
4th IEEE International Conference on AI in Cybersecurity (ICAIC), 5-7 February 2025, University of Houston, Texas, USA

Out-of-Distribution Detection for Neurosymbolic
Autonomous Cyber Agents
Ankita Samaddar, Nicholas Potteiger, Xenofon Koutsoukos

Department of Computer Science
Vanderbilt University
Nashville, TN, USA

{ankita.samaddar, nicholas.potteiger, xenofon.koutsoukos}@vanderbilt.edu

Abstract—Autonomous agents for cyber applications take
advantage of modern defense techniques by adopting intelli-
gent agents with conventional and learning-enabled components.
These intelligent agents are trained via reinforcement learning
(RL) algorithms, and can learn, adapt to, reason about and
deploy security rules to defend networked computer systems
while maintaining critical operational workflows. However, the
knowledge available during training about the state of the
operational network and its environment may be limited. The
agents should be trustworthy so that they can reliably detect
situations they cannot handle, and hand them over to cyber
experts. In this work, we develop an out-of-distribution (OOD)
Monitoring algorithm that uses a Probabilistic Neural Network
(PNN) to detect anomalous or OOD situations of RL-based agents
with discrete states and discrete actions. To demonstrate the
effectiveness of the proposed approach, we integrate the OOD
monitoring algorithm with a neurosymbolic autonomous cyber
agent that uses behavior trees with learning-enabled components.
We evaluate the proposed approach in a simulated cyber environ-
ment under different adversarial strategies. Experimental results
over a large number of episodes illustrate the overall efficiency
of our proposed approach.

Index Terms—cyber-security, neurosymbolic AI, out-of-
distribution (OOD), probabilistic neural network (PNN)

I. INTRODUCTION

Autonomous agents for cyber applications require to learn
and deploy security rules to defend cyber-attacks without any
human intervention. Defending a network from cyber-attacks
needs constant monitoring of the system and selecting the
appropriate actions whenever a security breach is detected
while still maintaining the critical operational workflows.
Existing security standards often fall short in designing these
cyber-defense agents against sophisticated adversarial attacks.
Hence, a combination of security standards along with learning
enabled components (LECs) that can learn, detect and defend
the system from attacks are needed. These LECs are typically
function approximators with a reinforcement learning (RL)
policy, so that they can take optimal actions and effectively
mitigate dynamic complex attacks. However, uncertainties
pose a significant challenge in characterizing the trustwor-
thiness of these autonomous agents. These uncertainties may
arise due to limited knowledge available to the autonomous
agents about the runtime behavior of the operational system
and environment at the time of designing or training these
agents. The consequences can propagate deep into the system

and can impact system behaviors at all levels. Thus, anomaly
or out-of-distribution (OOD) detection methods need to be
incorporated to identify information that is nonconformal with
the environment used in training.

In a cyber environment, a trustworthy autonomous agent
should not only generate optimal actions in known situations
that it understands, but also reliably detect situations that are
nonconformal, reject them, and pass them over to cyber ex-
perts. For instance, an autonomous cyber-defense agent trained
against different types of denial-of-service (DoS) attacks such
as blocking the traffic or blocking the IP address of a specific
host, can detect and handle such situations promptly. However,
if a new type of attack such as an unauthorized access to the
network server due to authentication breaches, emerges into
the system, then the autonomous cyber-defense agent should
detect such situations as anomalous or nonconformal so that
they can be handled by cyber experts. Therefore, a safety
assurance method needs to be associated with an autonomous
agent to make it trustworthy under every situation. Anomaly
or OOD detection is an established area of research in robotic
systems [1], cyber-physical systems [2], [3], etc. However,
OOD detection to defend cyber-attacks in autonomous net-
works is not well explored in the literature. With this objective
into consideration, we aim to design an OOD Monitoring algo-
rithm to make autonomous cyber-defense agents trustworthy.
Apart from monitoring cyber-defense agents for autonomous
networks, our proposed algorithm can also be integrated with
any RL-based agent with discrete states and discrete actions.

Although different RL policies are used in designing cyber-
defense agents to defend autonomous networks, they fail
to scale and optimize these systems as the networks grow
and become more complex over time. To overcome these
challenges, in our prior work, we proposed a neurosymbolic
model representation of an autonomous cyber-defense agent
using behavior trees (BTs) [4] with LECs, more specifically
known as the Evolving Behavior Trees (EBTs) [5]. The EBT
structures are modular in nature with capabilities to adapt
to multiple dynamic attack situations. They can capture an
explicit hierarchy of subtasks and control flows, and can
deploy LECs to execute specific subtasks. Their generalizable
structures make them deployable to a real system as well as
in simulation. However, an online monitoring technique needs
to be incorporated with the EBT-based autonomous cyber-

979-8-3315-1888-2/25/$31.00 ©2025 IEEE

defense agents to ensure safety by detecting OOD situations
of the system at runtime. As a solution to this problem, we
integrate our proposed OOD Monitoring algorithm with our
EBT-based autonomous cyber-defense agent and demonstrate
its effectiveness.

Thus, the main contributions of our work are as follows.
1) We propose an OOD Monitoring algorithm for RL-based

agents with discrete states and discrete actions. The
algorithm uses a Probabilistic Neural Network (PNN) [6]
to capture the in distribution behavior of the system and
detects OOD situations when the system deviates from
the expected behavior.

