Post-Quantum Cryptography (PQC) Network Instrument:

Measuring PQC Adoption Rates and Identifying Migration Pathways

Phuong Cao

Research Scientist National Center for Supercomputing Applications University of Illinois at Urbana-Champaign Team:

Jakub Sowa, Bach Hoang, Advaith Yeluru, Steven Qie, Santiago Nunez Corrales, Anita Nikolich, Ravishankar Iyer

PHIIONG CAG

Classical Cryptography

Microchip Transistor Counts

(Impacts CPU speed)

Classical Cryptography Timeline

Post Quantum Cryptography Adoption Rate & Migration

Post Quantum Cryptography Adoption Rate & Migration

Implementations

Problems

- Inadequate guidance on migrating HPC cyberinfrastructure to be compliant.
- Insufficient feedback on PQC drafts and real-world adoption

Problems

- Inadequate guidance on migrating HPC cyberinfrastructure to be compliant.
- Insufficient feedback on PQC drafts and real-world adoption
- Lack of quantitative, compelling argument for increasing public awareness

Example of SSH connections using NTRU Prime 761 and x25519 measured at NCSA (2024)

Problems

- Inadequate guidance on migrating HPC cyberinfrastructure to be compliant.
- Insufficient feedback on PQC drafts and real-world adoption
- Lack of quantitative, compelling argument for increasing public awareness

State of the Art

- Initial migration of TLS to PQC (Cloudflare, Google, Meta etc.)
- Alliance on standard PQC implementation

Need a concerted effort focusing on PQC adoption measurements on HPC environment.

Problems

- Inadequate guidance on migrating HPC cyberinfrastructure to be compliant.
- Insufficient feedback on PQC drafts and real-world adoption
- Lack of quantitative, compelling argument for increasing public awareness

State of the Art

- Initial migration of TLS to PQC (Cloudflare, Google, Meta etc.)
- Alliance on standard PQC implementation

Need a concerted effort focusing on PQC adoption measurements on HPC environment.

Approach & Results

- Described a PQC instrument embedded in network of open-science HPC applications.
- Analyzed Zeek connection metadata (SSH, TLS, RDP) collected at > 400Gbps NCSA network
 - Avg. 0.029% adoption rate of sntrup761 for SSH (out of 20M connections from 2023-2024 at NCSA)
- Systematically characterized current adoption of HPC authentication libraries, applications [1] (Published in IEEE QCE 2024)

[1] Jakub Sowa, Jakub Sowa, Bach Hoang, Advaith Yeluru, Steven Qie, Santiago Nunez Corrales, Anita Nikolich, Ravishankar Iyer, **Phuong Cao** "Post-Quantum Cryptography (PQC) Network Instrument: Measuring PQC Adoption Rates and Identifying Migration Pathways" In 2024 IEEE International Conference on **Quantum Computing and Engineering** (**QCE**), Montreal, Canada

Post Quantum Cryptography Adoption Rate & Migration

Problems

- Inadequate guidance on migrating HPC cyberinfrastructure to be compliant.
- Insufficient feedback on PQC drafts and real-world adoption
- Lack of quantitative, compelling argument for increasing public awareness

State of the Art

- Initial migration of TLS to PQC (Cloudflare, Google, Meta etc.)
- Alliance on standard PQC implementation

Need a concerted effort focusing on PQC adoption measurements on HPC environment.

Approach & Results

- Described a PQC instrument embedded in network of open-science HPC applications.
- Analyzed Zeek connection metadata (SSH, TLS, RDP) collected at > 400Gbps NCSA network
 - Avg. 0.029% adoption rate of sntrup761 for SSH (out of 20M connections from 2023-2024 at NCSA)
- Systematically characterized current adoption of HPC authentication libraries, applications [1] (Published in IEEE QCE 2024)

Future Work & Discussions

- Disseminating real-time and snapshot of adoption results with NIST & community
- Identify traces of novel attacks in the wild (e.g., ciphersuite downgrade attacks?)
- Work with HPC cyberinfrastructure such as SciTokens to identify and overcome challenges.

