
DRAFT

Deanonymizing Device Identities via Side-channel Attacks In Exclusive-use IoTs:
A Reality Today, A Challenge Tomorrow

Christopher Ellis, Yue Zhang, Mohit Jangid, Zhiqiang Lin
The Ohio State University

Abstract—Wireless technologies such as Bluetooth and Wi-Fi
are crucial to the Internet of Things (IoT) as they enable
devices to communicate without physical connections. However,
this wireless convenience also exposes data exchanges to poten-
tial observation by attackers, leading to security and privacy
threats such as device tracking. To mitigate these threats, pro-
tocol designers often employ strategies like address and identity
randomization. While previously considered effective against
tracking attacks, this paper demonstrates that these attacks
remain a significant threat due to a historically overlooked
flaw in exclusive-use wireless communication. Specifically, we
define exclusive-use as a scenario where devices are designed
to provide functionality only to an associated or paired device.
The unique communication patterns in these relationships
create a single-bit side-channel observable by attackers,
revealing whether two devices “trust” each other. This infor-
mation leak deanonymizes devices, enabling tracking despite
modern countermeasures. We introduce our tracking attacks
as IDBLEED and demonstrate that BLE and Wi-Fi protocols,
which support confidentiality, integrity, and authentication, are
vulnerable to deanonymization due to this fundamental flaw
in exclusive-use wireless communication. Finally, we propose
a generalized mitigation framework through the addition of
an anonymization layer and quantify its performance.

1. Introduction

Wireless technologies such as Bluetooth and Wi-Fi play
a crucial role in the Internet of Things (IoT), with various
applications for smart homes, entertainment, health care,
retail, and personal fitness. However, the convenience of
wireless communication also makes data exchanges between
IoT devices vulnerable to observation by attackers through
sniffing, enabling security and privacy attacks such as device
location tracking. For example, modern smartphones that use
Bluetooth Low Energy (BLE) for communication [1] with
accessories, such as earbuds, can have their packets observed
by an attacker with a low-cost sniffer. These packets include
a MAC address—the smartphone’s identifier—that can later
be used to track their owner’s location, given the low
probability of address collisions [2], [3].

To defend against tracking attacks, protocol designers
introduced address or identity randomization. For example,
the Bluetooth Special Interest Group (SIG) has recom-
mended MAC address randomization, which periodically

changes its MAC address (e.g., every 15 minutes [4]). This
countermeasure makes it significantly more difficult to track
devices through MAC address tracking attacks across time
cycles, particularly in areas with heavy wireless congestion
from multiple devices.

However, tracking is still possible. For instance,
implementation flaws have been shown to potentially static
information used for tracking [5], [6], [2]. Recently dis-
covered BAT attacks [7] also show BLE tracking is possible
through exploiting a specification flaw in randomized MAC
address generation, observing differences in communication
between devices using allowlists. Inspired by this BLE
focused research, we investigated IoT wireless communica-
tion protocols from a general perspective and surprisingly
uncover a historically overlooked characteristic fundamental
to devices that exclusively communicate: the difference in
behavior between trusted and untrusted devices at multiple
steps in common protocols, such as BLE and Wi-Fi.

More specifically, we introduce the exclusive-use
concept as the scenario in which one device exclusively
provides functionality to a singular or small group of
trusted devices. Exclusive-use devices establish a unique,
trusted association with their peer, allowing them to
recognize and securely communicate with each other while
preventing unauthorized access. Because trusted associations
remain even when devices change addresses, we have
discovered a single-bit side-channel leak during encryption,
integrity verification, authentication, and auto-connection
communication stages. Observing the differences in traffic
patterns at these stages between exclusive-use devices,
regardless of protocol or randomization countermeasures,
deanonymizes the device and enables user tracking—an
attack we introduce as IDBLEED.

For example, consider the scenario where an
attacker intends to deanonymize and track Alice’s
smartphone, despite it using modern address randomization
countermeasures. Alice leaves home and takes her
smartphone but leaves her previously paired smartspeaker.
Since her smartspeaker is exclusive-use, it only recognizes
connection requests from Alice’s smartphone and rejects
all requests from untrusted devices. The attacker deploys
multiple relay devices at different locations that forward
packets between the smartphones and smartspeaker. If a
distant smartphone can successfully communicate with the
smartspeaker through the relay, the attacker knows that the

DRAFT

BLE Device Smartphone

(1) Broadcast Advertisement (e.g., UUID)

(2
)

D
ev

ic
e

S
el

ec
ti

o
n

(3) Connection

(5) Communication

(4) Authentication

Scan Request

Scan Response

Wi-Fi AP

(1) Broadcast Advertisement (e.g.,SSID)

(3) Authentication

(5) Communication

(4) Association

Probe Request

Probe Response

Figure 1. Typical BLE and Wi-Fi workflows.

smartphone must be Alice’s phone and its location—the
two devices would fail to communicate otherwise.

While IDBLEED attacks are applicable to any exclusive-
use communication protocol, we evaluated three ubiquitous
wireless communication technologies, BLE and Wi-Fi, used
by numerous IoT devices with exclusive-use characteristics
for the existence of vulnerabilities to privacy and specifically
tracking attacks. For example, we identified BLE devices
that use Connection Signature Resolving Key (CSRK) to
verify data integrity are vulnerable. While Long Term
Key (LTK) protects data confidentiality, it also exposes a
single-bit side-channel due to difference in communication
patterns between trusted and untrusted devices.

Devices must use a trust mechanism to provide their
functionality, which inherently creates exclusive-use and
allows attackers to break the anonymity of devices. A suffi-
cient countermeasure requires protocol designers to further
consider the classical dilemma of balancing security and pri-
vacy with functionality. We therefore propose a generalized
mitigation that provides a framework for an Anonymization
Layer (AL) that enables devices to communicate similarly
with both trusted and untrusted devices, cloaking exclusive-
use characteristics. This layer removes the need for snif-
fable source destination information by providing implicit
addressing, as well as packet encryption to prevent side-
channels at all phases of communication after pairing. We
evaluate and quantify the mitigation overhead using an
exemplar protocol simulation.

Contributions. Our contributions in this paper are threefold:
• Novel Vulnerability (§3). We are the first to demonstrate

the vulnerability in a ubiquitous wireless communication
scenario we call exclusive-use, in which traffic pattern
differences at certain stages reveal their trusted
relationship. We focus on IoT devices and show that this
fundamental and overlooked flaw can be exploited by
attackers through either passive observation of wireless
traffic or actively relaying (or replaying) packets.
• Concrete Attacks (§4). We confirm through protocol

and real-world packet analysis that widely used wireless
technologies, BLE and Wi-Fi, are vulnerable to tracking
attacks by exploiting exclusive-use characteristics to
deanonymize devices, which we introduce as IDBLEED.
Further, these attacks are feasible at low-cost as they

exploit protocol traffic pattern vulnerabilities and do not
require advanced device compromise or malware.
• Mitigation Framework (§5). We propose a generalized

mitigation framework that introduces an Anonymization
Layer that supports anonymous communication between
devices over broadcast channels using ephemeral iden-
tifiers, removes the need for destination addresses, and
addresses the single-bit side-channel leak through pseudo-
communication with untrusted devices. We implement a
simulation and evaluate its performance overhead.

2. Background

2.1. Wireless Communication Protocols

Wireless technologies are crucial to IoT as they allow
devices to freely move in space without the burden of a
physical wire by communicating and exchanging data over
the air. While many types of wireless protocol exist, we
particularly focus on Bluetooth Low Energy (BLE) [1] and
Wi-Fi [8] in this paper due to their ubiquitous presence,
even beyond IoT. We present background below (more
details on their workflows can be found in Appendix §A).

Bluetooth Low Energy. BLE is used by devices for bidirec-
tional wireless links, such as wireless speakers, car infotain-
ment systems, smart home devices, and smartwatches (Fig-
ure 1). Due to its similar transmission range and relatively
low power requirements compared to classic Bluetooth,
BLE is also very common for IoT devices. BLE devices take
on either a central or peripheral role per connection, which
determines protocol responsibilities during communication.

Wi-Fi. Wireless Fidelity (Wi-Fi) is a popular family of
protocols based on IEEE 802.11 standards that allows
devices to wirelessly connect to networks. Wi-Fi Access
Points (AP) act as servers that allow connections from
clients, such as computers, smartphones, or smartdevices,
using a variety of authentication mechanisms to access the
network, illustrated in Figure 1. Other Wi-Fi protocols,
such as Wi-Fi Direct, are similar to classic Wi-Fi but turn
traditionally client devices into APs. A common use case
is smartphones creating ad-hoc networks to exchange data
rather than use cellular service.

2.2. Identity and Address Randomization

Networks rely on unique device identities to route uni-
cast data to its intended destination. The most common
type of network device identifier is a Media Access Control
(MAC) address. Much like a recipient’s name on a mail en-
velope, MAC addresses are included in a transmitted packet.

Unfortunately, MAC addresses are inherently vulnerable
to sniffing when packets are sent over the air using a wireless
technology. This potentially allows attackers to identify
and track devices, raising privacy concerns for users. For
example, an attacker can sniff packets exchanged between

2

DRAFT

Address
Type Static Rotation

Cycles
Vulnerable

To Tracking Example Devices

PA ✓ ∞ ✓ Most IoT devices (e.g.,Smart locks)
SRA ✗ Device-Specifc ✗ Office supplies (e.g., Keyboards)
RRPA ✗ 1 - 15 mins ✗ Smartphones (e.g., Android and iOS)
NRPA ✗ 1 - 15 mins ✗ Bluetooth Beacons

TABLE 1. SUMMARY OF FOUR TYPES OF BLE ADDRESSES

a paired smartwatch and smartphone that may use unique
MAC addresses and determine when a victim has arrived
or departed a particular location.

As a countermeasure, some devices now use address
randomization to support enhanced privacy and defend
against tracking while still allowing devices to be
addressable. Typically this involves a protocol that
periodically generates new, random identifiers, while still
allowing communication with their trusted devices. We now
review address randomization techniques used by BLE and
Wi-Fi. Which technique is used by a real-world device is de-
termined primarily by user settings or developers providing
backwards compatibility, or limited by technology.

BLE Address Randomization. BLE uses four different
types of addresses, three of which are randomly generated
to defend against tracking attacks, as shown in Table 1.
• Public Address (PA): a globally static address assigned

by a manufacturer to serve as a unique device identity.
The PA is vulnerable to MAC address tracking attacks
since it never changes.
• Static Random Address (SRA): a random address

generated by a device upon reboot or reset. If that never
or very rarely occurs, the SRA is vulnerable to tracking.
• Resolvable Random Private Address (RRPA): a random

address periodically generated by a device that is
resolvable by paired devices using a previously exchanged
Identity Resolving Key (IRK) in a simple challenge-
response protocol.
• Non-Resolvable Private Address (NRPA): a random

address periodically generated but, depending on the
implementation, is never intended to be resolvable.