2) We integrate the OOD Monitoring algorithm with an
EBT-based autonomous cyber-defense agent to demon-
strate its ability to detect OOD situations in autonomous
networks at runtime and take mitigation actions that
improve the overall performance.

3) We perform a comprehensive evaluation using CybORG
CAGE Challenge Scenario 2, a complex network sim-
ulation environment [7]. We evaluate the proposed ap-
proach over multiple episodes under different adversarial
strategies. Experimental results under different settings
illustrate the efficacy of our proposed solution.

II. RELATED WORK

Traditional security measures are not sufficient to defend au-
tonomous networks from sophisticated cyber-attacks. As a re-
sult, nowadays, different RL methods are deployed to develop
more advanced and interpretable learning enabled defense
policies in autonomous networks. CybORG serves as a popular
cyber security research environment for training and devel-
opment of different RL-based autonomous agents [8]. Some
RL-based agents utilize a goal-conditioned hierarchical RL
(HRL) to validate trained defense strategies in CybORG [9],
[10], whereas, others use an ensemble approach aggregating
policy outputs [11]. For emulating cyber-attacks and defense
scenarios, Markham et al. developed a novel tool called FAR-
LAND that focuses on realistic cyber-defense environments
and curriculum learning for cyber-defense agents [11].

An emerging area of research in designing autonomous
cyber-defense is to use Neurosymbolic AI that combines
pattern recognition capabilities of neural networks along with
explicit reasoning of symbolic systems [12]. An effective way
to design these neurosymbolic autonomous agents is to use
behavior trees (BTs) [4]. RL or HRL techniques are used
to learn, jointly optimize and generate policies to capture
complex BT behaviors [13]–[15]. Our prior work proposed an
approach that uses genetic programming to construct EBTs
with LECs that analyzes the system behavior and apply
appropriate mitigation strategies against adversarial attacks to
ensure autonomous cyber-defense in enterprise networks [5].
However, none of these works can ensure safety of the system
at runtime by detecting OOD behavior of the autonomous
cyber-defense agents.

OOD detection is well studied in the literature for
safety critical applications such as autonomous vehicles [16],

robotics [1], etc. Cai et al. proposed an OOD detection
approach where they used variational autoencoders and deep
support vector data description to learn the system and use
them in real time to calculate the non-conformity of new
inputs relative to the training set in the advanced emergency
braking system and an end-to-end self-driving controller [3].
Ramakrishna et al. designed a β-variational autoencoder de-
tector with partially disentangled latent space to detect OOD
scenarios with variations in the image features [2]. Farid et al.
presented a Probably Approximately Correct Bayes framework
to train policies for a robotic environment with guaranteed
bounds on performance on the training data distribution and
detects OOD behavior of the robot by capturing the viola-
tion of the performance bound on the test environment [1].
Averly et al. presented a unifying framework to detect OOD
scenarios caused by both semantic and covariate shifts in
uncontrolled environments for a variety of models [17]. Yang
et al. presented a full-spectrum OOD detection model that uses
a simple feature-based semantics score function to account
for semantic shifts and become tolerant to covariate shifts in
image data [18]. However, none of these works focus on OOD
detection scenarios for RL agent based autonomous systems.

A few works on different OOD detection approaches for
RL-based agents exist in the literature [19]–[21]. However,
all of these works are applicable for continuous state space.
The autonomous cyber-defense agent considered in our work
consists of discrete and partially observable states and discrete
actions. Hence, existing approaches for OOD detection for RL
agents are not directly applicable to our system. In this work,
we develop an OOD Monitoring algorithm that can detect
OOD scenarios in autonomous networks to assure safety of
our system at runtime.

III. AUTONOMOUS AGENTS FOR CYBER-DEFENSE

In our prior work, we developed a robust autonomous cyber-
defense agent that interacts with the environment and uses
cyber-agent actions against dynamic cyber-attacks [5]. We
evaluated our agent in CybORG, a complex network simula-
tion environment that abstracts real world scenarios [22]. We
considered the network scenario presented in CAGE Challenge
Scenario 2 [7]. Fig. 1 shows the network architecture. The
network comprises three subnets:

1) Subnet 1 with five non-critical user hosts.
2) Subnet 2 with three enterprise servers supporting the

activities of the hosts in Subnet 1 and a host acting as
the defender.

3) Subnet 3 with three operational hosts and a critical
operational server responsible for ensuring the proper
functioning of the network.

CybORG interface can be used to construct and evaluate the
attacker (red agent) and the defender (blue agent) using LECs.
Each scenario run in CybORG consists of a fixed number of
timesteps over a fixed period of time. In every timestep, the red
and the blue agents each chooses and executes an action from a
set of available actions. The red agent starts each scenario run
with an initial access to one of the user machines in Subnet 1.

Fig. 1. Network architecture of CybORG Cage Challenge Scenario 2 with three subnets [7]; Subnet 1 with five hosts, Subnet 2 with three enterprise servers
and a defender host, Subnet 3 with an operational server and three operational hosts.