[1] Jakub Sowa, Jakub Sowa, Bach Hoang, Advaith Yeluru, Steven Qie, Santiago Nunez Corrales, Anita Nikolich, Ravishankar Iyer, **Phuong Cao** "Post-Quantum Cryptography (PQC) Network Instrument: Measuring PQC Adoption Rates and Identifying Migration Pathways" In 2024 IEEE International Conference on **Quantum Computing and Engineering** (**QCE**), Montreal, Canada

Post Quantum Cryptography Adoption Rate & Migration

Migrating HPC application's communications to become Quantum-resistant

National Center for Supercomputing Applications

Research Questions:

1. To what extent are NCSA and its scientific partners ready for post-quantum cryptography (PQC)?

1. What can we do to better prepare for PQC standardization?

PQC measurement architecture

Harness the connectivity and wide gamut of HPC applications at NCSA to measure PQC adoption rate

Focus on the most popular protocols: SSH and TLS

Produce batch and real-time statistics

Post Quantum Cryptography Adoption Rate & Migration

NCSA Network Metadata-Gathering Process

- Sampled many hours of <u>network metadata</u> generated by Zeek at NCSA
- No information beyond metadata was used
- Zeek logs were parsed in Python for analysis of network traffic of certain protocols

th_su remo	ccess te_locat	auth_at ion.regi	tempts on remo	direction te_location.cit	client y remo	server te_locati	cipher_a	lg ude
ring	string	string	string	string string	string	string	string	strin
56	- ssh-	0 ed25519	INBOUND f6:b	SSH-2.0-libssh e	0.9.6	SSH-2.0	OpenSSH	8.2p1 2d -
ecds	T a-sha2-n	1 istp256	- e6:4	SSH-2.0-OpenSS	4 8.6	SSH-2.0-	OpenSSH	7.4 ef -
				SSH-2.0-check_	ssh_2.3.3	SSH-2.0	OpenSSH_	7.4
ecds	T a-sha2-n	1 istp256	- e6:4	SSH-2.0-OpenSS 2	4 8.6	SSH-2.0	OpenSSH	7.4 ef -

Data Overview

Data Characteristics	Data Collection	Description
Number of protocols	9 major network protocols	DNS, Kerberos, Modbus, MySQL, Radius, X509, SSL, SSH, application logs (syslog)
Data generator	Zeek	Zeek parses raw network packets and produces metadata of network connections.
Data generation rate	\approx 30GB compressed logs per day	Data is compressed in to chunks every hour in the gzip format
Network speed	400Gbps	The network border links are 400Gbps and is connected to a TeraCore link
Data amount	13 TB	Total longitudinal data collected across all seven layers of network
Format	Tab-separated values (tsv)	Each network protocol has specific fields (source, destination, host key algorithm, etc.)
Privacy	Connection metadata	Only contain metadata of handshake, key exchange, and public certificates (no person-
		ally identifiable user data).
Workload characteristics	Batch, Real-time AI inference,	These workloads make use of the above network protocols, providing a rich source for
	large file transfer (petabytes)	our analysis.
Source and destination	NCSA and its partner facilities	Diverse set of partners provide a good vantage point for our analysis.
	(FABRIC, SDSC, Starlight, ESnet)	
Scientific applications	Representative applications	SciTokens [7], Kubernetes [8], Kerberos [9], Globus [10], and Slurm [11]
Time period	2023-01 to 2024-04 (present)	Data are collected in real-time and stored in a network-attached storage system
Sample PQC protocol	Secure Shell (SSH) connection	Samplg log: 73.45.xxx.yyy 22 SSH-2.0-OpenSSH_9.1p1 Debian-2
		chacha20-poly1305@openssh.com umac-64-etm@openssh.com
		sntrup761x25519-sha512@openssh.com ecdsa-sha2-nistp256

Investigated PQC of Application and Transport Layers

- Layer 7: Application layer
 - Remote Desktop Protocol (RDP)
 - Domain Name System (DNS)
 - Secure Shell (SSH)

- Layer 4: Transport layer
 - Transport Layer Security (TLS)

Current PQC implementation in SSH

Minimal Amount of PQC in the Secure Shell (SSH)

Encryption Algorithm	Occurrences
aes256-gcm@openssh.com	1686 (66.93%)
aes128-ctr	454 (18.02%)
chacha20-poly1305@openssh.com	188 (7.46%)
aes128-gcm@openssh.com	156 (6.19%)
aes256-ctr	31(1.23%)
aes128-cbc	2 (0.08%)
3des-cbc	1(0.04%)

MAC Algorithm	Occurrences
hmac-sha2-256-etm@openssh.com	1844 (73.20%)
hmac-sha2-256	457 (18.14%)
umac-128-etm@openssh.com	154 (6.11%)
umac-64-etm@openssh.com	33 (1.31%)
hmac-sha1	17 (0.67%)
hmac-sha2-512	13 (0.52%)