Wi-Fi Address Randomization. Wi-Fi MAC address
randomization is widely used in recent versions of
Android [9] and iOS operating systems [10]. Android uses
one of two methods: the first generates a random MAC
address for each network based on its AP beacon attributes
that does not change over time. This safeguards against
tracking static MAC addresses across different networks.
The second generates a random MAC address for a network
after 24 hours, but only if the device has disconnected,
which provides a defense against an attacker sniffing
traffic. iOS 14 and later also use randomly generated MAC
addresses for each Wi-Fi network in a similar fashion.
Additionally, Wi-Fi probe beacons for discovering nearby
APs use a randomized address to prevent tracking from
sniffing a device that is discovering APs.

To ensure randomly generated addresses are still recog-
nized by APs, both Android and iOS may use other Wi-Fi
authentication protocols such as Extensible Authentication

Protocol (EAP). In EAP, the device sends a request to join
the network, the AP sends a challenge, and the device
resolves this challenge to prove its identity.

2.3. Protocol Features

Network protocols exist to provide a service and commu-
nication between devices, enhanced by features established
at various stages. These include confidentiality, integrity,
authenticity, and auto-connection, summarized below as a
basis for our attacks.

Confidentiality. Encryption is used by various wireless
protocols to provide data confidentiality. When two devices
establish communication, they typically negotiate one or
more secret keys to verify each other or encrypt data.
For example, BLE devices may negotiate an LTK during
the pairing process and later use it to derive a session
key for data encryption. Only devices with the same LTK
can derive the same session key and access the encrypted
traffic, enforcing the trusted relationship.

Integrity. Data signature or message authentication code
(MAC) verification using shared secret cryptographic
keys ensure data integrity—received data is as intended
by the originator. For example, BLE supports verifying
unencrypted data using a CSRK. The key is sent from one
device to the other during the pairing process and used to
produce a MAC that is appended to the message and sent
as a packet payload. Each device in a BLE ad-hoc network
has a unique CSRK with every other device, ensuring
exclusive-use and protecting messages from being altered
by unauthorized parties.

Authenticity. Authentication is a process to verify the iden-
tity of devices and allow access to a network or resource.
It typically involves a challenge-response protocol in which
two devices use a previously shared and secret cryptographic
key. One sends a challenge message with a MAC generated
using the shared key. The other device uses the shared key
to solve the challenge, responding with the message. The
first device verifies the code and authenticates the other if
it is valid. Authentication is often used in conjunction with
encryption, but each serves different purposes.

Auto-Connection. Automatically connecting to trusted
networks or devices enhances user convenience and
experience. Smartphones often auto-connect to familiar
Wi-Fi networks, like a home router, when within range,
detected via probing beacons. Likewise, an IoT companion
app on a smartphone can automatically link with its paired
BLE device when nearby. This seamless connectivity, often
occurring in the background or when the phone is inactive,
spares users from manually selecting networks or devices
and waiting to connect.

3

DRAFT

3. IDBleed Tracking Attacks

3.1. Deanonymization via Exclusive-use

We define exclusive-use as two or more trusted devices
that are observably associated due to their communication
patterns. We observe an exclusive-use device will commu-
nicate differently with an associated, trusted peer than with
any other. This common protocol design protects against
security threats by only allowing devices with an established
trust relationship, typically owned by the same user or
associated group, to access specific resources and services.

However, we observe the communication patterns of this
design also inherently deanonymizes a device and enables
an attacker to track victims. While numerous works exist on
tracking attacks [2], [3], [5], [6], [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26],
[27], [28], [29], we are confident to be the first exploring
and bringing awareness to this historically overlooked and
nuanced characteristic fundamental to exclusive-use devices.
We discuss key differences with related works in §7. We
further realize numerous types of protocols exhibit exclusive-
use characteristics and therefore, our concept is not limited
to only IoT but is ubiquitous in communication.

Effectively, a device’s exclusive-use characteristics are
observed via a single-bit side-channel leaked during various
communication stages. One of two possible outcomes
during communication potentially deanonymizes a device:
a successful path means a trusted relationship exists while
a failure path means it does not. We specifically observe
this leak during stages handling confidentiality, integrity,
authenticity, and auto-connection.

Combining the exclusive-use side-channel observation
with relay and replay techniques produces a new,
modern tracking attack we introduce as IDBLEED.
Attackers deanonymize and track victims despite modern
countermeasures such as MAC address randomization.

3.2. Threat Model

Goal & Motivations. The attacker’s goal is to track the
location of a specific person or member of an associated
group. Technically, the attacker deanonymizes their victim’s
smartphone assumed to be on their person, and thus learns of
their presence at a specific location at a point in time. Their
motivations may range from tracking locations or pattern-
of-life analysis of family members, friends, political figures,
or others in power. IDBLEED enables covertly discovering
a victim’s presence at specific locations digitally, without
physically following them and risk raising suspicion.
Examples locations include a home, office, daycare, coffee
shop, airport, state, or country. An attacker can range in
technical skill, from a lone hobbyist with intermediate
coding skills and knowledge in wireless sniffing to an
expert group of nation state actors. IDBLEED is executed
using one of two methods: Passive (M1) or Active (M2).

Assumptions & Requirements. The two prerequisite as-
sumptions and requirements for IDBLEED attacks are:

1) The victim’s devices are exclusive-use and formed a
trusted relationship. This implies a unique association
between the user and the devices have distinct success
and failure communication patterns.

2) The attacker can sniff and potentially relay and
retransmit communication traffic between devices.

3.3. Attack Method Workflows

We now present the generalized Passive and Active
IDBLEED method workflows using honest users Alice, Bob,
Charlie, and attacker Eve. Each represent a device capable
of exchanging information using a sniffable communication
channel, for example, REQ(A → B) and RSP(B → A).
Further, Alice and Bob are exclusive-use and trusted, thus
associated. Charlie is simply any, and an infinite number
of, non-associated devices. Eve sniffs, forwards, and
re-transmits their communication traffic. These workflows
provide a basis for our real-world analysis in §4.

(M1) Passive Deanonymization. Bob is exclusive-use and
trusts Alice, and therefore only responds to their requests
but ignores Charlie’s. Meanwhile, Eve is able to observe
the communication between all three users. Shown in
Figure 2, at t1, Alice uses identity IDA1 to send request
REQ(A1 → B), which Bob responds with RSP(B → A1).
Charlie also sends a request REQ(C1→ B) but is ignored.
At t2, both Alice and Charlie change their identities to IDA2

and IDC2, respectively. Once again, Alice and Charlie send
requests to Bob. Eve observes the requests and responses
between Alice and Bob, as well as Bob not responding to
Charlie’s requests. As such, these different responses leak
a single-bit side-channel that leads Eve to conclude IDA1

and IDA2 belong to Alice. At this moment, Eve breaks the
anonymity offered by identity randomization, leaving Alice
vulnerable to tracking.

While M1 is effective when traffic from two devices
can be sniffed, it is no longer suitable once they move
outside their communication protocol’s transmission range.
For example, one may carry their smartphone to a coffee
shop while their BLE-paired smartspeaker remains at home.
Further, the passive attack relies on one device maintaining
a static identity, unless communication is observed between
the points of asynchronous identity randomization between
the two communicating devices, as explored in [7]. How-
ever, these limitations are resolved in the more powerful
active IDBLEED attack.

(M2) Active Deanonymization. The active IDBLEED
attack utilizes a relay network setup by Eve at various
locations where Alice may be. As shown in Figure 3,
consider when Eve knows that Alice exclusively
communicates with Bob. At time t3, Alice is away from
Bob. At one relay location, an anonymized device initiates a
request REQ(X → Y), Eve captures and relays the packet to
Bob. If Bob responds with RSP(B → X), Eve now knows

4

DRAFT

Bob CharlieAlice

REQ (A1 → B)

IDt1= A1 ID = B IDt1= C1

REQ (C1 → B)
RSP (B → A1)

REQ (A2 → B)

IDt2= A2 IDt2= C2

REQ (C2 → B)
RSP (B → A2)

Eve

t1

t2

Figure 2. Passive Deanonymization

BobAlice Eve

t3

Location A Location B

IDt3= A3

REQ (X → Y)

ID = B

REQ (X → B)

RSP (B → X)

Charlie

RSP (B → X)

X

IDt3= A3

ti ID = X

REQ (X → Y)
REQ (X → B)

Figure 3. Active Deanonymization

that X is simply a randomized identifier for Alice (X = A3)
and that she is nearby that particular relay’s location. Later,
at time ti, Eve once again captures and relays a packet
REQ(Xi → Yi) to Bob. However, Bob does not respond
with the hypothesized RSP(Bi → Xi). Therefore Xi != Ai

and Eve determines Alice is not near that relay location.
The relay network allows Eve to maintain

communication between devices at any distance,
overcoming the limitations of M1. The static identity
requirement is also lifted because an observation of
successful communication patterns when relaying packets
breaks the anonymity provided by identity randomization.
The relay technique also supports packet replay if the
communication protocol is vulnerable, allowing an attacker
to replay a previously transmitted packet in various
locations to observe the response and identify the victim
without the need to capture and relay newer or synchronized
packets. This occurs when the victim device does not check
packet freshness using a sequence number or nonce.

3.4. Feasibility, Scope, and Impact

The IDBLEED hardware setup is relatively low-cost,
making it feasible and practical even for a hobbyist and
trivial for motivated nation-state actors. For passive attacks,
an attacker simply sets up a wireless sniffer such as out-of-
the-box BLE or Wi-Fi dongle, or a more advanced software
defined radio setup. These can be used with Raspberry
Pi’s or smartphones with cellular data plans or nearby
Wi-Fi, a common utility in public places such as coffee
shops. An Internet connection allows transmitting data via
an open-source publisher-subscriber message queue service

and HTTP web application that an attacker can receive and
analyze data. An attacker places these sniffing devices at
any location their victim may be located. For active attacks,
an attacker extends the passive setup to include a relay
network of sniffing nodes at targeted locations that can also
receive and re-transmit captured data packets. The effective
range is limited by the wireless technology, however, the
attacks remain practical given transmission rates and radio
frequency waves’ ability to travel through structures.