Thereafter, the red agent can scan hosts and subnets in the
enterprise network, exploit the hosts and perform privilege
escalation. Once the red agent has exploited the enterprise
server and accessed the IP address of the operational server, it
gains access to the operational network. The operational server
provides a service to maintain the system owner’s operations.
The main target of the red agent is to disrupt this service
through the “Impact” action as long as possible.

To mitigate red agent actions in each timestep, the blue
agent may take no action (Sleep), monitor the network connec-
tions and malicious processes (Monitor), analyze information
on files that are associated with a host or a server (Analyze),
deploy one of the seven decoys on a host or a server if a red
agent accesses a new service (Deploy Decoy), remove any
malicious files, processes or services from a host or a server
(Remove), and restores a host or a server to a known safe state
(Restore).

Cage Challenge Scenario 2 presents two types of red agent
strategies. The Meander agent, that exploits each subnet
one by one by seeking and gaining privileged access on
all hosts in a subnet before moving on to the next subnet,
finally reaching the operational server. The B line agent, that
uses full knowledge of the network and directly traverses to
the critical operational server. In our prior work, a third red
agent strategy, the RedSwitch was introduced that combines
B line and Meander [5]. The RedSwitch strategy first
instantiates a red agent using Meander strategy, and after a
random number of timesteps it switches the red agent strategy
to B line strategy.

IV. EVOLVING BEHAVIOR TREE BASED AUTONOMOUS
CYBER-DEFENSE AGENT

Neurosymbolic AI can be leveraged in cyber-security to learn
the system behavior holistically to mitigate sophisticated ad-
versarial attacks. Given a goal or specification, a symbolic
structure is used as a model that interacts with the environment
and selects appropriate actions against adversarial red agents.
We use behavior trees (BTs) as the symbolic structure in the
design of our agent because of their capabilities to integrate
LECs that allow us to learn and reason about cyber-defense
control at a high level and adapt to environmental shifts. Their

modular structures allow us to integrate new capabilities into
the system. Moreover, they are generalizable, that allow us to
map them to both abstract and realistic environments.

In our prior work, we presented a neurosymbolic approach
using Evolving Behavior Trees (EBTs) to develop a ro-
bust autonomous cyber-defense agent that interacts with the
environment and uses cyber-agent actions against dynamic
cyber-attacks [5]. We abstracted our EBT-based cyber-defense
agent from a pursuit evasion game environment using genetic
programming and evaluated our agent in CybORG CAGE
Challenge Scenario 2 [5]. Fig. 2 shows the optimal BT
structure for our autonomous cyber-defense agent.

In the execution of a BT, each timestep is called a tick. A
BT starts executing from the root node and follows a Depth-
First Traversal. On completing execution of a behavior in a BT
node, the child returns a status of Running if its execution
is underway, Success if it has achieved its goal, and Failure
otherwise. The behaviors in a BT can be classified into
two groups - Control behaviors and Execution behaviors.
Control behaviors are the internal behaviors in a BT that
control the logical flow of switching between the behaviors.
Execution behaviors are the leaf behaviors in a BT that
execute specific action in the environment. Control behaviors
in a BT can be either Sequence or Fallback. Sequence
executes a set of child behaviors sequentially until all chil-
dren return Success, otherwise returns Failure. Fallback
executes the leaf behaviors until one child returns Success,
otherwise returns Failure. Execution behaviors in a BT can
be a Condition or an Action behavior, the return status of
which is dependent on the intended logical condition or user-
defined functionality. Each tick of the BT comprises execution
of the entire BT from the root in a depth-first manner till
the status from the leaf behaviors are returned, after which
it propagates back upto the root recursively by updating the
status of the parent control behaviors.

From Fig. 2, we define five Action behaviors in our
autonomous cyber-defense agent.

1) SelectStrategy! selects a defense strategy depending
on the adversarial (red agent) movement.

2) GetMetaAction! selects one of the three defense be-

Fig. 2. Optimal Behavior Tree for Autonomous Cyber-Defense [5]

haviors based on the defense (blue agent) strategy.
3) GetAnalysisAction! monitors or analyzes the environ-

ment by retrieving new information that is unknown to
the blue agent.

4) GetDetectorAction! deploys a detection mechanism in
the environment to alert an adversarial activity.

5) GetMitigateAction! prevents an adversary from
achieving their objective, e.g., blocking an adversarial
movement or restoring the network host/server to a
previously “safe” state.

Besides the Action behaviors, there are four Condition
behaviors. One Condition behavior for SelectStrategy! is to
ensure that the correct defense strategy is selected or shifted
in every tick. Remaining three Condition behaviors for each
of the three defense behaviors is to ensure that the correct
behavior is enacted when chosen by GetMetaAction!.

These five cyber-defense actions are mapped to their ap-
propriate behaviors in CybORG CAGE Challenge Scenario
2. GetAnalysisAction! behavior maps to Analyze and
Monitor actions. GetDetectorAction! maps to a greedy
deterministic policy that selects a DeployDecoy action on a
host or a server. GetMitigateAction! maps to Remove and
Restore actions to prevent the adversary from causing further
damage. To select one of the above Action behaviors, a cyber-
agent controller policy is executed by the GetMetaAction!
behavior. Finally, the type of controller policy to be used is
determined by the SelectStrategy! behavior depending on the
red agent movements, and the NotSelectStrategy? behavior
determines if the controller policy needs to be switched.