Host Key Algorithm	Occurrences
ecdsa-sha2-nistp256	1275 (50.62%)
ssh-ed25519	1233 (48.95%)
ssh-rsa ⁵	5 (0.20%)
rsa-sha2-512	4 (0.16%)
Key Exchange Algorithm	Occurrences
curve25519-sha256	2030 (80.59%)
curve25519-sha256@libssh.org	473 (18.78%)
diffie-hellman-group-exchange-sha256	6 (0.24%)
diffie-hellman-groun1-sha1	5 (0.20%)
dime-neuman-groupr-snar	
sntrup761x25519-sha512@openssh.com	2 (0.08%)

- 99.92% of all SSH traffic was not secure against quantum adversaries
- sntrup761x25519: Streamlined NTRU Prime
 - A hybrid classical-PQ key exchange algorithm available by default in OpenSSH v9.0 and above as of 2022
- Over 83% of server-side SSH protocol versions were from 2019 and earlier

Key Exchange Algorithm	Occurrences
curve25519-sha256	2030 (80.59%)
curve25519-sha256@libssh.org	473 (18.78%)
diffie-hellman-group-exchange-sha256	6 (0.24%)
diffie-hellman-group1-sha1	5 (0.20%)
sntrup761x25519-sha512@openssh.com	2(0.08%)
diffie-hellman-group14-sha1	2(0.08%)

SSH PQC Key Exchange adoption rate is increasing over the year

Lack of PQC in Transport Layer Security (TLS)

- About 65% of connections were using TLSv1.3; about 35% were TLSv1.2
- Many unsecure cipher suites were in use 4 had over 1000 connections!
- Many designs in the works by the IETF & NIST; some companies even trying to integrate PQC into their TLS

 TLS Ciphersuites
- The difficulty to even adopt TLS v1.3 internet-wide foreshadows PQC adoption as well

TLS Ciphersuites	Occurrences	
TLS-AES-128-GCM-SHA256*	416447 (53.02%)	
TLS-ECDHE-RSA-WITH-AES-256-GCM-SHA384	117788 (15.00%)	
TLS-AES-256-GCM-SHA384*	100708 (12.82%)	
TLS-ECDHE-RSA-WITH-AES-128-GCM-SHA256	79171 (10.08%)	
TLS-DH-ANON-WITH-AES-256-GCM-SHA384**	42261 (5.38%)	
TLS-ECDH-ANON-WITH-AES-256-CBC-SHA**	14787 (1.88%)	
TLS-ECDHE-RSA-WITH-NULL-SHA**	5612 (0.71%)	
TLS-ECDHE-ECDSA-WITH-AES-128-GCM-SHA256	3382 (0.43%)	
TLS-ECDHE-RSA-WITH-CHACHA20-POLY1305-SHA256	2787 (0.35%)	
TLS-ECDHE-ECDSA-WITH-AES-256-GCM-SHA384	2497 (0.32%)	

Table 2: A list of the top 10 cipher suites found in sample TLS connection data (*in TLSv1.3, **considered non-secure).

Updating Zeek network security monitor to integrate parsing of recent TLS cipher suites.

Putting SSH and TLS adoption rate in perspective

Fig. 2. Cross-protocol and cross-site comparison of adoption rate between SSH protocol at NCSA (our analysis) compared with publicly available TLS adoption rate at Cloudflare [6]. NCSA records an average of 0.029% (6044 out of 20,556,816 SSH connections) adoption rate for SSH, while Cloudflare recorded \approx 1.78 percent adoption rate for TLS; more than 99% adoption came from Chrome [6].

Nearly Nonexistent Cryptography in RDP/DNS

- Remote Desktop Protocol (RDP):
 - Can be configured to use TLS encryption and Network-layer authentication but only on Windows 11
 - Out of 26 connections in sample data, only 2 used both encryption and authentication
- Domain Name System (DNS):
 - Not encrypted at all by default -- anyone can see what websites you try to visit, even on the NCSA network
 - Can enable HTTPS encryption on some browsers (Firefox, Chrome etc.)
 - Can also configure DNS to encrypt DNS-over-TLS (DoT)

Top Autonomous Systems with PQC traffic

Fig. 3. A histogram of autonomous systems adopting PQC in SSH showing that top 5 ASes (OARNE, GTT, Google Fiber, Comcast, etc.) from U.S. and Uppsala Lans Landsting (Sweden) accounted for the majority of PQC in the head of the distribution. A long list of ASes is shown in the long tail.

