

PBP: Post-training Backdoor Purification for Malware Classifiers

<u>Dung (Judy) Nguyen</u>, Ngoc N. Tran, Taylor T. Johnson, Kevin Leach Work published at NDSS'25

Machine Learning for Malware Classifiers

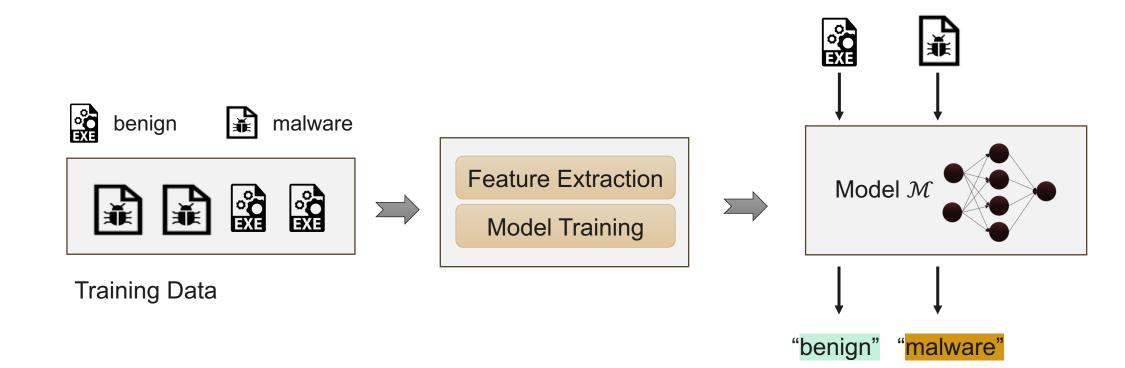
ML and DL have been increasingly used for Malware Classification

Training requires a large database, collecting data in the wild can introduce risks