Wireless interfaces or dongles are available at
technology retailers between $10-$50 USD, including those
for BLE, Wi-Fi, and other IoT protocols such as Z-Wave,
Zigbee, and LoRaWAN. Raspberry Pi’s range between
$50-$100 USD, with minimum RAM models being plenty
sufficient. For a motivated nation-state actor, the setup cost
becomes trivially low even when electing for advanced elec-
tronics, such as long-range antennas and signal amplifiers.

Example Attack Scenario & Workflow. The following is
a generalized, example threat scenario to convey the real-
world feasibility and practicality of the active IDBLEED
attack. Consider Alice, a politician who Eve has targeted to
track. Eve walks around Alice’s house when she is not home
and sniffs packets from a previously paired smartspeaker
broadcasting its presence via BLE beacons, since it is no
longer within proximity and connected to Alice’s smart-
phone. Note, Eve does not need to observe the initial pairing
between these exclusive-use devices. Eve then sets up and
hides a smartphone relay node (R1) outside of Alice’s home
and within BLE range (approx. 30 feet) of the speaker. Ad-
ditionally, Eve hosts a subscriber-publisher message queue
web application that allows relay nodes to publish sniffed
packets that are in turn multicasted to any other subscribing
nodes. Eve deploys three additional smartphone relay nodes
(R2, R3, R4) at a coffee shop, the lobby at Alice’s work,
and at her child’s daycare. R1 captures the smartspeaker
broadcast packets and sends them to the message queue
application, which R2, R3, and R4 receive and in turn
broadcast milliseconds later. Alice’s smartphone, on her
person and currently at the coffee shop (R2) near many other
smartphones, replies to the broadcast, which R2 captures
and relays back to R1. R1 transmits the relayed smartphone
response and determines the smartspeaker has a positive
response. There are also numerous smartphones at Alice′s
work and daycare, however, since none of these devices re-
sponded positively to the originally relayed packet from the
smartspeaker, Alice can not be at these locations. Thus, Eve
has determined Alice’s location to be the coffee shop. This
knowledge may then be used to launch more sophisticated
cyber or other malicious attacks where knowing the victim’s
location and targeting the correct device is crucial.

Attack Scope. To focus the scope of our IDBLEED at-
tacks and research, we exclude tracking methods that di-
rectly obtain cryptographic keys through a pairing pro-
cess explored by prior works BIAS [30], KNOB [31], and
Downgrade [11]. Additionally, we exclude methods involv-
ing malware and instead focus purely on communication

5

DRAFT

Key Length Lifetime Protection

Connection Signature Resolving Key (CSRK) 128 bit ∞ Verification
Long Term Key (LTK) 128 bit Reset after pairing Encryption
Session Key (SK) 128 bit Every session Encryption
Identity Resolving Key (IRK) 128 bit ∞ Authentication

TABLE 2. SUMMARY OF KEYS NEGOTIATED DURING PAIRING

protocol attacks. This helps underscore the flaws in the
communication stages of the protocols themselves rather
than rely on advanced malware capabilities that may track
devices using GPS, logging, or other means.

Finally, we focus on scenarios where multiple devices
are present at the location of the victim. This highlights
the significance of exclusive-use communication patterns
in the real world, since it would be significantly easier to
identify a lone device at a specific location without using
IDBLEED attacks. Further, the number of devices in an
area does not impact the attack model or practicality since
an attacker is observing the difference in communication
patterns between trusted exclusive-use devices.

4. Concrete IDBLEED Attacks

4.1. IDBLEED in BLE Confidentiality

Our first analysis focuses on BLE encryption designed
to provide data confidentiality. There are six types of keys
exchanged during the BLE pairing process that create an
association (Table 2). Four of these keys are used to encrypt
data: Session Token Key (STK), Token Key (TK), Long
Term Key (LTK), and Session Key (SK). However, previous
works show STK and TK are insecure and vulnerable to key
brute force attacks [32]. We therefore exclude those from
our analysis and focus on LTK and SK, two keys used in
BLE Secure Connections from SMP.

Protocol Workflow. BLE Secure Connections encrypts
traffic bi-directionally using a derived SK that is unique
to each connection. Two devices generate a valid SK
by performing a process similar to Diffie-Helman, with
real-world traces shown in Table 3, illustrated in Figure 4
, and further detailed in §C.

Attack Workflow. We accurately model Table 3 in Figure 5
to demonstrate IDBLEED during BLE encryption initiation
for both passive and active methods.
• Passive: If Eve knows a peripheral (smartspeaker) is

exclusive-use and observes it responding to a central
(smartphone) with a LL_START_ENC_RSP message,
rather than a LL_REJECT_IND message, they can
deanonymize the central.
• Active: The active attack supports both relay and replay,

modeled in Figure 5. At time t1, Eve captures peripheral
data packets, forwards them to other relay locations, and
rebroadcasts near an anonymized smartphone using MAC
address randomization. However, Eve deanonymizes the
smartphone by observing the LL_START_ENC_RSP
message. Replay is possible with BLE Secure Connec-

Peripheral w/o LTK

LL_REJECT_IND

Peripheral w/ LTK

SKD = SKDc || SKDp

SK = ENC(LTK || SKD)

LL_START_ENC_RSP(ENC(SK,m))

ADV_IND

SCAN_REQ

SCAN_RSP

CONNECT_REQ

LL_ENC_REQ(SKDc,IVc)

LL_ENC_RSP(SKDp,IVp)

LL_START_ENC_REQ(m)

Central Peripheral

Figure 4. BLE Encryption Workflow

ID = PID = C1

ID = C2

SCAN_REQ

t1

t2

Location A Location B

ID = P

Trusted Smartphone PeripheralEve

ADV_IND

CONNECT_REQ

SCAN_RSP

SCAN_REQ

ADV_IND

CONNECT_REQ

SCAN_RSP

Connection

LL_ENC_REQ

LL_START_ENC_RSP

LL_START_ENC_REQ

LL_ENC_RSP

LL_ENC_REQ

LL_START_ENC_RSP

LL_START_ENC_REQ

LL_ENC_RSP

Relaying

Requiring Encryption

Connection

ID = C2

LL_ENC_REQ

LL_START_ENC_REQ

LL_ENC_RSP

Requiring Encryption

Connection

LL_START_ENC_RSP

Replaying

Unknown Smartphone

ID = C3

Requiring Encryption

Connection

ID = C3

Requiring Encryption

Connection

LL_REJECT_IND

Replaying

ID = C1

Figure 5. IDBLEED attacking BLE data encryption

tions, as there is no sequence number and the first few
packets used to initiate encryption are not encrypted. Note,
to increase the covert power of the attack, Eve does not
need to relay back the final LL_START_ENC_RSP, there-
fore reducing chances for Alice to be alarmed by a visual
change in the user interface or connection notification.

Evaluation. This vulnerability exists due to the trusted
association verification that uses an existing LTK and

6

DRAFT

the communicating devices’ MAC address. Therefore, all
BLE devices that use LTK for security are vulnerable
to this attack since it is a flaw in the BLE specification
itself. We make two primary observations during our
investigations: First, all of the evaluated peripheral devices
use a static address—either a PA, which never changes, or
an SRA, which only changes after a manual reset by the
user. Second, we observe that different centrals may have
different reactions when they receive a LL_REJECT_IND
message from a peripheral—some devices terminate the
connection after sending this message, while others simply
continue waiting for further messages from the central.

Upon investigation we find both actions are acceptable
based on the Bluetooth Core Specification 5.3, page 2844:
“The Link Layer of the Peripheral shall finalize the sending
of the current Data Physical Channel PDU and may finalize
the sending of additional Data Physical Channel PDUs
queued in the Controller. After these Data Physical Channel
PDUs are acknowledged, until this procedure is complete
or specifies otherwise, the Link Layer of the Peripheral
shall only send Empty PDUs, LL_TERMINATE_IND
PDUs, and PDUs required by this procedure.”

That is, the peripheral decides to continue the session
by either sending empty PDUs to wait for responses
from the central or terminate the session by sending a
LL_TERMINATE_IND message. Finally, we observe that
devices with functionality vital to other systems, such as
keyboards, are more likely to terminate the connection.

4.2. IDBLEED via BLE Integrity

Although encryption offers stronger protection for data
confidentiality, not all BLE devices support it. The BLE
Connection Data Signing Procedure is an alternative to still
provide both integrity and authenticity verification. A digital
signature consisting of a counter and MAC is added to
the end of the data payload. This allows one device to
authenticate data sent between trusted devices signed with
the unique CSRK originally shared during their pairing and
association.

Protocol Workflow. The BLE Connection Data Signing
Procedure includes a generation and verification stage, sum-
marized as:

1) One of the two communicating devices, assumed here
to be the Central denoated as c, generates a data
signature for a given message (m) by concatenating
it with a 32-bit self-increasing counter (SignCounter)
to produce a new message (M). It then determines the
length (L) of M .

2) The Central inputs the CSRK shared with its target
Peripheral, the new message M , and length L into
a message authentication code generation algorithm
(defined in NIST Special Publication 800-3B [33]) to

No. Time Source ID Destination ID PDU Type

t0 = 0 min, C0 = ad:d8:3e:a9:ba:52 (Passive attacker)

1 00:00:36 58:d7:8e:c7:8e:31 Broadcast ADV_IND
2 00:00:40 ad:d8:3e:a9:ba:52 58:d7:8e:c7:8e:31 SCAN_REQ
3 00:00:44 58:d7:8e:c7:8e:31 Broadcast SCAN_RSP
4 00:00:48 ad:d8:3e:a9:ba:52 58:d7:8e:c7:8e:31 CONNECT_REQ
5 00:01:00 ad:d8:3e:a9:ba:52 58:d7:8e:c7:8e:31 LL_ENC_REQ
6 00:01:04 58:d7:8e:c7:8e:31 ad:d8:3e:a9:ba:52 LL_ENC_RSP
7 00:01:12 ad:d8:3e:a9:ba:52 58:d7:8e:c7:8e:31 LL_START_ENC_REQ
8 00:01:16 58:d7:8e:c7:8e:31 ad:d8:3e:a9:ba:52 LL_START_ENC_RSP

t1 = 15 min, C1= be:a4:4e:dd:af:ee (Active Attacker Using Relaying)