Our EBT-based cyber-defense agents are capable of defend-
ing a variety of cyber-attacks, however, they need to be moni-
tored at every timestep so that any anomaly or nonconformity
in their behavior is detected and handled by cyber experts.
This motivates us to propose an out-of-distribution (OOD)
Monitoring algorithm to detect any deviation in the expected
behavior of our autonomous cyber-defense agents.

V. OUT-OF-DISTRIBUTION DETECTION

Although our EBT-based autonomous cyber-defense agents are
robust against dynamic cyber-attacks, uncertainties introduce a
significant challenge for characterizing trustworthiness of these
agents. These uncertainties arise from knowledge gaps about
the runtime state of the system and the environment at the
time of design and training these agents. As a consequence,
the system behavior may get impacted at all levels that may

lead the system to unsafe states. Thus, the main objective of
this work is to design a trustworthy autonomous agent that
can reliably detect anomaly or out-of-distribution situations
and hand them over to cyber-experts to assure safety of the
system at runtime.

A. Problem Formulation

Our system can be modeled as a decision-making system with
RL agents that sequentially interacts with the environment by
executing actions. At each timestep, our system transitions
from one state to another based on the red agent (adversarial)
and blue agent (defender) actions. However, the red agent
actions are not observable. Thus, our system can be formally
represented by a discrete-time Partially Observable Markov
Decision Process (POMDP), M := (S,A, T,R, µ0) [23]. S
denotes the set of states or observations which are discrete
and partially observable, A denotes the set of defender (blue
agent) actions which are discrete, T denotes the conditional
transition probabilities, R : S×A×S 7→ R denotes the reward
function, and µ0 : (s0, a0), s0 ∈ S, a0 ∈ A, denotes the initial
state and action. At each timestep t − 1, the defender (blue
agent) takes an action at−1 ∈ A which causes the system to
transition from st−1 to st with probability T (st|st−1, at−1)
and gets a reward rt−1. The objective of the blue agent is to
select actions at each timestep so that the cumulative rewards
maximize over time, i.e.,

∑t→∞
t=1 rt−1.

We define Transition Probability Threshold to quantify out-
of-distribution situations of our system.

Definition 1. Given a neurosymbolic cyber-agent trained with
a policy π, a state transition at timestep t − 1, denoted by
(st−1, at−1) → st, is considered to be an out-of-distribution
(OOD) transition based on policy π if the probability of
occurrence of this transition in the training data is less than
threshold ρ, i.e., Pr ((st−1, at−1) → st) < ρ. We refer ρ as
the Transition Probability Threshold.

Problem Statement : Given a network consisting of hosts,
enterprise servers and operational servers (as shown in Fig. 1)
and a neurosymbolic cyber-agent trained with a policy π, our
objective is to develop a safety assurance algorithm to detect
shifts from the distribution used for training.

In this work, we specifically address two key questions.
1) Can we assure safety if the system transitions to any

state s′ such that Pr ((s, a) → s′) < ρ in our training
distribution?

2) Can we assure safety if the red agent switches to a
different strategy than the one used for training?

B. OOD Monitoring Algorithm

We develop an OOD Monitoring algorithm that executes
at every timestep to detect any deviations of the current
observation from the one used for training the autonomous
agent. Haider et al. presented a model-based OOD detec-
tion framework for RL agents using probabilistic dynamics
model [20]. Unlike [20], the states in our system are discrete
and partially observable. Hence, we cannot directly apply their
framework to our system. We propose to use a Probabilistic
Neural Network (PNN) to learn the dynamics of our system
that is characterized by non-deterministic transitions of the
partially observable states [6].

Our OOD Monitoring algorithm consists of three phases.
• An Data Generation phase
• An Training phase
• An OOD Monitoring phase
Algorithm 1 shows the main steps of our proposed approach.

Data Generation Phase: To learn the dynamics of our system,
we need to learn the dynamic function that characterize the
transition probabilities of our system. In order to achieve this,
we need to collect data, i.e., states, actions and their transitions
(st−1, at−1) → st, by interacting with our system, and then
generate a PNN with the collected data.

Given a trained blue agent control policy π for a fixed red
agent strategy, we collect transitions (st−1, at−1) → st for τ
timesteps, (τ is very large), over multiple episodes (say N)
and generate the training data Dtrain.
Training Phase: Let us assume that fθ represent the discrete
dynamic function that characterize our decision making sys-
tem. Since our system is non-deterministic, it exhibits different
behaviors on different runs even with the same inputs. Thus, fθ
can be formally represented as a mapping of the previous state
and action to a set of possible k current states, where k is any
positive number, i.e., fθ(st−1, at−1) = {s1t , s2t , . . . , skt }. Each
of these sit is associated with some probability conditioned on
(st−1, at−1) and generated from the observed samples in the
training data.