VIRUSTOTAL

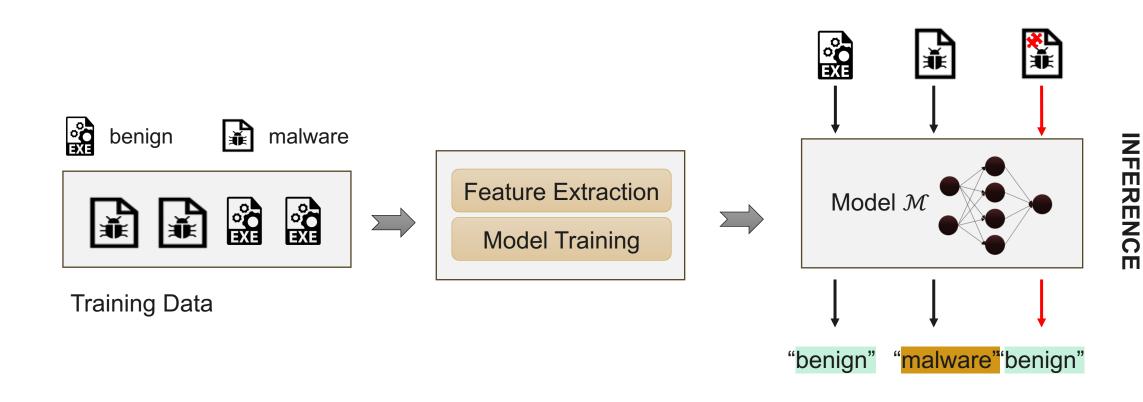
VIRUSSIGN

Training Malware Classifier: An Example



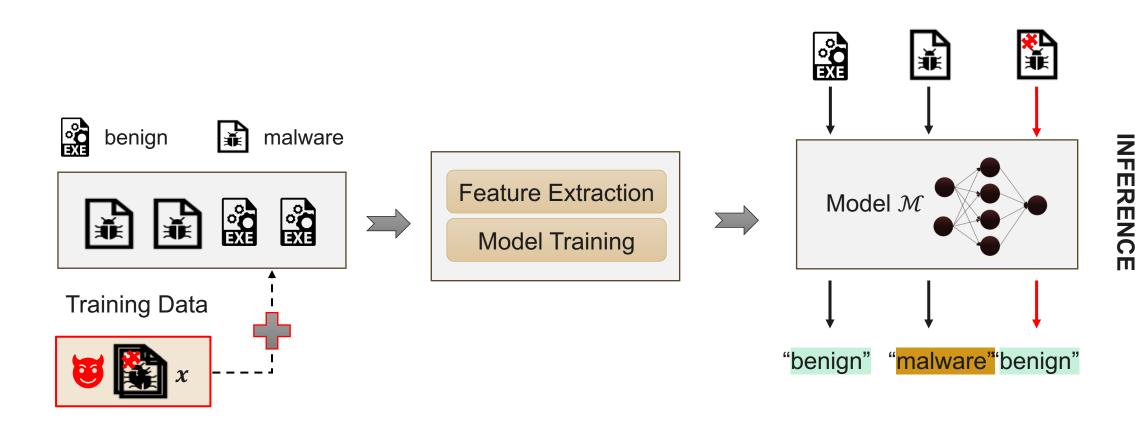
INFERENCE

Backdoor Attack Pipeline: An Example



The backdoored model will misclassify \succ inputs given an embedded trigger 🛠

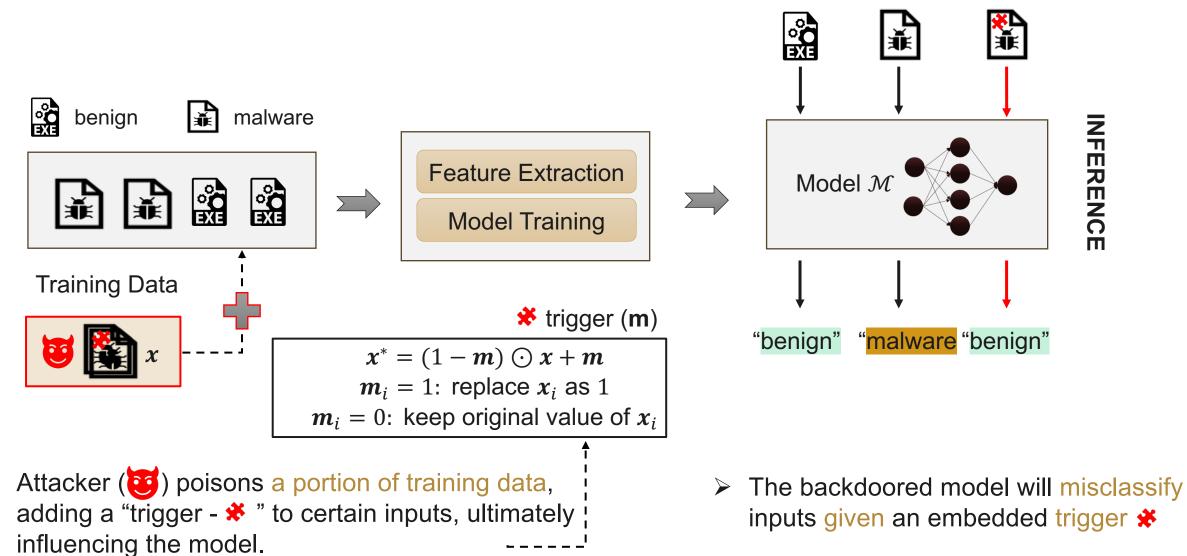
Backdoor Attack Pipeline: An Example



Attacker (😇) poisons a portion of training data, adding a "trigger - * " to certain inputs, ultimately influencing the model.

The backdoored model will misclassify \succ inputs given an embedded trigger 🛠

Backdoor Attack Pipeline: An Example



INFERENCE

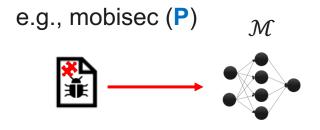
Threat Models: •

- Adversary has no control on training process
- Stealthy backdoor: poisoned training set (poisoning rate) (<0.5—1%)
- Clean-label attack: not changing the labels of poisoning set

Attack Results:

- Almost 100% Attack Success Rate (ASR²)
- Can bypass existing backdoor defenses

Poisoning Rate	Targeted Family
0.005	Mobisec
	Tencentprotect
0.1	Mobisec
	Tencentprotect



²**ASR:** How often a model classify a poisoned malware sample into benign?

ASR

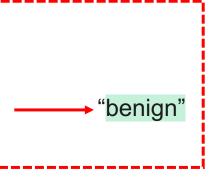
0.980
0.944
0.980
0.944

'benign"

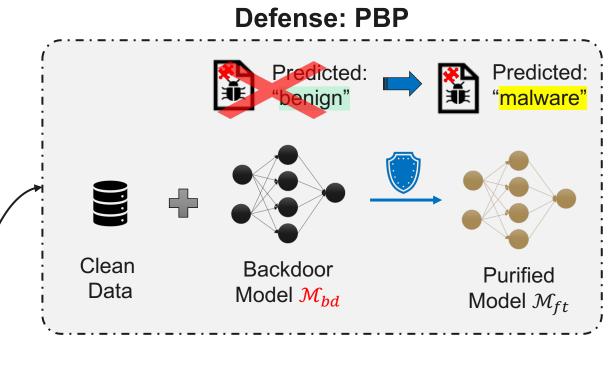
- **Threat Models:**
 - Adversary has no control on training process
 - Stealthy backdoor: poisoned training set (poisoning rate) (<0.5—1%)
 - Clean-label attack: not changing the labels of poisoning set
- **Attack Results:**
 - Almost 100% Attack Success Rate (ASR²)
 - Can bypass existing backdoor defenses
- Why backdoor attack is hard to detect:
 - Not know the target (P) nor the trigger (*)
 - Negligible modification required, i.e., minimal fingerprints

e.g., mobisec (P)	${\mathcal M}$
*	

Poisoning Rate: 0.5%, Mask size ratio: 64/10000



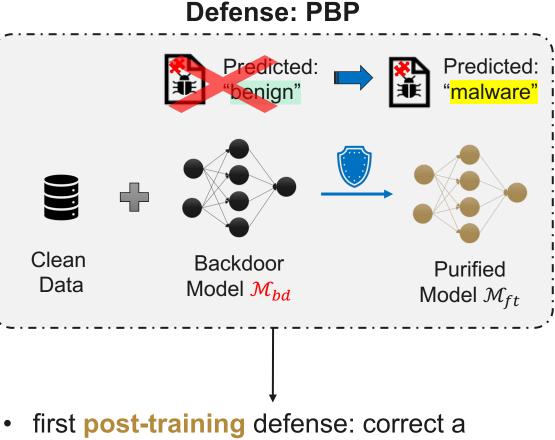
- **Threat Models:**
 - Adversary has no control on training process
 - Stealthy backdoor: poisoned training set (poisoning rate) (<0.5—1%)
 - Clean-label attack: not changing the labels of poisoning set
- **Attack Results:**
 - Almost 100% Attack Success Rate (ASR²)
 - Can bypass existing backdoor defenses
- Why backdoor attack is hard to detect:
 - Not know the target (P) nor the trigger (*)
 - Negligible modification required, i.e., minimal fingerprints



¹ Yang, Limin, et al. "Jigsaw puzzle: Selective backdoor attack to subvert malware classifiers." 2023 IEEE Symposium on Security and Privacy (SP). IEEE, 2023.