101 00:15:36 58:d7:8e:c7:8e:31 Broadcast ADV_IND
102 00:15:40 be:a4:4e:dd:af:ee 58:d7:8e:c7:8e:31 SCAN_REQ
103 00:15:44 58:d7:8e:c7:8e:31 Broadcast SCAN_RSP
104 00:15:48 be:a4:4e:dd:af:ee 58:d7:8e:c7:8e:31 CONNECT_REQ
105 00:16:00 be:a4:4e:dd:af:ee 58:d7:8e:c7:8e:31 LL_ENC_REQ
106 00:16:04 58:d7:8e:c7:8e:31 be:a4:4e:dd:af:ee LL_ENC_RSP
107 00:16:12 be:a4:4e:dd:af:ee 58:d7:8e:c7:8e:31 LL_START_ENC_REQ
108 00:16:16 58:d7:8e:c7:8e:31 be:a4:4e:dd:af:ee LL_START_ENC_RSP

t1 = 30 min (Active Attacker Using Replaying)

C2= ae:f4:3f:d9:aa:12
201 00:30:36 58:d7:8e:c7:8e:31 Broadcast ADV_IND
202 00:30:40 ae:f4:3f:d9:aa:12 58:d7:8e:c7:8e:31 SCAN_REQ
203 00:30:44 58:d7:8e:c7:8e:31 Broadcast SCAN_RSP
204 00:30:48 ae:f4:3f:d9:aa:12 58:d7:8e:c7:8e:31 CONNECT_REQ
205 00:31:00 ae:f4:3f:d9:aa:12 58:d7:8e:c7:8e:31 LL_ENC_REQ
206 00:31:04 58:d7:8e:c7:8e:31 ae:f4:3f:d9:aa:12 LL_ENC_RSP
207 00:31:12 ae:f4:3f:d9:aa:12 58:d7:8e:c7:8e:31 LL_START_ENC_REQ
208 00:31:16 58:d7:8e:c7:8e:31 ae:f4:3f:d9:aa:12 LL_START_ENC_RSP

C3= cf:ad:34:fe:ab:ee
211 00:30:36 58:d7:8e:c7:8e:31 Broadcast ADV_IND
212 00:30:40 cf:ad:34:fe:ab:ee 58:d7:8e:c7:8e:31 SCAN_REQ
213 00:30:44 58:d7:8e:c7:8e:31 Broadcast SCAN_RSP
214 00:30:48 cf:ad:34:fe:ab:ee 58:d7:8e:c7:8e:31 CONNECT_REQ
215 00:31:00 cf:ad:34:fe:ab:ee 58:d7:8e:c7:8e:31 LL_ENC_REQ
216 00:31:04 58:d7:8e:c7:8e:31 cf:ad:34:fe:ab:ee LL_ENC_RSP
217 00:31:12 cf:ad:34:fe:ab:ee 58:d7:8e:c7:8e:31 LL_START_ENC_REQ
218 00:31:16 58:d7:8e:c7:8e:31 cf:ad:34:fe:ab:ee LL_REJECT_IND

TABLE 3. AN EXCERPT OF REAL WORLD BLE PACKET TRACES. NOTE
THAT LL_START_ENC_RSP IS ENCRYPTED.

produce a 64-bit data signature (macc):

MAC64 = CMAC(CSRK128 || M || L64)

= CMAC(CSRK128 ||
(m || SignConter32) || L64)

3) The Peripheral receives m and macc and performs sig-
nature verification to determine if m is from a trusted
Central by repeating steps 1-2 with its own locally
stored CSRK to generate its own macp and compare
with macc.

Attack Workflow. We present passive and active IDBLEED
attacks on BLE data integrity using Figure 6, with details
as follows:

Passive: Eve is able to observe the protocol sequence
at any time and deanonymize the devices simply based
on observing the responses due to the exclusive-use
characteristic of the CSRK that is shared between and
unique to the devices’ pairing. For example, at time
t1, the smartphone uses a random BLE MAC address
C1 (e.g., PRA or NPRA) to initiate a request macc =
CMAC(CSRK128 ||M || L64) to the smartspeaker, which
it in turn responds with ACK. When the smartphone later
changes its address to C2 and initiates another request
to the smartspeaker, this communication is again observ-

7

DRAFT

ID = PID = C1

ID = C2

t

Location A Location B

ID = P

Trusted Smartphone PeripheralEve

Unknown Smartphone

ACK

(P → C1)

M || CMAC(csrk || M || l)

(C1 → P)
M || CMAC(csrk || M || l)

(C1 → P)

ACK

(P → C1)

ID = C1

M || CMAC(csrk || M || l)

(C2 → B)
M || CMAC(csrk || M || l)

(C2 → P)

Figure 6. Side channel exploiting BLE data verification

able and Eve deanonymizes the smartphone (C1 || C2),
regardless of the BLE address type being used.
Active: With a relay node near the smartspeaker, Eve
is able to relay the macp. Devices near the target lo-
cation nodes are unable to detect the relay and Eve is
able to observe the presence of the ACK which serves
as the single-bit information leak to deanonymize the
smartphone. Note that due to the SignConter used in
the message authentication code generation in steps 1-2,
replay is not possible in this case study.

Evaluation. The nature of CSRK-based data integrity veri-
fication leaves all BLE peripherals, and by extension their
paired centrals, that use it vulnerable to IDBLEED attacks.
We validated this observation on various Android devices
and found all are vulnerable, as highlighted in Table 4.

BLE peripherals are often firmware-defined, bare-metal
IoT devices, such as an Apple AirTag. However, they
can also be software-defined, which further widens the
attack landscape and applicability. One implementation of
software-defined peripherals is App-Defined Bluetooth Pe-
ripherals (AdBP) [34], which is provided by operating sys-
tem APIs and used by mobile apps. A key feature of AdBP
is the service protection provided by specifying permissions,
of which we have identified two which use CSRK and
signature verification that consequently leak the single-bit
enabling IDBLEED: PERMISSION_ WRITE_SIGNED and
PERMISSION_ WRITE_SIGNED_MITM. We note that iOS
does not currently support using CSRK for their AdBPs
which spares them from IDBLEED.

4.3. IDBLEED in Wi-Fi Authentication

Our next investigation looks closely at authentication
in Wi-Fi Direct. Also known as Wi-Fi P2P, Wi-Fi Direct
is a wireless networking protocol that allows devices to
directly connect and communicate with each other without
a separate AP. Devices discover each other, form a directly

Smartphone Model Chip OS BLE Version

Samsung Galaxy S10 KM8D03042 Android 11.0 5.0
Google Pixel 4 SM8150 Android 12.0 5.0
Google Pixel 2 MSM8998 Android 9.0 5.0
Google Pixel 4 SM8150 Android 10.0 5.0
HUAWEI P10 BCM43455XKUBG Android 9.0 4.2

TABLE 4. SUMMARY OF TESTED ANDROID DEVICES

linked network, and assign roles to orchestrate the temporary
or persistent associations and communicate with each other
using EAP for authentication.

Protocol Workflow. The Wi-Fi Direct connection and au-
thentication protocol follows similarly to standard Wi-Fi
with Probe and Association requests and responses, but adds
an exchange of Invitation messages. One device initiates a
connection and, once established, the devices form a group
with one designated as the group owner (GO) that acts as
an Soft-AP and the other as a client. The GO may specify a
long-term configuration for the group, including a password
for connections, while temporary groups are one-time use
and do not have long-term configuration. Additional details
provided in §D.

Attack Workflow. We provide Wi-Fi Direct packet traces
with Table 5 and expand on IDBLEED attacks below.
• Passive: Eve can passively observe traffic at a location

known to have a Wi-Fi Direct device owned by Alice,
such as a home or office printer. The auto-connection may
occur once a device comes in range, and if successful, Eve
deanonymizes Alice.
• Active: The active IDBLEED attack involves capturing

and relaying the probe and authentication packets to other
locations. Upon observation of successful authentication,
Eve deanonymizes Alice.

Evaluation. We observe that Wi-Fi Direct is vulnerable
to both passive and active IDBLEED attacks due to the
inherent pass or fail traffic patterns during authentication. In
terms of practicality, Android devices have supported Wi-Fi
Direct since version 4.0 and have provided various APIs
for developers to customize Wi-Fi Direct groups. While
the tested smartphones listed in Table 4 change their MAC
address when joining a Wi-Fi Direct group, we find all of
them are vulnerable to IDBLEED attacks. Note that as of
iOS 7.0, iPhones do not use Wi-Fi Direct but rather their
own direct link protocol known as MultipeerConnectivity,
however similar connectivity resumption exists that reveal
associations between devices [35].

4.4. IDBLEED in Wi-Fi Auto-Connection

Manually reconnecting to a Wi-Fi network can be a
frustrating and time-consuming process. As a convenience
feature, many devices send and receive probe automatically
connect when they discover an in-range, known Wi-Fi or
Wi-Fi Direct network. However, this feature can be exploited
by attackers who create masquerade as previously associated

8

DRAFT

No. Time Source ID Destination ID Type

t0 = 0 min, C0 = 0e:8d:ae:c7:1e:50 (Passive Attacker)

1 00:00:16 0e:8d:ae:c7:1e:50 ff:ff:ff:ff PROBE_REQ
2 00:00:40 12:df:a9:ef:fb:52 0e:8d:ae:c7:1e:50 PROBE_RSP
3 00:00:44 0e:8d:ae:c7:1e:50 12:df:a9:ef:fb:52 INVITATION_REQ
4 00:00:48 12:df:a9:ef:fb:52 0e:8d:ae:c7:1e:50 INVITATION_RSP
5 00:00:54 0e:8d:ae:c7:1e:50 12:df:a9:ef:fb:52 PROBE_REQ
6 00:00:58 12:df:a9:ef:fb:52 0e:8d:ae:c7:1e:50 PROBE_RSP
7 00:01:00 0e:8d:ae:c7:1e:50 12:df:a9:ef:fb:52 AUTH
8 00:01:04 12:df:a9:ef:fb:52 0e:8d:ae:c7:1e:50 AUTH
9 00:01:12 0e:8d:ae:c7:1e:50 12:df:a9:ef:fb:52 ASSOC_REQ
10 00:01:16 12:df:a9:ef:fb:52 0e:8d:ae:c7:1e:50 ASSOC_RSP

t1 = 15 min, C1 = 0f:9e:fe:c2:2e:23 (Active Attacker Using Relaying)

201 00:15:16 0f:9e:fe:c2:2e:23 ff:ff:ff:ff PROBE_REQ
202 00:15:40 12:df:a9:ef:fb:52 0f:9e:fe:c2:2e:23 PROBE_RSP
203 00:15:44 0f:9e:fe:c2:2e:23 12:df:a9:ef:fb:52 INVITATION_REQ
204 00:15:48 12:df:a9:ef:fb:52 0f:9e:fe:c2:2e:23 INVITATION_RSP
205 00:15:54 0f:9e:fe:c2:2e:23 12:df:a9:ef:fb:52 PROBE_REQ
206 00:15:58 12:df:a9:ef:fb:52 0f:9e:fe:c2:2e:23 PROBE_RSP
207 00:16:00 0f:9e:fe:c2:2e:23 12:df:a9:ef:fb:52 AUTH
208 00:16:04 12:df:a9:ef:fb:52 0f:9e:fe:c2:2e:23 AUTH

TABLE 5. REAL-WORLD WI-FI PACKET TRACES. COLORS REPRESENT
SCANNING, INVITATION, COMMUNICATION, AND RELAYABLE.

networks with the same SSID in order to trick devices into
initiating a connection request. While this is well known
as the EvilTwin attack [36], we provide a brief study and
evaluation with a renewed perspective that focuses only on
deanonymization without the goal for successful network
connections that allow eavesdropping or data injection.