To learn fθ, we develop a PNN where the input layer is
of size 1, the pattern layer is of size equal to the size of the
training data, i.e., N×τ , and the output layer is of size m (say)
where m is equal to the number of distinct observed states in
the training data. Unlike the generic structure of a PNN which
consists of four layers [6], our PNN model does not have the
fourth layer, i.e., the decision layer. Instead, the summation
layer serves as our output layer. Fig. 3 shows a schematic
diagram of our PNN model. For each input, (st−1, at−1), at
the input layer, the PNN matches the input with all the entries
in the pattern layer. The PNN activates only those entries (sit)
in the output layer whose previous states and actions match
with the input data.
OOD Monitoring Phase: Given our decision making system
trained with an agent policy π and a trained PNN for the

Fig. 3. A PNN with input layer of size 1, pattern layer of size n = N×τ , and
output layer of size m where m denotes distinct observed states in Dtrain.

same policy, let the system transition from st−1 to st due to
execution of action at−1 at timestep t − 1 following control
policy π. To detect OOD behavior of our system, we feed the
same previous state and action (st−1, at−1) to the PNN that
generates a set of k predicted current states, {s1t , s2t , . . . , skt }
(say). For each sit in the set of predicted current states,
the associated transition probability Pr

(
(st−1, at−1) → sit

)
is

calculated from the activated connections in the PNN. We
consider the current state st of the system to be in-distribution
(ID), if st ∈ {s1t , s2t , . . . , skt } and the associated transition
probability Pr ((st−1, at−1) → st) is greater than Transition
Probability Threshold, ρ. Otherwise, st is considered to be
out-of-distribution (OOD). This is because, if a particular state
transition occurs in our training distribution for a significantly
large number of times, then we acquire high confidence about
the state and its associated transitions and can assure safety
as compared to a rarely seen transition.

VI. INTEGRATION OF OOD MONITORING IN THE EBT

We need to integrate the safe monitoring behavior of our
system in our existing BT so that the system can be monitored
at runtime over every tick. To integrate the safe monitoring
behavior in the existing BT (shown in Fig. 2), we update the
hierarchical structure of the BT and add two new Condition
behaviors and a new Action behavior in the updated BT. Fig. 4
shows our updated BT for OOD monitoring with the newly
added nodes and connections marked in red. The new behavior
node, ID?, stores the PNN for a specific control policy.
At each timestep t, this node feeds the previous state and
action, (st−1, at−1), to the PNN to generate a set of predicted
current states, and returns Failure if the current state of
the system, st, is out-of-distribution. The second Control
behavior, OOD?, returns Failure if the current state of the
system, st, is in-distribution so that the system can continue
with the normal operation by executing the remaining part of
the BT. We introduce an Action behavior, GetSafeAction!,
to handle OOD situations. If the current state st of our system

Fig. 4. Updated Behavior Tree for OOD Monitoring; The newly added nodes and connections are marked in red in the updated BT.

Algorithm 1: OOD Monitoring Algorithm(π,ρ)
–Data Generation–

1 Assign Dtrain to {};
2 for e = 1, 2, . . . , N episodes do
3 for t = 1, 2, . . . , τ timesteps do
4 Collect (st−1, at−1) → st from the system

following policy π to generate Dtrain;

–Training–
5 Develop a PNN following (st−1, at−1) → st for policy

π over Dtrain;
–OOD Monitor–

6 st = Current state at timestep t on executing at−1

following policy π on system state st−1;
7 {s1t , s2t , . . . , skt } = set of k predicted current states

generated by PNN on feeding (st−1, at−1);
8 if

(
st ∈ {s1t , s2t , . . . , skt }

)
&&

(Pr ((st−1, at−1) → st) > ρ) then
9 st is In-Distribution;

10 else
11 st is Out-Of-Distribution;

is OOD, then this node executes Restore action to restore
the affected host/server to a previously known “safe” state,
thereby, assuring safety.

VII. EXPERIMENTS AND EVALUATION

We execute our proposed OOD Monitoring algorithm for our
EBT-based autonomous cyber-defense agent on the simula-
tions of CybORG CAGE Challenge Scenario 2. To demon-
strate the effectiveness of our proposed algorithm at runtime,
we integrate the OOD monitoring behavior in the EBT and
evaluate its ability to detect OOD situations online. We
conduct our experiments for different Transition Probability
Thresholds (ρ) under different OOD scenarios with different
adversarial strategies as well as adversarial strategy switching.

Fig. 5. Software Architecture for OOD Monitoring in autonomous cyber-
defense environment.

A. Experimental Setup

We extend the software architecture of our prior work pre-
sented in [5] to integrate the OOD Monitoring algorithm into
our system. Fig. 5 shows the extended architecture that exe-
cutes the EBT-based autonomous cyber-defense agent (Blue
EBT agent) and the OOD Monitoring algorithm with the
network simulator, CybORG CAGE Challenge Scenario 2. We
initialize a blackboard [24] as the communication interface to
communicate between the EBT and the simulator. The black-
board is updated in every iteration to communicate via shared
data. To prevent data leaking, the behavior nodes in the EBT
cannot directly communicate with the simulator. Instead, they
can only access specific data values through this blackboard
interface based on their functionality. In each iteration, both
the EBT and the simulator can use this blackboard to read
and update data values based on their access permissions. We
use the PyTrees library [24] to develop the OOD monitoring
behavior in the EBT. Our EBT can detect OOD situations
under different attacker strategies as well as when an attacker
switches from one strategy to another, and can take safe action
whenever such a situation is detected.