9

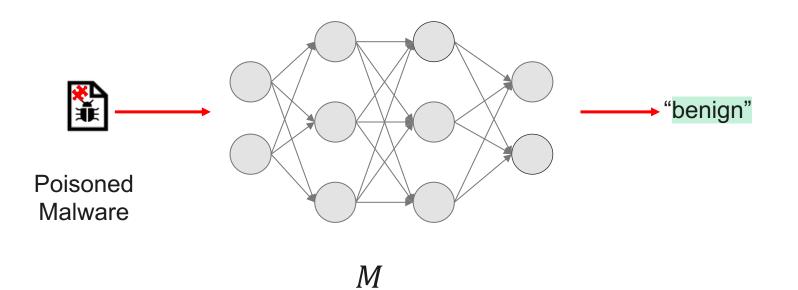
- **Threat Models:**
 - Adversary has no control on training process
 - Stealthy backdoor: poisoned training set (poisoning rate) (<0.5—1%)
 - Clean-label attack: not changing the labels of poisoning set
- **Attack Results:**
 - Almost 100% Attack Success Rate (ASR²)
 - Can bypass existing backdoor defenses
- Why backdoor attack is hard to detect:
 - Not know the target (P) nor the trigger (*)
 - Negligible modification required, i.e., minimal fingerprints



- backdoored malware classifier
- requires **no prior knowledge** of attack
- practical assumption: limited clean data, • various architectures

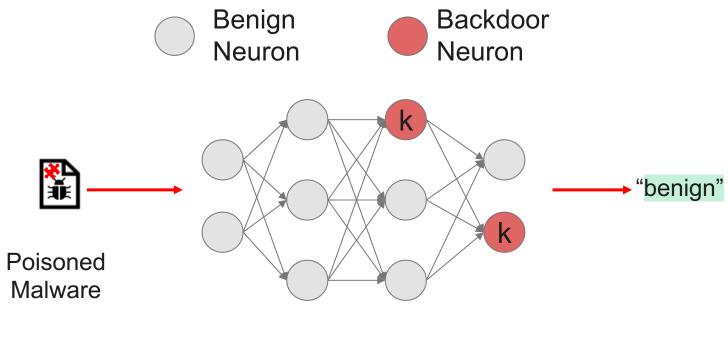
10

Insight: Backdoor Neurons



Li, Boheng, et al. "Purifying Quantization-conditioned Backdoors via Layer-wise Activation Correction with Distribution Approximation." Forty-first International Conference on Machine Learning. 2024.

Insight: Backdoor Neurons

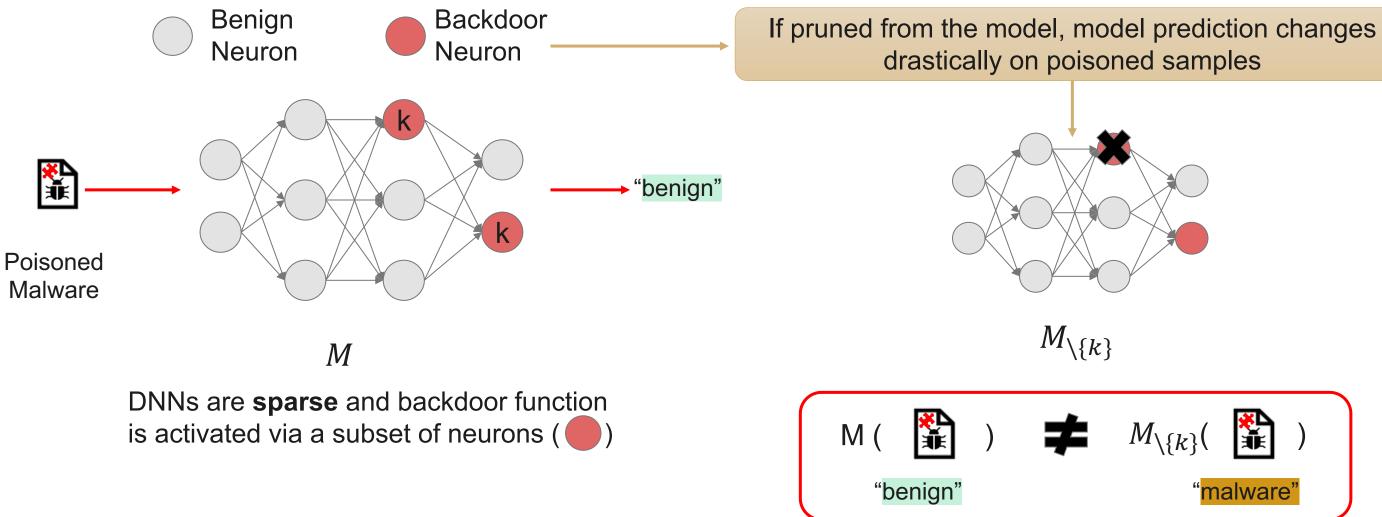


M

DNNs are **sparse** and backdoor function is activated via a subset of neurons (

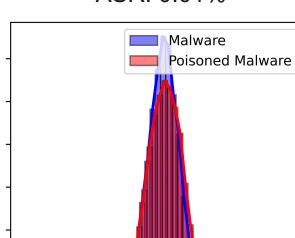
Li, Boheng, et al. "Purifying Quantization-conditioned Backdoors via Layer-wise Activation Correction with Distribution Approximation." Forty-first International Conference on Machine Learning. 2024.