Protocol Workflow. The auto-connect workflow follows the
standard Wi-Fi connection sequence as previously shown,
but actively sends or receives probe beacons for nearby
networks.

Attack Workflow. This attack is relatively simple to exe-
cute, as it does not require relaying packets between devices
and is a hybrid of the passive and active IDBLEED attacks.
Eve creates a Wi-Fi network using a name that is known to
be in previously used by Alice, easily observed by capturing
broadcast packets at a home or office. Upon observing
a connection request, Eve has deanonymized Alice, or a
member of a group she associates with.

Evaluation. The nuanced perspective we underscore is the
ability to clearly observe a pass or fail condition in the
authentication protocol. Since the device is set to auto-
connect in many cases, this process occurs in the background
without requiring Alice to accept and therefore is the essence
of which the EvilTwin attack is based. While this attack
can be easily carried out using a configured smartphone
hotspot, Eve can also deploy nodes running custom software
designed to stop the connection sequence once the single-bit
leak is observed at the authentication stage.

5. Mitigation Framework

Having introduced the threats of our IDBLEED attacks,
we now provide a generalized mitigation framework that
serves as a blueprint for implementations with specific
communication stacks. Specifically, we have developed and
evaluated a simulation to demonstrate technical feasibility

and benchmark performance impact of the framework’s key
features on an exemplar protocol baseline. To address core
vulnerabilities in exclusive-use communication, we propose
a new Anonymization Layer (AL) with the following goals.

G1: Removing Data Transmission Direction. An
anonymization layer must remove Eve’s ability to deter-
mine directionality of packets. To achieve this, even single-
destination (unicast) packets must be sent over a com-
munication protocol’s broadcast channel or address while
remaining addressable. Our solution generates, exchanges,
and transmits various keys during the pairing and com-
munication phases. These keys allow generating temporal
transmission source identifiers that Alice appends to data
destined for Bob. We propose and evaluate two solutions to
achieve this goal that trade performance for frequency of
anonymous identifier rotation: Cache or Hash.
• The Cache method has Alice and Bob use key information

to separately calculate N source identities for each other.
Upon receiving a packet, they linearly search pairing
records to confirm their relationship. If a match is found,
Bob knows the packet was bound for them specifically
from Alice because the matching key was derived from
their pre-shared secret keys unique to the pairing with
Alice which acts as an implicit destination address,
similar to the OKC used in 802.11 [37]. A temporal
or counter interval parameter (I) is added to safeguard
against replay attacks and long-term tracking techniques.
• The Hash method has Alice calculate a new resolvable

source address for every packet to Bob, who then attempts
to reproduce the same address using any of its paired
record keys, similar to BLE’s RRPA/IRK approach. [38]

In both cases, if a match is not found, the packet is simply
discarded which prevents using unnecessary resources to
process packets from unpaired devices. As an additional
benefit, these methods add an ephemeral address random-
ization to otherwise static addresses.

G2: Removing Observable Packet Context & Entropy.
The next goal focuses on removing observable packet con-
text or fields that indicate the packet type. We propose using
counter-based encryption that uses rotating encryption keys
using a pairing’s pre-shared keys. These keys rotate with the
determined interval to introduce additional entropy outside
of that provided by the counter based encryption and avoids
repeating patterns in common management or data packets,
like methods used in [39]. Additionally, data packets are
padded with a random number of bytes or to the full packet
size to remove the ability to infer context based on size. [40]

G3: Adding Untrusted Responses. Even with transmission
direction and packet context anonymized, the single-bit
side channel pattern still exists for protocols that exhibit no
or a different response with a failure case. We mitigate this
by randomly responding to untrusted entity requests. Bob
randomly responds to untrusted requests using a random
identifier and data bytes. The communication pattern
between trusted and untrusted devices is now uncertain to
Eve. Additionally, since the packet context is now unknown

9

DRAFT

from G2, Eve cannot be certain their replayed or relayed
packets are aligned with the current protocol steps and
state of the device.

G4: No Modifications (i.e., Transparent). A generalized
privacy preseving solution must not require modification to
existing protocols, otherwise risk adoption challenges with
compatibility. Our AL solution enhances communication
protocol stacks by augmenting a new layer, encapsulating
all layers above it to provide anonymity and privacy.

Formulas & Workflow. We now introduce the formulas,
workflows, and process for AL. When Alice and Bob pair,
they generate and exchange keys KA and KB of size s
using a cryptographic random number generator (CRNG).
They exchange keys and both create paired key PKAB by
XOR’ing KA and KB .

KA ← CRNG(s),KB ← CRNG(s) (1)

PKAB ← XOR(KA, KB) (2)

Alice then uses an HMAC key derivation function (HKDF)
to generate source key, SKA, using PKAB , and KA, a static
string, and output length L. Bob does the same, using KB .
Similarly, PKAB and a different static string is used to
create a shared paired encryption key PEKAB .

SKA ← HKDF(PKAB , KA, “ALsrc”, L) (3)

PEKAB ← HKDF(PKAB , NULL, “ALenc”, L) (4)

The Cache and Hash methods now differentiate from this
point. With the Cache method, Alice creates a set of N
transmission keys TKA ({TKA0 , TKA1 , ..., TKAN

}) using
SKA and a time or counter interval IAi as parameters to
a symmetric cryptographic function (SENC). The interval
values for I can vary. For instance, an interval can be
based on a time window if both devices have reasonably
accurate system time. Otherwise, an initial seed value and
counter mechanism may be used. Similarly, Bob creates
transmission key set TKB . Both Alice and Bob also repeat
this for the other’s set, each ending with TKA and TKB .
The same is done to create a set of interval-based rotating
encryption keys REKAB :

TKAi ← SENC(SKA, Ii) (5)

REKABi
← SENC(PEKAB , Ii) (6)

Alice encrypts a message M destined for Bob by combining
interval IAi

and REKAi
as input to a counter-based

symmetric encryption algorithm (CTR-SENC):

ME ← CTR-SENC (REKABi , Ii, M) (7)

Alice now assembles an anonymized packet by
concatenating TKAi with ME and transmitting it over
the transmission protocol’s broadcast channel. Bob receives
the packet and performs a lookup for TKAi . Upon
successful match, Bob determines they’re the packet’s

Bob CharlieAlice

BCAST(TKAi, ME1)

IDti = TKAi

BCAST(Ci, Mx)
BCAST(TKBi, ME2)

Eve

ti

BCAST(Bx, My)

KA ← CRNG(s)

Exchange KA, KB

PKAB ← XOR(KA, KB)

SKA ← HKDF(PKAB, KA, "ALsrc", L)

SKB ← HKDF(PKAB, KB, "ALsrc", L)

PEKAB ← HKDF(PKAB, NULL, "ALenc", L)

KB ← CRNG(s)

TKAi ← SENC(SKA, Ii)

TKBi ← SENC(SKB, Ii)

REKABi ← SENC(PEKAB, Ii)

ME1 ← CTR-SENC(REKABi, Ii, M1)

Lookup TKAi in SKA- Found

M1 ← CTR-SENC(REKABi, Ii, ME1)

ME2 ← CTR-SENC(REKABi, Ii, M2)

Lookup Ci - Not Found

Bx ← RAND(), My ← RAND()

IDti = TKbi IDti= Ci

11

2

3

4

5

6

7

Figure 7. Passive Deanonymization AL Mitigation

intended destination and it was generated by Alice, and
retrieves the REKAi

using the interval value to decrypt ME .
Returning to the Hash method, Alice generates random

bytes Rx of size l and combines them with SKAB as
arguments to an HMAC function to produce TKHx. The Rx

is concatenated with TKXx to create the source transmission
key TKx which is appended to encrypted data like the Cache
method. Bob receives the packet and takes Rx from TKx and
performs the same HMAC operation with each of its paired
keys, SKAB . With each attempt, Bob checks their created
TKHy against the remaining bytes of TKx to potentially
match TKHx.

Rx ← CRNG(l) (8)

TKx ← Rx || HMAC(Rx, SKAB) (9)

Security Analysis. With both methods, if there is no match,
Bob discards the data and determines with probability P
to reply with a random generated identifier and data. P
can be tuned based on the broadcast channel’s utilization,
since there is no destination address, it is challenging to
determine the intended recipient of anonymized packets. The
mitigation provided by AL of passive IDBLEED attacks is il-
lustrated in Figure 7 and follows the Cache workflow above.

The mitigation for active IDBLEED attacks is illustrated
in Figure 8 and omits the workflow already reviewed for
brevity. We examine a time ti when Eve captures a packet at
LocationA from anonymous Alice with identifier X and re-
lays it to Bob. When observing an encrypted response from
Bob, Eve may assume they are paired and thus X = Ai.
However, at the same time, Eve also captures a packet at
LocationC from anonymous Charlie with identifier Y and
relays it to Bob. Since Bob does not recognize identifier
Y , they reply with random bytes as pseudo-communication.
Given the exclusive-use characteristic, Eve must believe

10

DRAFT

BobAlice Eve

Location A Location B

IDti = X

BCAST(X, ME1)

Charlie

IDti= Ai

ti

IDti = Y

IDti = Bi

BCAST(Y, ME2)
BCAST(Y, ME2)

BCAST(By, Z)BCAST(By, Z)

IDti = Bi

BCAST(X, ME1)

BCAST(Bi, ME1)
BCAST(Bi, ME1)

IDti = Ai

Location C

Figure 8. Active Deanonymization Mitigated by AL

16 32 64 128 256 512 1024 2048
Packet size (bytes)

0.0

0.5

1.0

1.5

2.0

2.5

Ex
ec

ut
io

n
Ti

m
e

(m
illi

se
co

nd
s)

Mitigation - With Encryption
Baseline - Without Encryption

Figure 9. Encryption overhead on simulated protocol

Alice is at both locations, a logical contradiction, and there-
fore concludes the location of Alice can not be accurately
or confidently determined.