We perform our experiments on a Linux machine with
2.1 GHz Intel Xeon having 16 processors and 32 GB RAM.
To generate dataset for training our Probabilistic Neural Net-
work (PNN), we execute our autonomous agent in CybORG
CAGE Challenge Scenario 2 under two different adversarial

strategies, B line and Meander, for 10, 000 episodes, each
episode consisting of 100 timesteps. We collect the transitions
(st−1, at−1) → st in each execution step to generate Dtrain.
It takes almost 27 hours to generate the dataset for each
agent in CybORG simulator. Note that, each state in CybORG
simulator is a vector of 52 bits where each host/server state is
represented with 4 bits. Two of these bits encode the type of
program being executed and the remaining two bits represent
the degree to which the host/server has been compromised.
Therefore, 24 = 16 distinct bit combinations are possible to
represent each host/server state in the network. We observe
that only a small subset of these states are reachable. This
makes the system scalable as the number of possible reachable
states in Dtrain is not very large. To reduce the computational
cost, we label all distinct states in Dtrain and generate the
PNN with the labeled states. The full action space of the blue
agent is a discrete set of 145 different actions. We observe
that although the dataset generated from the simulator against
the Meander red agent has some overlapping states with the
dataset generated against the B line red agent, the former is
much more diverse in nature because of the random behavior
of the Meander red agent. Thus, we generate two PNN, one
for each adversarial strategy with the collected datasets. We
observe that it takes almost 4 minutes to train the feedforward
PNNs with the collected data during system initialization.
To monitor OOD situations at runtime, we update the EBT
structure as shown in Fig. 4 and discussed in Section VI.

B. Evaluation under different Transition Probability Threshold

In our experiments, we use the Transition Probability Thresh-
old (ρ) to measure OOD situations. We define an OOD episode
as follows.

Definition 2. An episode e is considered to be OOD if there
exists at-least one transition in e whose transition probability
is less than the Transition Probability Threshold, ρ, i.e., e is an
OOD episode, if ∃((st−1, at−1) → st) | Pr((st−1, at−1) →
st) < ρ.

To evaluate the number of OOD episodes, we execute our
OOD Monitoring algorithm with B line and Meander as
the red adversarial agents and the EBT-based agent as the
blue agent over 1000 episodes, each episode consisting of 100
timesteps. Table I shows the number of OOD episodes for
different values of ρ. We observe that there are only 1.5%
OOD episodes against Meander red agent and 0.1% OOD
episodes against B line red agent for ρ = 0. As we increase
ρ values gradually from 10−5, majority of the episodes are
OOD. Hence, we set ρ = 0 for all our subsequent experiments.

Fig. 6 and Fig. 7 show the reward distribution over 1000
episodes with 100 timesteps against Meander and B line red
agents respectively for different values of ρ. From Fig. 7, we
observe that the reward value is fixed at −1.2 against B line
agent for ρ = 0. However, the rewards are more diverse against
Meander agent for the same value of ρ (refer to Fig. 6).
Further, from both the figures, we observe that the median
values of the rewards (marked in red in the plots) shift towards

TABLE I
NUMBER OF OOD EPISODES WITH TWO DIFFERENT RED AGENT

STRATEGIES, Meander AND B line, OVER 1000 EPISODES, EACH WITH
100 TIMESTEPS

Red Agent Transition Probability Number of OOD Episodes
Strategy Threshold (ρ) (out of 1000)

Meander

0 15
10−5 1000
10−4 1000
10−3 1000

Bline

0 1
10−5 782
10−4 1000
10−3 1000

Fig. 6. Reward Distribution under different Transition Probability Thresholds
(ρ) over 1000 episodes, each with 100 timesteps against Meander strategy.

Fig. 7. Reward Distribution under different Transition Probability Thresholds
(ρ) over 1000 episodes, each with 100 timesteps against B line strategy.

0 (maximum possible reward for our agents) as we increase
ρ. This indicates that as we increase ρ, we encounter more
probable transitions that are known to the system, causing less
reward penalties.

C. Evaluation with EBT

Apart from uncertainties caused due to limited knowledge
about system dynamics at runtime, an OOD situation can also
occur due to change in the behavior of an adversarial red agent.
To evaluate such situations at runtime, we conduct experiments
by integrating the OOD monitoring behavior with the EBT as
described in Section V-B.
Switching to a known adversarial strategy: We run experi-
ments against RedSwitch strategy where the system instan-
tiates a red agent using Meander strategy and switches to

B line strategy after a random number of timesteps. We
observe that when a red agent switches to a known strategy,
i.e., Meander → B line in our case, our system immediately
detects the switch as an OOD situation. However, we observe
that we need to restore the state of the system to a previous
“safe” state before switching to a new blue agent policy against
the new red agent, i.e., B line in our case. Thus, we need the
GetSafeAction! behavior in the updated BT (refer to Fig. 4).