Insight: Backdoor Neurons

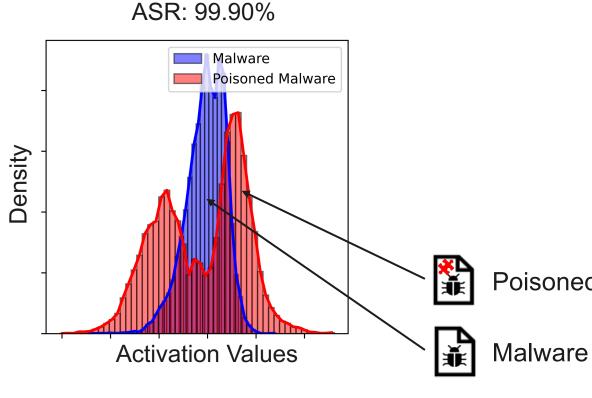


Li, Boheng, et al. "Purifying Quantization-conditioned Backdoors via Layer-wise Activation Correction with Distribution Approximation." Forty-first International Conference on Machine Learning. 2024.

Insight: Activation of Backdoor Neurons



ASR: 0.01%



Clean model: activates given two groups **similarly**.

Activation Values

Backdoor model: activates given two groups differently.

Density

Poisoned Malware

Insight: Activation of Backdoor Neurons

ASR: 99.90% ASR: 0.01% Malware Malware Poisoned Malware Poisoned Malware Density Density **Activation Values Activation Values Clean model:** activates given Backdoor model: activates given two groups **similarly**. two groups **differently**.

Dung (Judy) Nguyen

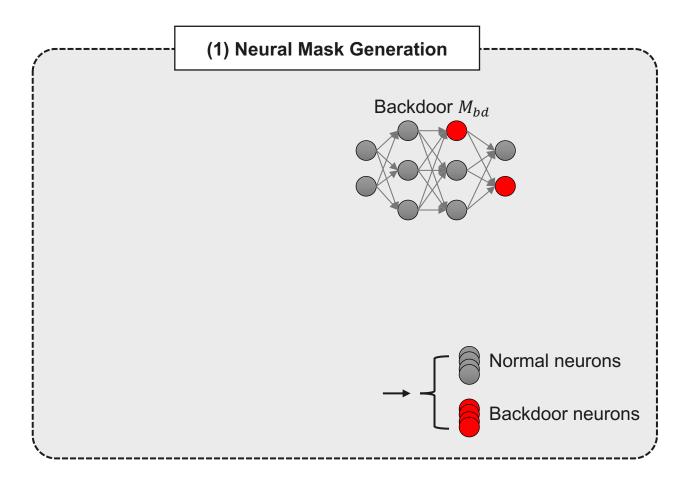
PBP: The PURIFIED model should preserve the activation distribution for malware, with or without a trigger (*)

Poisoned Malware

Malware

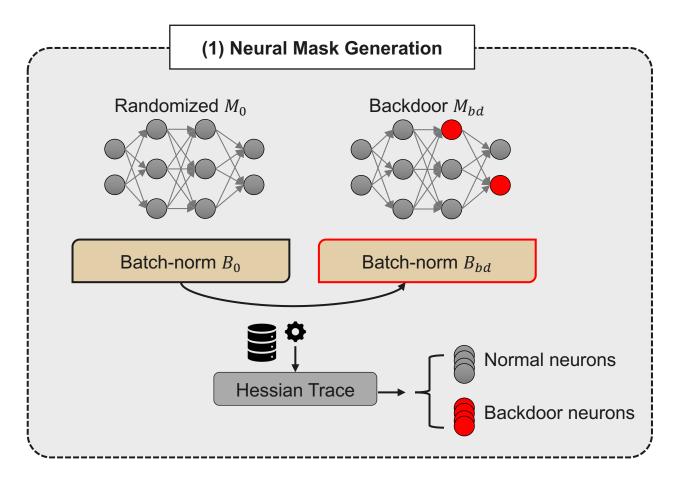
¥

PBP: Methodology



- Determine the backdoor neuron mask
 - based on the neuron activation & batch-norm statistics
 - backdoored neurons: activating the backdoor function