Evaluation. We implemented both Cache and Hash AL
methods and evaluated overhead impact on a simple exem-
plar protocol using Python 3.8. The simulation baseline is an
application protocol which performs work to create bytes,
incurs transmission or propagation delay, and processes the
data upon receipt that varies in time with data size. We
measured the overhead impact due to cryptographic and
lookup operations relative to baseline during operation over
varying sized packets and data sizes. We executed each ex-
periment ten times, removing the lowest and highest values,
and averaging the remaining eight data points gathered from
execution on a bare metal Intel Xeon CPU at 2.20 GHz with
32 GB of RAM running Ubuntu 22.04.3.

Figure 9 shows average baseline and data packet en-
cryption overhead for our simulated protocol sending and
receiving 10,000 packets between two paired devices with
data sizes incrementally doubling from 16 to 2048 bytes (B)
to account for a wide variety of protocol maximum transmis-
sion sizes. The per packet execution time ranges are 1.976
milliseconds (ms) and 0.2765ms with means 0.610ms and
0.423ms for baseline and mitigation overhead, respectively.
We observe the ratio of encryption and decryption overhead
to our simulation baseline decreases with linearly increasing
packet sizes. This indicates an initialization cost to encryp-
tion regardless of packet size and likely improved with

2 4 8 16 32 64 128 256 512 1024
Devices Paired

0

1

2

3

4

5

6

Ex
ec

ut
io

n
Ti

m
e

(m
illi

se
co

nd
s)

Send: Hash
Recv: Hash
Send: Cache
Recv: Cache

Figure 10. Pairing key lookup and resolution overhead

optimization in a real-world implementation. Typically IoT
devices will transmit smaller packet sizes closer to the evalu-
ated 32 and 64 B data size, which present a 0.321 mean ratio.
Protocols with larger packet sizes between 1024 and 2048
B are more typical of enterprise networking environments
see a decreased overhead per packet with 0.135 mean ratio.

Figure 10 shows the lookup and key resolution overhead
for both the send and receive functions of the two Cache
and Hash methods as paired devices doubles from from 2
to 1024. The execution time ranges are 0.192ms/5.611ms
and 0.401ms/1.334ms with means 0.256ms/1.657ms and
0.279ms/0.447ms for sending/receiving Hash and Cache,
respectively. We observe the overhead cost in a one-to-one
exclusive scenario to be within 0.007ms and 0.014ms
between the two methods for sending and receiving.
However, the 0.034 range ratio for sending/receiving Hash
transmissions indicates the lookup cost for this method
increases significantly as paired device numbers increases.

Our evaluation shows AL as a viable mitigation frame-
work to increase privacy and as an IDBLEED countermea-
sure. The destination anonymity (G1) introduces less than
0.5ms mean overhead for one-to-one exclusive-use devices
and up to 2.109ms or 6.185ms for Cache or Hash methods
at 1,024 paired devices. The encryption step (G2) introduces
a relatively constant overhead at mean 0.423ms per packet.

6. Discussion

IDBLEED Practicality. As first mentioned in threat model
introduction (§3.2), we assume an attacker can setup relays
and the targeted devices are exclusive-use. With a known
residence, and therefore location of their IoT peripheral
devices, this becomes a practical exercise for a motivated
attacker with standard sniffing equipment. Note, IDBLEED
attacks do not identify arbitrary users and the active attack
requires packets to be captured from an exclusive-use device
already paired with the target device to deanonymize it.
Fortunately, this also means the attacker does not need to
be present for the initial pairing/bonding.

Alternatives to user tracking exist, but with additional
technical challenges not present with IDBLEED. For
instance, a camera can be used to record video in locations
to determine Alice’s presence. However, this approach

11

DRAFT

requires high bandwidth and power to operate in addition
to a either an advanced computer vision model or human
in-the-loop to visually identify by inspecting the video feed.
Further, the programmatic processing of packets and real-
time notification offered by IDBLEED is lost. Additional
challenges of optical-based approaches include relying on
unobstructed field of vision, visual appearance discrepan-
cies, and loss of quality at further distances which introduces
unknown variability. Conversely, IDBLEED offers real-time,
programmatic de-anonymizataion with approximately and
minimally 1/n confidence, where n is the number of paired
devices in the exclusive-use relationship. We find exclusive-
use is common for many IoT devices. Even if an IoT device
is not designed to be used by a single user, it is likely to
be used by a small group of associated people, such as a
home appliance used by family members. In this scenario,
IDBLEED could be used to track locations of a family
member, although it would not be possible to differentiate
between them. As such, IDBLEED can minimally be used
to provide a data point in a multi-factor approach that
combines more than one non-deterministic method, if not
solely, to an overall confidence rating in user identification.

The IDBLEED active attack has the option of either
relaying or replaying traffic, depending on the specifics
of the wireless protocol. However, we believe that replay
attacks are generally more practical than relay that requires
both targeted devices to be able to process packets at the
same time. This may not be possible if a device turns off its
wireless interface in sleep mode to conserve power, as is the
case with some wireless keyboards (or a small percentage of
devices.) However, our research reveals that many stages of
wireless protocols are still susceptible to replay attacks. For
example, BLE devices that use an LTK to derive a SK for
encrypting packets. While these encrypted packets include
a Message Integrity Check (MIC) value to authenticate
the sender and packet counters to prevent replay attacks,
the initial packets that establish encryption (LL_ENC_REQ
and LL_START_ENC_REQ) do not have these safeguards
against replay attacks.

IDBLEED Impact & Consequences. IDBLEED offers a
new option under the tracking attack class. As such, conse-
quences are similar to other tracking attacks, but with the
powerful discriminator that IDBLEED exploits an inherent
flaw in the specifications of ubiquitous protocols that expose
the single-bit side-channel in their communication patterns.
Therefore, its exploitation window is significantly longer
than other tracking attacks that exploit implementation flaws
which often receive quick patch fixes. Tracking attacks such
as IDBLEED pose a significant privacy and safety threat to
victims. Tracking a person’s location removes their auton-
omy to freely move about the world, particularly if their at-
tacker is oppressive, or scenarios such as human trafficking,
stalking, or pattern-of-life analysis of high-profile individu-
als. Knowing a person’s location can be the initial link in a
chain of more grave digital or physical attacks on the victim.

Anonymization Layer Practicality. Evaluation results of
AL support its practicality for device-to-device commu-
nication anonymization. The relatively consistent cost for
encryption signifies a startup cost that can be minimized via
optimized, real-world implementations using C or assembly
to run on low-cost microcontrollers that are common in IoT.
The lookup computations can be optimized. For example,
both Cache and Hash anonymity methods can store recently
communicated paired records to decrease lookup times,
similar to Most Recently Used (MRU) in memory man-
agement. Encryption performance can be increased through
statically allocated memory buffers and algorithm optimiza-
tion. Further, these optimizations are particularly realistic
given our evaluation of minimal overhead with one-to-one
or a handful of pairings that are exclusive-use devices.
Additional research is necessary to prove out scalability
for more dynamic and autonomous IoT systems that may
intereact with thousands of new nodes per day, such as smart
vehicles. For example, a public-key infrastructure paired
with a real-time hierarchical spatial index to effectively act
like an anonymized geo-fenced initial hash table lookup
to decrease the number of keys to discover using Hash or
Cache methods.

Anonymization Layer Security Analysis. The AL develop-
ment goals (§5) were born from an adversarial mindset and
its design ultimately aims to reduce the amount of meta and
side-channel information available via sniffing. We accom-
plish this by removing transmission directionality to remove
association, padding data to maximum MTU to remove
packet size analysis, introducing entropy via encryption and
counters to remove data pattern analysis, and replying to
untrusted entities with pseudo-communication packets indis-
tinguishable from those sent to trusted entities given the ro-
tating source identifier and entropy in payload to remove the
single-bit exclusive-use side-channel that we’ve introduced.

However, we recognize certain hardware may limit the
feasibility of pseudo-communication and thus potentially
be vulnerable to statistical analysis that considers responses
amidst attacker-controlled packet flooding. To maintain
primary functionality timing and quality of service
expectations, device hardware may be overburdened to not
be able to broadcast pseudo-responses. We first consider
two scenarios that differ in number of nearby devices.
The first, the attacker is near many devices that are also
broadcasting with anonymized source address, thus making
it difficult to determine if any target device’s responses are
with a legitimately trusted device or not. The second puts
the attacker in a very controlled environment where they
are absolutely sure there is only the target device present
and therefore can statistically evaluate responses under
massive flooding. However, this scenario is out-of-scope for
anonymous communication solutions — if the attacker is
sure the device is its target, there is no need to determine its
location because that is inherently known. Between these
two scenarios exists a spectrum of nearby device numbers,
but then any results would require an advanced statistical
treatment that results in an ambiguous confidence metric

12

DRAFT

that must considered with many other factors. Effectively,
AL discourages the attacker from this method and is left
to pursue more reliable tracking methods.

Ethics and Responsible Disclosure. We considered ethics
to the highest possible standard when performing our
experiments. All experiments discussed in this paper were
conducted in a controlled laboratory environment and no
real-world devices outside of the lab were targeted. We
disclosed the technical details of the BLE and Wi-Fi attacks,
and potential countermeasures to the manufacturers of the
tested devices, as well as the Bluetooth Special Interest
Group (SIG). Several companies have acknowledged our
findings, successfully replicated the attack, and plan to
investigate this issue further.

7. Related Works

Privacy Attacks in IoTs. Previous efforts have discovered
various ways by which IoT devices can be tracked through
their wireless communication. These methods include
the use of unique identifiers such as MAC addresses
and IP addresses, as well as the analysis of side-channel
information such as patterns in network traffic and power
usage. For example, leaked information in encrypted traffic,
such as the network connection frequency and the DNS
server a device connects to, can be used to fingerprint IoT
devices [12], or machine learning algorithms can be applied
to network traces to identify IoT devices [13], [14], [15].
Huang et al. [16] demonstrated that attackers can infer user
behaviors and lifestyles based on changes in the state of
IoT devices and the associated network traffic.

Meanwhile, numerous Bluetooth device tracking attacks
have been proposed, including those that collect advertising
packets using sniffers [17], [18], [19], [6], [2], [20], [21], [3],
[22], [5], [23], [11]. Previous approaches such as BlueTrack
[3] and BLEB [22] track devices using public addresses,
while Marco et al.[5] track classic Bluetooth devices that
do not use address randomization by exploiting informa-
tion leaked from frame encoding. Other attacks targeting
specific implementations of Bluetooth devices include those
for Apple devices [19], [6], [24], [25] and wearable fitness
trackers [41]. Some attacks rely on static payloads to track
devices, such as manufacture identifiers [2], [18], informa-
tion elements [26], [27], and GATT attributes [42].