Taxonomy of PQC adoptions in HPC applications

THE CURRENT STATE OF ADOPTION OF SCIENTIFIC APPLICATIONS AND PROTOCOLS REGARDING POST-QUANTUM CRYPTOGRAPHY. N/A ITEMS SHOW IN-PROGRESS OR INCOMPLETE INFORMATION TO DETERMINE PQC READINESS.

Protocols	Applications/ Libraries	Descriptions	Quantum Resistant Implemetation
BHR	ncsa/bhr [19]	Black Hole Router	N/A
DHCP	Internet Protocol	Dynamic Host Configuration Protocol	N/A
DNS	Internet Protocol Suite	Domain Name Service	N/A
DPD	Internet Key Exchange	Dead Peer Detection	N/A
HTTP	Internet Protocol Suite	Hypertext Transfer Protocol	Implement through SSL/TLS
FTP	SFTP	File Transfer Protocol	Implement through OpenSSH SCP
Kerberos	krb5 [20],	Network Authentication Protocol	N/A
	GSSAPI [21]		
Modbus	Modbus/TCP Security	Client/Server Data Communication Protocol	N/A
	[22]		
MySQL	mysql-server [23]	Relational Database Protocol	N/A
NTLM		New Technology LAN Manager	N/A
RADIUS	FreeRADIUS [24]	Remote Authentication Dial-In User Service	N/A
RDP	FreeRDP [25]	Remote Desktop Protocol	N/A
SIP	RTP, SRTP	Session Initiation Protocol	N/A
SMB	Samba [26]	Server Message Block	N/A
SSH	openssh	Secure Shell	sntrup761x25519-sha512@openssh.com
	libssh		key exchange method
SSL/TLS	Open Quantum Safe [27]	Secure Sockets Layer	KEM (BIKE, CRYSTALS-Kyber), Signa-
			ture (CRYSTALS-Dilithium)
SMTP		Simple Mail Transfer Protocol	N/A
SciTokens	scitokens	Federated Authorization for Distributed Scientific Computing	N/A

Future Work

- Creating a web tool that measures Post-Quantum Cryptography at NCSA and other organizations
 - "Network of PQC telescopes"
- Creating a tool to quickly scan a network and analyze its usage of PQC
 - As opposed to what we did manually selecting logs and creating readable output
- Analyzing the risk of and figuring how to mitigate Post-Quantum "cipher suite downgrade attacks"
 - Even modern cryptography deals with downgrade attacks, where an adversary tries to force a connection to use less secure cryptography

Approach & Results

- Described a PQC instrument embedded in network of open-science HPC applications.
- Analyzed Zeek connection metadata (SSH, TLS, RDP) collected at > 400Gbps NCSA network
 - Avg. 0.029% adoption rate of sntrup761 for SSH (out of 20M connections from 2023-2024 at NCSA)
- Systematically characterized current adoption of HPC authentication libraries, applications [1] (Published in IEEE QCE 2024)

Future Work & Discussions

- Disseminating real-time and snapshot of adoption results with NIST & community
- Identify traces of novel attacks in the wild (e.g., ciphersuite downgrade attacks?)
- Work with HPC cyberinfrastructure such as SciTokens to identify and overcome challenges.

$\mathbf{F}_{2} \mathbf{2} \mathbf{C} \operatorname{coss-protocol} and \operatorname{cross-site} comparison of$

Adoption rate in SSH, TLS, and ASes

Acknowledgements

· SSH advolter tale

TrustedCI, NSF, NCSA, UIUC

TLS action take

[1] Jakub Sowa, Jakub Sowa, Bach Hoang, Advaith Yeluru, Steven Qie, Santiago Nunez Corrales, Anita Nikolich, Ravishankar Iyer, **Phuong Cao** "Post-Quantum Cryptography (PQC) Network Instrument: Measuring PQC Adoption Rates and Identifying Migration Pathways" In 2024 IEEE International Conference on **Quantum Computing and Engineering** (**QCE**), Montreal, Canada

Post Quantum Cryptography Adoption Rate & Migration

Potential Solutions

- A TLS v2.0, introducing PQC by default, focusing on HPC communications
 - Securing all network traffic even against quantum adversaries
- Potentially configure most network protocols to run over this TLS 2.0
 - A **TLS Termination Proxy** can be used as a wrapper around current infrastructure to make it easier to secure traffic
 - Streamlining and simplifying cryptography and security
- More generally, make sure to keep software like SSH protocols and browsers updated to use the safest cryptography