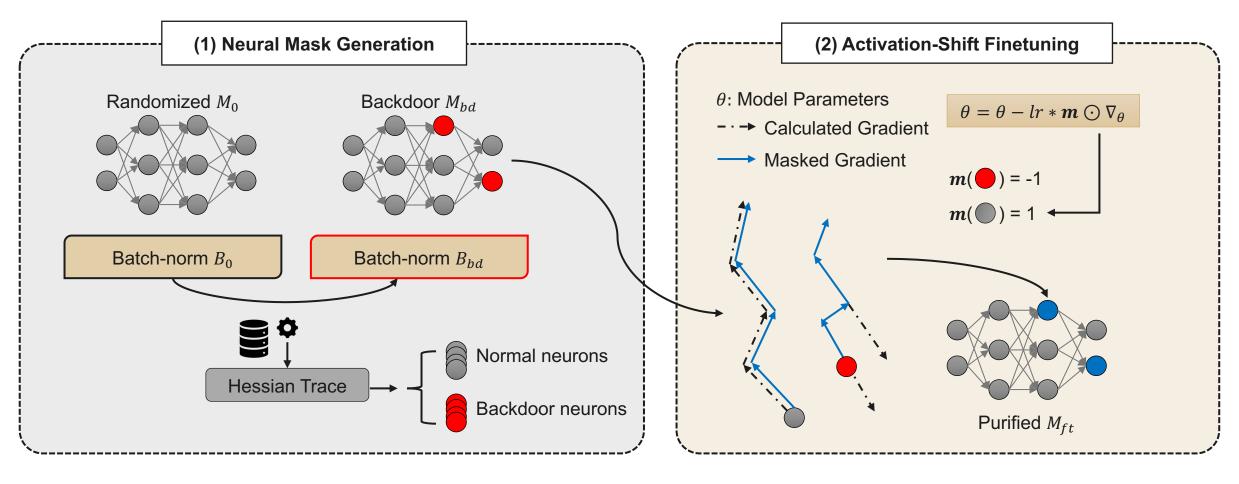
PBP: Methodology



- Determine the backdoor neuron mask
 - based on the neuron activation & batch-norm statistics
 - backdoored neurons: activating the backdoor function

17

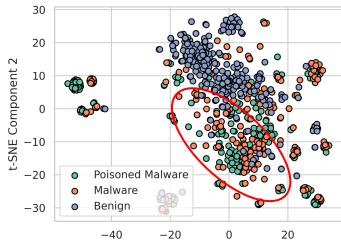
PBP: Methodology



- Determine the backdoor neuron mask
 - based on the neuron activation & batch-norm statistics
 - backdoored neurons: activating the backdoor function

- Masked (m) reversing during fine-tuning:
 - go oppositely the direction of backdoor neurons
 - keep clean neurons unaffected

Experiment: Datasets



Universal Backdoor	Family-targeted backdoor
Severi, Giorgio, et al.	Yang, Limin, et al.
USENIX Security 2021	Oakland 2023
EMBER ¹ (Anderson et al. 2018)	AndroZoo ² (Allix et al. 2026)
800k Windows PEs	149k APKs
2351 features	> 1000 features
Attack to all families using universal watermark	Target only a specific family using family-dedicated mask

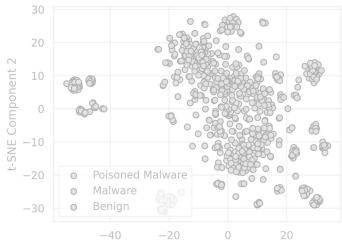
¹ Anderson, Hyrum S., and Phil Roth. "Ember: an open dataset for training static pe malware machine learning models." arXiv preprint arXiv:1804.04637 (2018). ² Allix, Kevin, et al. "Androzoo: Collecting millions of android apps for the research community." Proceedings of the 13th international conference on mining software repositories. 2016.

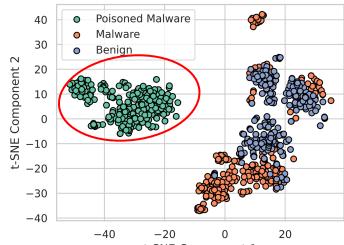
I. Attack to all families

t-SNE Component 1

Experiment: Datasets

Universal Backdoor	Family-targeted backdoor
Severi, Giorgio, et al. USENIX Security 2021	Yang, Limin, et al. Oakland 2023
EMBER ¹ (Anderson et al. 2018) 800k Windows PEs 2351 features	AndroZoo ² (Allix et al. 2026) 149k APKs > 1000 features
Attack to all families using universal watermark	Target only a specific family using family-dedicated mask





¹ Anderson, Hyrum S., and Phil Roth. "Ember: an open dataset for training static pe malware machine learning models." arXiv preprint arXiv:1804.04637 (2018). ² Allix, Kevin, et al. "Androzoo: Collecting millions of android apps for the research community." Proceedings of the 13th international conference on mining software repositories. 2016.

Severi et al. Attack to all families

t-SNE Component 1

Yang et al. Target only a specific family

t-SNE Component 1

Experiment: Datasets

Universal Backdoor

Severi, Giorgio, et al.

USENIX Security 2021

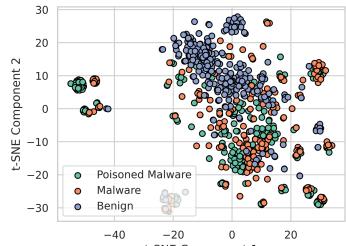
EMBER¹ (Anderson et al. 2018)

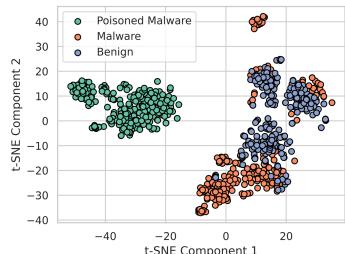
800k Windows PEs

2351 features

Attack to all families using

universal watermark





Metrics:

Dung (Judy) Nguyen

- Attack Success Rate (ASR \downarrow): How often a model classify a poisoned malware sample into benign? (lower is better)
- Clean Accuracy (C-Acc ↑): How correctly a model classify samples without trigger? (higher is better)

¹ Anderson, Hyrum S., and Phil Roth. "Ember: an open dataset for training static pe malware machine learning models." arXiv preprint arXiv:1804.04637 (2018) ² Allix, Kevin, et al. "Androzoo: Collecting millions of android apps for the research community." Proceedings of the 13th international conference on mining software repositories. 2016.