Tracking attacks have also been developed for Wi-Fi
networks. Sapiezynski et al.[43] collected six months of
human mobility data, including Wi-Fi and GPS traces
recorded with high temporal resolution and found the
time series of Wi-Fi scans contained a strong latent
location signal that can be used for tracking. Scheuner et
al.[28] developed a passive tracking system, Probr, that
is manages various types of Wi-Fi capture devices and
processes collected traces. In a separate study, Petre et
al. [29] demonstrated the effectiveness of Wi-Fi tracking at
large events exceeding 100,000 people over three days.

Our IDBLEED attack differs significantly from previous
studies in that it exploits patterns observable from the trusted

Attack Vectors/Impact IDBLEED BAT

Generalized ✓ ✗
Encryption ✓ ✗
Authentication ✓ ✗
Auto-Connection ✓ ✗
Data-Verification ✓ ✗
BLE ✓ ✓
Wi-Fi ✓ ✗
Replay ✓ ✓
Relay ✓ ✗
Hard to Patch ✓ ✗
Highly Practical ✓ ✗

TABLE 6. COMPARISON BEWEEN IDBLEED AND BAT ATTACKS.

relationship between devices, rather than relying on static
patterns in network traffic or power usage. While BAT
attacks [7] were inspirational, our study differs significantly
from theirs in the following ways.

Highlighted in Table 6, BAT authors only examined BLE
allowlists and did not consider other side-channels such as
authentication, data integrity, and encryption. Second, their
work focuses solely on BLE, while we analyze attacks on
BLE and Wi-Fi. Third, our single-bit side-channel abstrac-
tion is applicable far beyond any single protocol and extends
to any communication protocol that has observable pattern
differences between trusted and untrusted devices. While
their mitigation focuses solely on a BLE vulnerability, our
mitigation framework serves as a blue print for an entirely
new anonymity layer. Finally, their study used replay
attacks to track BLE devices, whereas we expand into relay
attacks, an attack method that works even when the protocol
is not vulnerable to replay attacks and is difficult to detect.

Anonymization Defense. Various solutions have been pro-
posed for anonymous communication in IoT networks.
Palmieri et al. [44] propose an anonymous routing frame-
work between subnetworks which uses destination identi-
fiers that an intermediary node uses to determine if the final
hop has been reached for a device prior to broadcast. The
Google/Apple Exposure Notification Framework [45] uses
random rotating identifiers with payloads that are broad-
casted and captured by nearby participating devices. Tor [46]
uses onion routing for primarily TCP-based applications to
provide an anonymous communication service consisting of
nodes maintained by operators. However, these solutions
require support from intermediate servers or gateway nodes
to provide their privacy preserving functions. In contrast,
our proposed AL framework exchanges keys and resolves
communication directly on devices without the need for
additional infrastructure or third-party configuration.

Zhang et al. propose MASK for mobile ad-hoc networks
for anonymized single-hop communication [47] between
grouped devices. It replaces traditional source and destina-
tion addresses at the MAC layer with ephemeral session and
link keys, similar in concept to AL. However, their solution
requires an explicit authentication and key exchange prior
to a new session of data communication. Their approach
is susceptible to IDBLEED, as this exclusive-use three-
way handshake authentication mechanism is observable to
either succeed or not given subsequent communication. Our

13

DRAFT

solution with AL is transparent to other layers — there is
no modification to existing layers and they retain established
roles as they are today with authentication handled implicitly
at AL by a successful lookup of a pairing key using the Hash
or Cache method that is not observable to eavesdroppers.

8. Conclusion

We have shown that ubiquitous wireless communication
protocols, such as BLE and Wi-Fi are vulnerable to
deanonymization despite modern countermeasures such
as identity randomization to prevent tracking attacks.
The association between devices produces historically
overlooked differences in observable traffic patterns that
produce a single-bit side-channel leak, that we have termed
exclusive-use devices, making them vulnerable to practical
IDBLEED tracking attacks. We provide a generalized
mitigation framework featuring our Anonymization Layer
as a viable solution and quantify simulation results on
performance overhead.

References

[1] S. Bluetooth, “Bluetooth core specification version 5.1,” Specification
of the Bluetooth System, 2019.

[2] J. K. Becker, D. Li, and D. Starobinski, “Tracking anonymized
bluetooth devices,” Proceedings on Privacy Enhancing Technologies,
vol. 2019, no. 3, pp. 50–65, 2019.

[3] M. Haase, M. Handy et al., “Bluetrack–imperceptible tracking of
bluetooth devices,” in Ubicomp Poster Proceedings, vol. 2, 2004.

[4] S. Bluetooth, “Bluetooth core specification version 4.2,” Specification
of the Bluetooth System, 2014.

[5] M. Cominelli, F. Gringoli, P. Patras, M. Lind, and G. Noubir, “Even
black cats cannot stay hidden in the dark: Full-band de-anonymization
of bluetooth classic devices,” in 2020 IEEE Symposium on Security
and Privacy (SP). IEEE, 2020, pp. 534–548.

[6] J. Martin, D. Alpuche, K. Bodeman, L. Brown, E. Fenske, L. Foppe,
T. Mayberry, E. Rye, B. Sipes, and S. Teplov, “Handoff all your
privacy–a review of apple’s bluetooth low energy continuity protocol,”
Proceedings on Privacy Enhancing Technologies, vol. 2019, no. 4, pp.
34–53, 2019.

[7] Y. Zhang and Z. Lin, “When good becomes evil: Tracking bluetooth
low energy devices via allowlist-based side channel and its counter-
measure,” in Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, 2022, pp. 3181–3194.

[8] “Specifications | wi-fi alliance,” https://www.wi-fi.org/discover-wi-f
i/specifications, (Accessed on 12/07/2023).

[9] A. Development, “Implementing mac randomization,” https://source
.android.com/docs/core/connect/wifi-mac-randomization.

[10] iOS Development, “Wi-fi privacy,” https://support.apple.com/guide/
security/wi-fi-privacy-secb9cb3140c/web.

[11] Y. Zhang, J. Weng, R. Dey, Y. Jin, Z. Lin, and X. Fu, “Breaking
secure pairing of bluetooth low energy using downgrade attacks,” in
29th {USENIX} Security Symposium ({USENIX} Security 20), 2020,
pp. 37–54.

[12] N. Apthorpe, D. Reisman, and N. Feamster, “A smart home is no
castle: Privacy vulnerabilities of encrypted iot traffic,” arXiv preprint
arXiv:1705.06805, 2017.

[13] Y. Meidan, M. Bohadana, A. Shabtai, J. D. Guarnizo, M. Ochoa, N. O.
Tippenhauer, and Y. Elovici, “Profiliot: A machine learning approach
for iot device identification based on network traffic analysis,” in
Proceedings of the symposium on applied computing, 2017, pp. 506–
509.

[14] R. Perdisci, T. Papastergiou, O. Alrawi, and M. Antonakakis,
“Iotfinder: Efficient large-scale identification of iot devices via passive
dns traffic analysis,” in 2020 IEEE European Symposium on Security
and Privacy (EuroS&P). IEEE, 2020, pp. 474–489.

[15] L. Yu, B. Luo, J. Ma, Z. Zhou, and Q. Liu, “You are what you
broadcast: Identification of mobile and iot devices from (public) wifi,”
in 29th {USENIX} Security Symposium ({USENIX} Security 20),
2020, pp. 55–72.

[16] D. Y. Huang, N. Apthorpe, F. Li, G. Acar, and N. Feamster, “Iot
inspector: Crowdsourcing labeled network traffic from smart home
devices at scale,” Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, vol. 4, no. 2, pp. 1–21, 2020.

[17] M. Jakobsson and S. Wetzel, “Security weaknesses in bluetooth,” in
Cryptographers’ Track at the RSA Conference. Springer, 2001, pp.
176–191.

[18] K. Fawaz, K.-H. Kim, and K. G. Shin, “Protecting privacy of ble de-
vice users,” in 25th USENIX Security Symposium (USENIX Security
16), 2016, pp. 1205–1221.

[19] G. Celosia and M. Cunche, “Discontinued privacy: Personal data leaks
in apple bluetooth-low-energy continuity protocols,” Proceedings on
Privacy Enhancing Technologies, vol. 2020, no. 1, pp. 26–46, 2020.

[20] ——, “Saving private addresses: an analysis of privacy issues in
the bluetooth-low-energy advertising mechanism,” in Proceedings of
the 16th EAI International Conference on Mobile and Ubiquitous
Systems: Computing, Networking and Services, 2019, pp. 444–453.

[21] A. Korolova and V. Sharma, “Cross-app tracking via nearby bluetooth
low energy devices,” in Proceedings of the Eighth ACM Conference
on Data and Application Security and Privacy (CODASPY), 2018,
pp. 43–52.

[22] T. Issoufaly and P. U. Tournoux, “Bleb: Bluetooth low energy bot-
net for large scale individual tracking,” in 2017 1st International
Conference on Next Generation Computing Applications (NextComp).
IEEE, 2017, pp. 115–120.

[23] N. Ludant, T. D. Vo-Huu, S. Narain, and G. Noubir, “Linking blue-
tooth le & classic and implications for privacy-preserving bluetooth-
based protocols,” in 2021 IEEE Symposium on Security and Privacy
(SP), 2021.

[24] M. Stute, A. Heinrich, J. Lorenz, and M. Hollick, “Disrupting con-
tinuity of apple’s wireless ecosystem security: New tracking,{DoS},
and {MitM} attacks on {iOS} and {macOS} through bluetooth low
energy,{AWDL}, and {Wi-Fi},” in 30th USENIX Security Symposium
(USENIX Security 21), 2021, pp. 3917–3934.

[25] M. Stute, S. Narain, A. Mariotto, A. Heinrich, D. Kreitschmann,
G. Noubir, and M. Hollick, “A billion open interfaces for eve
and mallory:{MitM},{DoS}, and tracking attacks on {iOS} and
{macOS} through apple wireless direct link,” in 28th USENIX Secu-
rity Symposium (USENIX Security 19), 2019, pp. 37–54.

[26] M. Vanhoef, C. Matte, M. Cunche, L. S. Cardoso, and F. Piessens,
“Why mac address randomization is not enough: An analysis of wi-fi
network discovery mechanisms,” in Proceedings of the 11th ACM on
Asia conference on computer and communications security, 2016, pp.
413–424.