To show the necessity of the GetSafeAction! behav-
ior in the updated BT, we conduct two experiments over
1000 episodes, each with 100 timesteps. In one experiment
we continue with the BT shown in Fig. 4, i.e., with the
GetSafeAction! behavior. In the other experiment, we re-
move this behavior from the BT. Fig. 8 shows five random
episodes executed in these two setups with the same initial
conditions and strategy switching happening at the same
timestep in both the cases. The plots marked with dashed lines
and cross marks denote the plots under strategy switching
(Meander → B line) with and without GetSafeAction!
behavior respectively. We observe that when the red agent
switches strategy at timestep t (say), the OOD Monitoring
algorithm triggers an OOD situation at the immediate next
timestep i.e., at timestep t + 1 in both the cases. In the
former setup, i.e., with the GetSafeAction! behavior, the
system gets restored to a “safe” state at timestep t + 1 and
the SelectStrategy! behavior switches the system to the new
control policy in the subsequent timestep, i.e., at timestep
t+ 2. Thereafter, the system behavior switches back to be in
distribution with the new control policy. However, in the latter
setup, i.e., without the GetSafeAction! behavior, the system
evolves to new unseen states and continues with the OOD
situations despite the SelectStrategy! behavior switching the
system to the new control policy.

Fig. 9 shows the number of OOD transitions per
episode under the two experimental setups, one with the
GetSafeAction! behavior and the other without the behavior
over 1000 episodes each with 100 timesteps. From the figure,
we can observe that under “safe” switching the number of
OOD transitions per episode are significantly small and vary
between 0 to 2, thereby restoring the system back to safe state
assuring safety.

Switching to an unknown adversarial strategy: To evaluate the
efficiency of our OOD Monitoring algorithm in detecting an
unknown red agent strategy, we set only one control policy
into the system against Meander and one PNN trained with
the transitions generated against Meander red agent. We
remove the control policy against B line red agent and the
corresponding PNN from the system. We also remove the
branch of the BT that is responsible for strategy select, i.e., the
NotSelectStrategy? and SelectStrategy! behaviors from
the EBT. So with this new setup, B line red agent strategy
serves as an unknown red strategy to our system. Using this
setup, we run experiments for upto 1000 episodes each with
100 timesteps and compare the results with the one where the
system is aware of the B line red strategy.

Fig. 8. Five episodes under strategy switching (Meander → B line)
with GetSafeAction! (plots in dashed lines) and without GetSafeAction!
(plots in cross marks) in the EBT.

Fig. 9. Number of OOD transitions per episode under strategy switching
(Meander → B line) without GetSafeAction! behavior (left) and with
GetSafeAction! behavior (right) in the EBT.

Fig. 10 shows the number of OOD transitions per
episode where the red agent switches to a known strategy
(Meander → B line), and the one where the red agent
switches to an unknown strategy (Meander → Unknown).
We observe that under both the conditions, our OOD Mon-
itoring algorithm can promptly detect strategy switching.
However, the number of OOD transitions per episode are
significantly high when the red agent switches to an unknown
strategy as our system is not aware of the states and the
transitions associated with the unknown strategy.

Fig. 10. Number of OOD transitions per episode under known strategy
switching, Meander → B line (left), and unknown strategy switching,
Meander → Unknown (right) in the EBT.

VIII. CONCLUSION AND FUTURE WORKS

Neurosymbolic cyber-defense agents are increasingly used
in autonomous networks to defend complex cyber-attacks.
These agents are typically trained with RL policies. However,
uncertainties in the runtime environment of these systems pose
significant challenges in designing trustworthy agents. These
uncertainties arise either due to insufficient knowledge about
the runtime dynamics of the system at the time of training
these agents, or, due to change in adversarial behavior that
remains unknown to the system at training time. To address
these challenges, in this work, we propose an OOD Monitoring
algorithm that can detect out-of-distribution situations for any
RL-based agent with discrete states and actions. We evaluate
the performance of our proposed approach at runtime by
integrating it with a neurosymbolic autonomous cyber-defense
agent and perform experiments on a complex network simula-
tion environment, the CybORG CAGE Challenge Scenario 2.
Experimental results under different adversarial settings show
that our proposed algorithm effectively detects OOD situations
under all settings and hence can assure safety.

We evaluate our current setting in a simulator. However, the
system may act differently and the system dynamics may vary
if we execute the same adversarial strategy on a real testbed. In
the future, we want to implement our EBT-based autonomous
agent on a real emulation environment. Additionally, in our
current setting, the adversarial strategy is learnt offline based
on the collected dataset from the simulator that characterize the
system dynamics at runtime. However, in a realistic scenario,
the adversary may switch to a new strategy online. The
system needs to adapt and learn the adversarial movements at
runtime and enact accordingly. Thus, we want to explore and
incorporate online learning techniques to mitigate adversarial
attacks on autonomous networks in the future.

IX. ACKNOWLEDGEMENT

This material is based on research sponsored by DARPA under
agreement number HR001124C0425. The U.S. Government is
authorized to reproduce and distribute reprints for Governmen-
tal purposes notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily represent-
ing the official policies or endorsements, either expressed or
implied, of DARPA or the U.S. Government.

REFERENCES

[1] A. Farid, S. Veer, and A. Majumdar, “Task-driven out-of-distribution
detection with statistical guarantees for robot learning,” in 5th Annual
Conference on Robot Learning, 2021.

[2] S. Ramakrishna, Z. Rahiminasab, G. Karsai, A. Easwaran, and A. Dubey,
“Efficient out-of-distribution detection using latent space of β-vae for
cyber-physical systems,” ACM Transactions on Cyber-Physical Systems,
vol. 6, Apr. 2022.