Family-targeted backdoor

Yang, Limin, et al.

Oakland 2023

AndroZoo² (Allix et al. 2026)

149k APKs

> 1000 features

Target only a specific family using

family-dedicated mask

Severi et al. Attack to all families

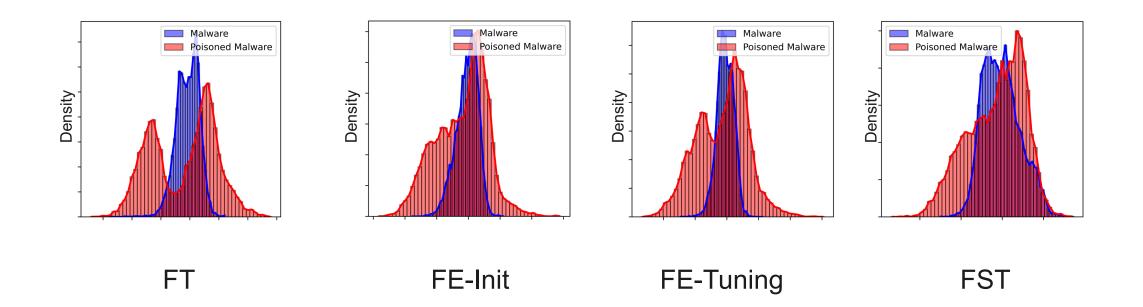
t-SNE Component 1

Yang et al. Target only a specific family

t-SNE Component 1

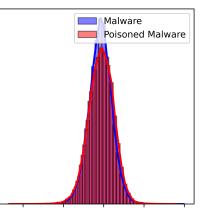
Experiment: Results

Other baselines: fine-tuned models still activate differently between malware and poisoned malware



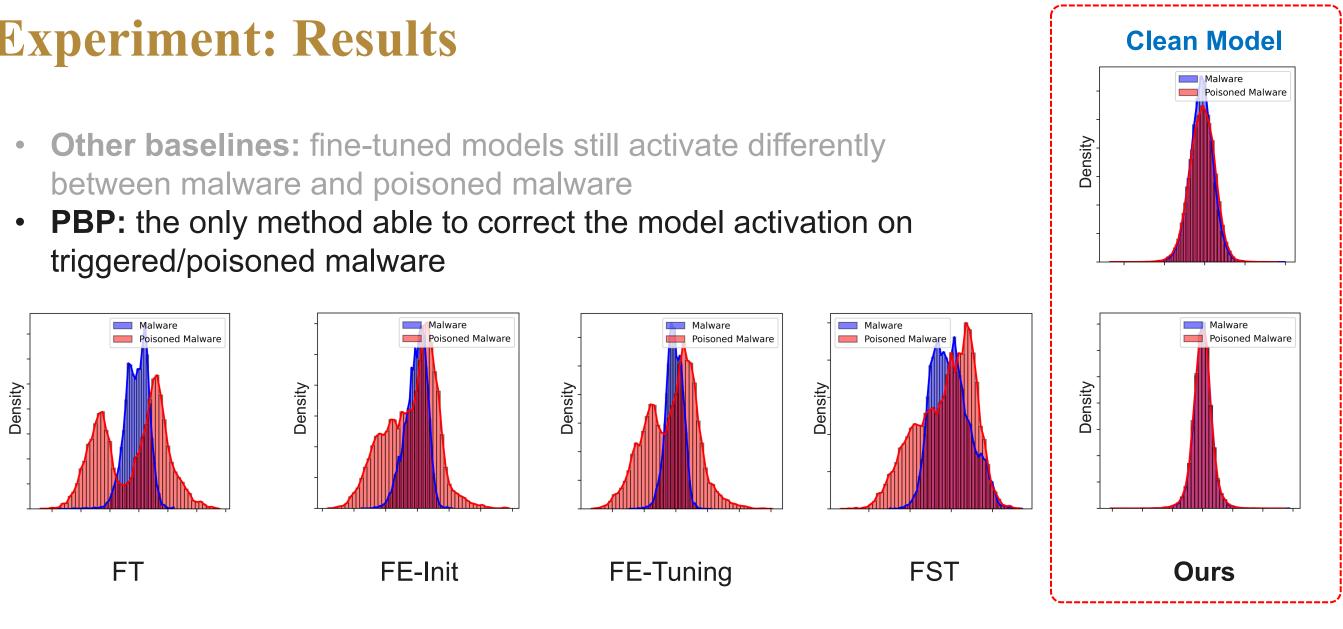
Model activation of different fine-tuning methods on malware samples with and without the trigger

Clean Model



Experiment: Results

- **Other baselines:** fine-tuned models still activate differently between malware and poisoned malware
- **PBP:** the only method able to correct the model activation on triggered/poisoned malware