[27] H. Wen, Q. Zhao, Z. Lin, D. Xuan, and N. Shroff, “A study of the
privacy of covid-19 contact tracing apps,” in International Conference
on Security and Privacy in Communication Networks, 2020.

[28] J. Scheuner, G. Mazlami, D. Schöni, S. Stephan, A. De Carli, T. Bo-
cek, and B. Stiller, “Probr-a generic and passive wifi tracking system,”
in 2016 IEEE 41st Conference on Local Computer Networks (LCN).
IEEE, 2016, pp. 495–502.

14

https://www.wi-fi.org/discover-wi-fi/specifications
https://www.wi-fi.org/discover-wi-fi/specifications
https://source.android.com/docs/core/connect/wifi-mac-randomization
https://source.android.com/docs/core/connect/wifi-mac-randomization
https://support.apple.com/guide/security/wi-fi-privacy-secb9cb3140c/web
https://support.apple.com/guide/security/wi-fi-privacy-secb9cb3140c/web

DRAFT

[29] A.-C. Petre, C. Chilipirea, M. Baratchi, C. Dobre, and M. van Steen,
“Wifi tracking of pedestrian behavior,” in Smart Sensors Networks.
Elsevier, 2017, pp. 309–337.

[30] D. Antonioli, N. O. Tippenhauer, and K. Rasmussen, “Bias: Bluetooth
impersonation attacks,” in Proceedings of the IEEE Symposium on
Security and Privacy (S&P), 2020.

[31] D. Antonioli, N. O. Tippenhauer, and K. B. Rasmussen, “The
{KNOB} is broken: Exploiting low entropy in the encryption key
negotiation of bluetooth {BR/EDR},” in 28th USENIX Security Sym-
posium (USENIX Security 19), 2019, pp. 1047–1061.

[32] M. Ryan, “Bluetooth: With low energy comes low security,”
in Proceedings of the 7th USENIX Conference on Offensive
Technologies, ser. WOOT’13. Berkeley, CA, USA: USENIX
Association, 2013, pp. 4–4. [Online]. Available: http://dl.acm.org/c
itation.cfm?id=2534748.2534754

[33] M. Dworkin, “Nist special publication 800-3b,” NIST special publi-
cation, vol. 800, no. 38B, p. 38B, 2005.

[34] Q. Zhao, C. Zuo, J. Blasco, and Z. Lin, “Periscope: Comprehensive
vulnerability analysis of mobile app-defined bluetooth peripherals,”
in Proceedings of the 2022 ACM on Asia Conference on Computer
and Communications Security, 2022, pp. 521–533.

[35] “Multipeer connectivity | apple developer documentation,” ht
tps://developer.apple.com/documentation/multipeerconnectivity, (Ac-
cessed on 12/06/2023).

[36] D. A. Dai Zovi and S. A. Macaulay, “Attacking automatic wireless
network selection,” in Proceedings from the Sixth Annual IEEE SMC
Information Assurance Workshop. IEEE, 2005, pp. 365–372.

[37] “Opportunistic key caching,” https://www.cisco.com/c/en/us/td/doc
s/wireless/controller/9800/17-2/config-guide/b_wl_17_2_cg/_opport
unistic_key_caching.pdf.

[38] “Core specification | bluetooth technology website,” https://www.bl
uetooth.com/specifications/specs/core-specification-4-2/.

[39] A. Wang, C. Wang, X. Zheng, W. Tian, R. Xu, and G. Zhang,
“Random key rotation: Side-channel countermeasure of ntru
cryptosystem for resource-limited devices,” Computers & Electrical
Engineering, vol. 63, pp. 220–231, 2017. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0045790617312740

[40] N. Doshi and D. Jinwala, “Constant ciphertext length in multi-
authority ciphertext policy attribute based encryption,” in 2011 2nd
International Conference on Computer and Communication Technol-
ogy (ICCCT-2011), 2011, pp. 451–456.

[41] A. K. Das, P. H. Pathak, C.-N. Chuah, and P. Mohapatra, “Uncovering
privacy leakage in ble network traffic of wearable fitness trackers,”
in Proceedings of the 17th International Workshop on Mobile Com-
puting Systems and Applications. ACM, 2016, pp. 99–104.

[42] G. Celosia and M. Cunche, “Fingerprinting bluetooth-low-energy
devices based on the generic attribute profile,” in Proceedings of the
2nd International ACM Workshop on Security and Privacy for the
Internet-of-Things, 2019, pp. 24–31.

[43] P. Sapiezynski, A. Stopczynski, R. Gatej, and S. Lehmann, “Tracking
human mobility using wifi signals,” PloS one, vol. 10, no. 7, p.
e0130824, 2015.

[44] “An anonymous inter-network routing protocol for the internet of
things,” https://cora.ucc.ie/server/api/core/bitstreams/169fd0c8-2c3c
-4446-9dc4-053b7e6c2d5f/content, (Accessed on 04/27/2024).

[45] “Exposure notification - cryptography specification.pages,”
https://storage.googleapis.com/gweb-uniblog-publish-prod/document
s/Exposure_Notification_-_Cryptography_Specification_v1.2.1.pdf,
(Accessed on 04/27/2024).

[46] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” Paul Syverson, vol. 13, 06 2004.

[47] Y. Zhang, W. Liu, W. Lou, and Y. Fang, “Mask: anonymous on-
demand routing in mobile ad hoc networks,” IEEE Transactions on
Wireless Communications, vol. 5, no. 9, pp. 2376–2385, 2006.

Appendix

1. BLE Workflow

Expanded details from Figure 1.
1) A peripheral device, such as BLE-enabled audio ear-

buds, broadcasts data packets that include identifiable
information such as its MAC address and Universally
Unique identifier (UUID) to indicate its willingness to
connect with another device.

2) A central device, such as a smartphone, discovers or
recognizes a broadcasting peripheral device and begins
to establish a connection.

3) The connection between devices is established.
4) The two devices optionally engage in pairing and

bonding, which involves negotiating cryptographic keys
such as a Long Term Key (LTK), Connection Signa-
ture Resolving Key (CSRK), or Identity Resolving Key
(IRK), as presented in Table 2.

5) The central and peripheral devices communicate by
reading or writing data to BLE attributes, key/value
pairs that signify various functionalities.

2. Wi-Fi Workflow

Expanded details from Figure 1.
1) A Wi-Fi Access Point (AP), such as a router or a

smartphone hotspot, broadcasts beacons containing its
Service Set Identifier (SSID, i.e. network name) that are
received by a client Wi-Fi device, such as a smartphone.

2) The user, or the device automatically, selects a network
to connect to based on the SSID and any other desired
criteria, such as the network type (e.g., private or
public) or security settings.

3) The client and AP establish a connection through the
exchange of association packets.

4) The client and AP authenticate each other through an
authentication request and response process containing
any necessary credentials.

5) With an established connection, the device and AP
exchange data packets to complete the connection
process and establish a reliable connection.

3. BLE Secure Connections Workflow

Expanded details from Figure 4:
1) The Central sends a Link Layer encryption request

message (LL_ENC_REQ) containing a session key di-
versifier (SKDc) and initialization vector (IVc).

2) The Peripheral device receives the request, generates its
own SKDp and IVp and includes them in an encryption
response message (LL_ENC_RSP).

3) Both the central and peripheral combine parts of the
shared SKDc and SKDp to create the SK. (The ex-
changed IV’s are used by each recipient to initialize
encryption.)

15

http://dl.acm.org/citation.cfm?id=2534748.2534754
http://dl.acm.org/citation.cfm?id=2534748.2534754
https://developer.apple.com/documentation/multipeerconnectivity
https://developer.apple.com/documentation/multipeerconnectivity
https://www.cisco.com/c/en/us/td/docs/wireless/controller/9800/17-2/config-guide/b_wl_17_2_cg/_opportunistic_key_caching.pdf
https://www.cisco.com/c/en/us/td/docs/wireless/controller/9800/17-2/config-guide/b_wl_17_2_cg/_opportunistic_key_caching.pdf
https://www.cisco.com/c/en/us/td/docs/wireless/controller/9800/17-2/config-guide/b_wl_17_2_cg/_opportunistic_key_caching.pdf
https://www.bluetooth.com/specifications/specs/core-specification-4-2/
https://www.bluetooth.com/specifications/specs/core-specification-4-2/
https://www.sciencedirect.com/science/article/pii/S0045790617312740
https://www.sciencedirect.com/science/article/pii/S0045790617312740
https://cora.ucc.ie/server/api/core/bitstreams/169fd0c8-2c3c-4446-9dc4-053b7e6c2d5f/content
https://cora.ucc.ie/server/api/core/bitstreams/169fd0c8-2c3c-4446-9dc4-053b7e6c2d5f/content
https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/Exposure_Notification_-_Cryptography_Specification_v1.2.1.pdf
https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/Exposure_Notification_-_Cryptography_Specification_v1.2.1.pdf
https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/Exposure_Notification_-_Cryptography_Specification_v1.2.1.pdf

DRAFT

4) The central sends an unencrypted message
(LL_START_ENC _REQ) and sets itself to receive
encrypted data using the generated SK.

5) The peripheral responds with a message
(LL_START_ENC_ RSP) encrypted using the
SK and sets itself to receive encrypted data. If a
valid SK cannot be generated due to missing a
valid LTK shared during initial pairing, it will send
a rejection message (LL_REJECT_IND) and may
further terminate the the connection, depending on the
implementation.

6) If the central receives the encrypted response message
(LL_ START_ENC_RSP) from the peripheral, the two
devices may begin transmitting and receiving encrypted
data using the previously exchanged initialization vec-
tors (IV = IVc || IVp).

4. Wi-Fi Direct Workflow

1) A device broadcasts a probe request PROBE_REQ
which is responded PROBE_RSP by another Wi-Fi
Direct enabled device.

2) The initiating device sends a unicast invitation
INVITATION _REQ to the responding device, which
responds INVITATION _RSP.

3) The devices authenticate and associate with each other
to form the group and assign roles.

16

	Introduction
	Background
	Wireless Communication Protocols
	Identity and Address Randomization
	Protocol Features

	IDBleed Tracking Attacks
	Deanonymization via Exclusive-use
	Threat Model
	Attack Method Workflows
	Feasibility, Scope, and Impact

	Concrete IDBleed Attacks
	IDBleed in BLE Confidentiality
	IDBleed via BLE Integrity
	IDBleed in Wi-Fi Authentication
	IDBleed in Wi-Fi Auto-Connection

	Mitigation Framework
	Discussion
	Related Works
	Conclusion
	References
	Appendix
	BLE Workflow
	Wi-Fi Workflow
	BLE Secure Connections Workflow
	Wi-Fi Direct Workflow