[3] F. Cai and X. Koutsoukos, “Real-time out-of-distribution detection
in learning-enabled cyber-physical systems,” in 2020 ACM/IEEE 11th
International Conference on Cyber-Physical Systems (ICCPS), pp. 174–
183, 2020.

[4] M. Colledanchise and P. Ögren, Behavior Trees in Robotics and AI.
CRC Press, jul 2018.

[5] N. Potteiger, A. Samaddar, H. Bergstrom, and X. Koutsoukos, “Design-
ing robust cyber-defense agents with evolving behavior trees,” in 2024
International Conference on Assured Autonomy (ICAA), pp. 1–10, 2024.

[6] A. Hajdarevic, I. Dzananovic, L. Banjanovic-Mehmedovic, and
F. Mehmedovic, “Anomaly detection in thermal power plant using
probabilistic neural network,” in 2015 38th International Convention
on Information and Communication Technology, Electronics and Micro-
electronics (MIPRO), pp. 1118–1123, 2015.

[7] “Cyber autonomy gym for experimentation challenge 2.” https://github.
com/cage-challenge/cage-challenge-2, 2022. Created by Maxwell
Standen, David Bowman, Son Hoang, Toby Richer, Martin Lucas,
Richard Van Tassel, Phillip Vu, Mitchell Kiely.

[8] M. Kiely, D. Bowman, M. Standen, and C. Moir, “On autonomous agents
in a cyber defence environment,” ArXiv, vol. abs/2309.07388, 2023.

[9] M. Foley, C. Hicks, K. Highnam, and V. Mavroudis, “Autonomous net-
work defence using reinforcement learning,” in Proceedings of the 2022
ACM on Asia Conference on Computer and Communications Security,
ASIA CCS ’22, (New York, NY, USA), p. 1252–1254, Association for
Computing Machinery, 2022.

[10] M. Wolk, A. Applebaum, C. Dennler, P. Dwyer, M. Moskowitz,
H. Nguyen, N. Nichols, N. Park, P. Rachwalski, F. Rau, and A. Web-
ster, “Beyond cage: Investigating generalization of learned autonomous
network defense policies,” ArXiv, vol. abs/2211.15557, 2022.

[11] A. Molina-Markham, C. Miniter, B. Powell, and A. Ridley, “Net-
work environment design for autonomous cyberdefense,” ArXiv,
vol. abs/2103.07583, 2021.

[12] B. Jalaian and N. D. Bastian, “Neurosymbolic ai in cybersecurity:
Bridging pattern recognition and symbolic reasoning,” in MILCOM 2023
- 2023 IEEE Military Communications Conference (MILCOM), pp. 268–
273, 2023.

[13] F. Lundberg, “Evaluating behaviour tree integration in the option critic
framework in starcraft 2 mini-games with training restricted by consumer
level hardware,” Master’s thesis, KTH, School of Electrical Engineering
and Computer Science (EECS), 2022.

[14] L. Li, L. Wang, Y. Li, and J. Sheng, “Mixed deep reinforcement learning-
behavior tree for intelligent agents design,” in International Conference
on Agents and Artificial Intelligence, 2021.

[15] P.-L. Bacon, J. Harb, and D. Precup, “The option-critic architecture,”
in Proceedings of the Thirty-First AAAI Conference on Artificial Intel-
ligence, AAAI’17, p. 1726–1734, AAAI Press, 2017.

[16] A. Filos, P. Tigas, R. T. McAllister, N. Rhinehart, S. Levine, and
Y. Gal, “Can autonomous vehicles identify, recover from, and adapt to
distribution shifts?,” in International Conference on Machine Learning,
2020.

[17] A. Reza and C. Wei-Lun, “Unified out-of-distribution detection: A
model-specific perspective,” 2023 IEEE/CVF International Conference
on Computer Vision (ICCV), pp. 1453–1463, 2023.

[18] J. Yang, K. Zhou, and Z. Liu, “Full-spectrum out-of-distribution detec-
tion,” International Journal of Computer Vision, vol. 131, p. 2607–2622,
June 2023.

[19] T. Haider, K. Roscher, F. Schmoeller da Roza, and S. Günnemann,
“Out-of-distribution detection for reinforcement learning agents with
probabilistic dynamics models,” in Proceedings of the 2023 International
Conference on Autonomous Agents and Multiagent Systems, AAMAS
’23, p. 851–859, International Foundation for Autonomous Agents and
Multiagent Systems, 2023.

[20] L. Nasvytis, K. Sandbrink, J. Foerster, T. Franzmeyer, and C. S. de Witt,
“Rethinking out-of-distribution detection for reinforcement learning:
Advancing methods for evaluation and detection,” 2024.

[21] A. J. Singh and A. Easwaran, “Pas: Probably approximate safety verifi-
cation of reinforcement learning policy using scenario optimization,” in
Proceedings of the 23rd International Conference on Autonomous Agents
and Multiagent Systems, AAMAS ’24, p. 1745–1753, International
Foundation for Autonomous Agents and Multiagent Systems, 2024.

[22] CybORG: A Gym for the Development of Autonomous Cyber Agents,
2021.

[23] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. John Wiley & Sons, 2014.

[24] S. Reality, “Pytrees.” https://github.com/splintered-reality/py trees,
2023.