Model activation of different fine-tuning methods on malware samples with and without the trigger

Results: Quantitative Results

- **PBP:** the only method able to purify the backdoor across different scenarios (reducing ASR \rightarrow 0%)
- **Other baselines:** ASR > 90%, unstable

Dataset	Poisoning Pre-trained		ained	FT FT-		FT-init FE-tuning		ining	LP		FST		Our	rs	
	Rate	C-Acc	ASR	C-Acc	ASR	C-Acc	ASR	C-Acc	ASR	C-Acc	ASR	C-Acc	ASR	C-Acc	ASR
	0.005	99.01	99.23	99.10	99.50	99.07	99.27	99.11	99.50	99.11	99.52	99.07	99.61	96.57	17.83
	0.01	98.94	98.79	99.06	99.54	99.04	99.41	99.03	99.16	99.08	99.39	99.04	99.59	96.52	15.44
EMBER	0.02	98.98	99.43	99.08	99.69	99.01	99.52	99.06	99.63	99.10	99.61	99.04	99.66	96.57	17.83
	0.05	98.99	99.43	99.08	99.87	99.06	99.91	99.07	99.82	99.03	99.83	99.90	<u>99.76</u>	96.41	<u>17.58</u>
	0.005	98.53	82.91	98.63	81.53	98.62	82.36	98.55	70.38	98.57	98.69	98.66	81.12	96.76	3.83
Andro Zoo	0.01	98.56	99.90	98.67	100.0	98.67	98.62	98.60	97.07	98.58	99.90	98.68	98.76	96.88	13.26
AndroZoo	0.02	98.58	99.45	98.45	100	98.53	56.23	98.55	0.03	98.57	98.86	98.55	<u>0.01</u>	96.64	4.73
	0.05	98.59	99.72	98.58	100.0	98.62	99.90	98.57	56.09	98.53	100.0	98.63	1.90	96.86	<u>0.89</u>

Methods using random reinitialization, or shifting final layers only are not effective in erasing malware classifiers.

Experiment: Stability

- Poisoning Data Rate (PDR) (Fig. 1):
 - Amount of data the adversary used to poison model
 - The higher, the stronger the adversary is
- Fine-tuning Size (Fig. 2):
 - Amount of data the defender used to purify the model

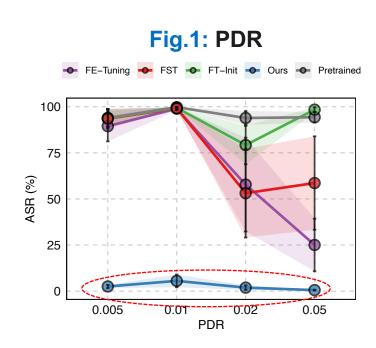
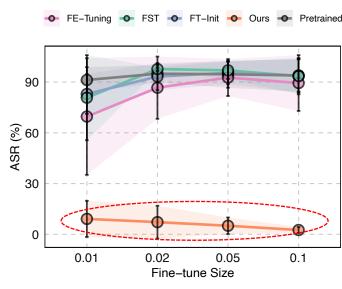


Fig. 2: Fine-tuning Size

PBP: Most effective and stable under different adversary power and defender capability, while other baselines fail or deviate in their performance.



Increasing Poisoning Rate!

Increasing Finetuning

Size!

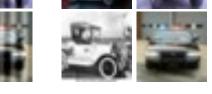
Dung (Judy) Nguyen

Conclusion

- PBP: post-training defense against backdoor attacks in malware classifiers
 - SOTA performance (i.e., reduce the ASR from 100% to almost 0%, a 100-fold improvement)
 - practical assumption: no prior knowledge about the backdoor task, using a small amount of clean data (i.e., 1% of training data)
 - stability under different attack settings
- Potential applications on broader domains (CV) \bullet

Github: github.com/judydnguyen/pbp-backdoor-purification-official ${}^{\bullet}$





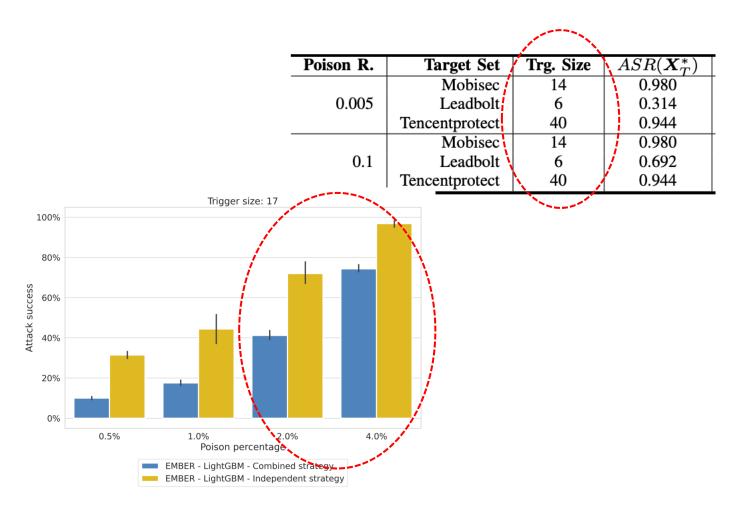
Email me (Dung Nguyen) at: dung.t.nguyen@Vanderbilt.Edu

Icons by Microsoft, svgrepo.com, flaticon

BACKUP SLIDES

Stealthy Backdoor Can Bypass Multiple defenses

Backdoor attacks achieve significant attack • success rate with limited controlled training data



Attacks from Yang et al. [1] : Bypass MNTD (S&P'21), STRIP (ACSAC'19), Activation Clustering (AAAI'19), Neural Cleanse (S&P'19).

