) `appSRP` r

© 2024 Galois, Inc.26

Optim(L) with Lazy Vectors

[optimal|
icc_lazyVectors : Region -> ICC
icc_lazyVectors rFile =
 { (cnt,rRest) = <| pInt4Bytes @! rFile |>
 , rsTbl = generate (v cnt)
 <| \i-> regionIntoNRegions
 (v cnt) rRest (width pTblEntry) i |>
 , tbl = map rsTbl <| \r-> pTblEntry @$$ r |>
 , rsTeds = map tbl <| \r-> except $ getSubRegion rFile r |>
 , teds = map rsTeds <| applyPTED |>
 }

applyPTED r = pTED (region_width r) `appSRP` r

cnt
rsTbl tbl rsTeds teds

© 2024 Galois, Inc.27

Optim(L)

Regarding Semantics …

© 2024 Galois, Inc.28

Optim(L)
● Parameterized over the language 'L' of computations.
● The language L of computations must be a commutative monad: i.e., the order of

independent actions does not matter:
 do {a <- A; b <- B; c <- C[a,b]}

 == do {b <- B; a <- A; c <- C[a,b]}

Examples of commutative monads
● Identity: (i.e., pure code)
● Maybe: exceptions
● Reader: read-only globals

Optim(L): The Theory

Not commutative monads:
● StateM: mutable globals
● IO

Possibly:
● IO as reader, …

A

C

B

Key design decision
in Optim(L)!

© 2024 Galois, Inc.29

Optim(L): Multiple Interpretations

Generally Optim(L) has a “lazy” interpretation, but others are useful

Where L is a commutative monadic language,
 and m is a Optim(L) module that binds L computations..

[[OptimLazy(L)(m)]] – no action is ever repeated, results cached
[[OptimNoCaching(L)(m)]] – no thunks used, can generate pure code.
[[OptimTracing(L)(m)]] – lazy, logs all demands
[[OptimProfiling(L)(m)]] – lazy, counts all demands

You can look at these interpretations as “programmable” variable lookups.

© 2024 Galois, Inc.30

Optim(L): Observationally Equivalent

Observationally Equivalence
● Defined in terms of API calls
● Not in terms of optimality, side-effects, or etc.

So, a client cannot distinguish these lazy APIs (i.e., the semantics):
[[OptimLazy (L)(m)]]
[[OptimNoCaching(L)(m)]]
[[OptimTracing (L)(m)]]

© 2024 Galois, Inc.31

Optim(L)

Applied …

© 2024 Galois, Inc.32

Optim(XRP) For Random Access Formats

For Parsing Random Access Formats, L=XRP
- (eXplicit Region Parser language)
- Three things

- ReaderException monad.
- Add explicit, abstract regions

- I.e., [startbyte..endbyte] , but abstract
- A combinator library for manipulating regions safely
- Non “sequential parsers” must be applied to a region

- Top level MEP parser is passed top level abstract region

Achieves
● optimal (caching)
● MEP parsers
● for random-access formats
● described declaratively
● implemented statefully

© 2024 Galois, Inc.33

Optim(...): Some Useful Instantiations (?)

L monad Binding values We get

1 pure bash Maybe FileStream In program make capability (no persistence)

2 Haskell/_ Identity a Lazy API to get/compute globals

3 Haskell/_ Reader a Lazy API for accessing global config. data

4 Haskell/_ ReaderMaybe a [as above] but allow for failures

5 ML, … Identity a Add laziness to non-lazy language

6 Haskell/_ Reader [Int] Thread down name supplies, RNG seeds, …

We’re so used to the “imperative virus” and/or the monad transformer
approach, we’re not seeing declarative alternatives.

© 2024 Galois, Inc.34

Optim(L)

Capabilities

© 2024 Galois, Inc.3535 © 2022 Galois, Inc.

File DOM

Fail: [msgs]

valid

invalid

Validator:
 only valid PDFs can produce DOM (must Fail otherwise)

Parser ≠ Validator

© 2024 Galois, Inc.36

File DOM

Fail: [msgs]

valid

invalid

Parser:
 efficiently, construct the correct DOM when a valid PDF

Parser ≠ Validator

© 2024 Galois, Inc.3737 © 2023 Galois, Inc.

File DOM

Fail: [msgs]

valid

invalidCloud icons are suggestive; for each parser/reader/tool:

 The tools are going to be different:
▪ redundancies in format allow for different choices
▪ tools in practice allow “minor” errors
▪ tool may traverse & evaluate implicit data structures differently.

 Goal for our “parser specification”:
▪ Encompass any reasonable & correct cloud

Assuming tools
interpret the
Standard
uniformly!

Parser ≠ Validator

© 2024 Galois, Inc.38

Vision: PDF Library as (DAG of) MEP Components

Applic.
Code

PDF
File // raw pre-dom

header
trailerDict
updateList

// meta-info:
fileStructureCavities
overlappingObjects

// XREF:
xrefTable

// DOM Table
docObjModel
rootObjId

// valid pre-dom
header
trailerDict
updateList

// raw body objs
objArray

● Reading, parsing, constraint checking, value computation is demand driven
● Each MEP can add parsers, value constraints, or computation

© 2024 Galois, Inc.39

Vision: PDF Library as (DAG of) MEP Components

Applic.
Code

PDF
File // raw pre-dom

header
trailerDict
updateList

// meta-info:
fileStructureCavities
overlappingObjects

// XREF:
xrefTable

// DOM Table
docObjModel
rootObjId

// valid pre-dom
header
trailerDict
updateList

// raw body objs
objArray

● Reading, parsing, constraint checking, value computation is demand driven
● Each MEP can add parsers, value constraints, or computation

A single codebase from which we can generate code for either
• Efficient, lazy parsing tool, E.g.,

mytool [getmetadata | displaypage n | listFonts | …]
– Only required bytes parsed, required constraints checked

• PDF validator
– All bytes parsed, all constraints checked

© 2024 Galois, Inc.40

Optim(L)

In Conclusion …

© 2024 Galois, Inc.41

Assessments

● We think this is sweet
○ Writing unordered non-IO monadic “bindings”

■ Choosing the interpretation
■ Getting efficient, general, imperative code out
■ Letting our compiler do the dependency analysis

○ Being able to order the bindings semantically, not per
data-dependencies.

● Commutative monad restriction
○ Limits scope
○ But this pushed us towards a better design for XRP.

© 2024 Galois, Inc.42

Assessments

● Implementation in Template Haskell
○ Straightforward implementation
○ Types in Optim(L) match types in L
○ Lose some generality, “stuck” with L in Haskell

● Using Haskell, we get different L’s trivially: just use a
different monad (user ensures commutative)

● Lazy vectors
○ Must be done in Optim(L), not in L
○ Not too onerous
○ Vector-element laziness very useful.

■ Feels the right “bang for the buck”

© 2024 Galois, Inc.43

Future Developments

● Implement as standalone language and compiler, this
allows
○ More optimizations
○ Ability to create multiple tools from one spec. (e.g. validator

and parser)
● Optim(XRP): apply to more formats
● Research “bidirectional capabilities”

○ When L is bidirectional, then Optim(L) might be.

© 2024 Galois, Inc.44

Questions?