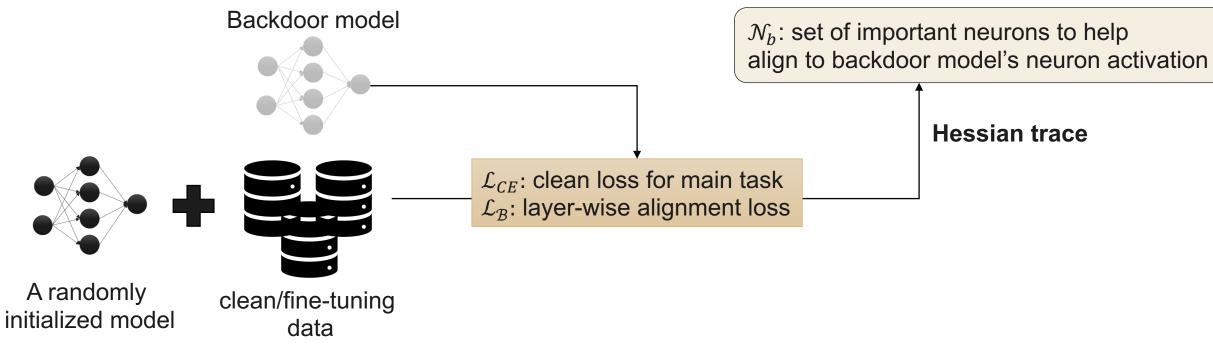
E.g., MTND detection results

	Target family	AUC (Avg ± Std)
	Mobisec	0.52 ± 0.03
	Leadbolt	0.55 ± 0.04
	Tencentp.	0.53 ± 0.03
-	Baseline	0.96 ± 0.08

- Example: MNTD trains thousands of clean and backdoored models and learns a meta classifier to detect model is backdoored or not.
 - highly effective against the conventional attack (AUC=0.960), but ineffective against their selective backdoor attack (AUC<0.557).

Neuron Mask Generation

- Hessian trace and top eigenvalue.
 - For a loss function \mathcal{L} , the Hessian at a given point θ' in parameter space is represented by the gradient matrix $\nabla^2_{\theta} \mathcal{L}(\theta') \rightarrow$ importance score for a neuron given a training task.
 - Hessian trace $tr\left(\nabla^2_{\theta}\mathcal{L}(\theta')\right)$ and the top eigenvalue $\lambda_{\max}\left(\nabla^2_{\theta}\mathcal{L}(\theta')\right)$ can be efficiently estimated using methods from randomized numerical linear algebra.



Activation-shift Fine-tuning

Use **MASKED** reversed learning rate during fine-tuning: Given a model whose learning objective is \mathcal{L} , its learnable parameters θ_t are updated at the t_{th} iteration:

$$\theta_{t+1} \leftarrow \theta_t - \frac{\partial \mathcal{L}}{\partial \theta_t},$$

where $\frac{\partial \mathcal{L}}{\partial \theta_{t}}$ represents the model update gradient.

Correspondingly, the reversed learning process:

$$\theta_{t+1} \leftarrow \theta_t + \frac{\partial \mathcal{L}}{\partial \theta_t}$$

- For each iteration: $\theta_{t+1} = \theta_t \eta \odot \mathbf{m} \odot \frac{\partial \mathcal{L}}{\partial \theta_t}$
 - $m \in \{-1, 1\}^{|\theta|}$

•
$$\eta_{\theta}^{i} = \begin{cases} -\eta, \text{ if } i \in \mathcal{N}_{b}, \\ \eta, \text{ otherwise.} \end{cases}$$

Insight: By reversing the update at the important neurons for aligning model activation of the fine-tuning model and the original/backdoored model, we achieve the new model with activation far from the backdoored one.

Alg	orithm 1: PBP
Ir	put : Fine-tuning data \mathcal{D}_{ft}
	iteration T , pre-finetu
	learning rate η' , learn
0	utput : The fine-tuned model
1 /:	* Neuron mask generation */
2 In	itialize $\tilde{\theta}$;
3 fo	or $i \in \{1 \dots T'\}$ do
4	for $batch(x, y) \in \mathcal{D}_{ft}$ do
5	$\mathcal{L}_{align}(x,\theta_0) \triangleright \text{calc}$
6	$\mathcal{L}_{re} = \mathcal{L}_{ce} \left(f_{\tilde{ heta}} \left(\boldsymbol{x} \right), y \right)$
7	$\mathcal{L}_{re} = \mathcal{L}_{ce} \left(f_{ ilde{ heta}} \left(x ight), y ight) \ ilde{ heta} = ilde{ heta} - \eta' \cdot rac{\partial \mathcal{L}_{re}}{\partial ilde{ heta}};$
8	end
9 ei	nd
10 入	$\mathcal{N}_m = \operatorname{argmax}_k \ \nabla_{\theta} \mathcal{L}_{re}(\tilde{\theta}) \ _2;$
	* Activation-shift fine-tuning */
12 m	$\mathbf{n} := [-1,1]^{ \tilde{\theta} }, \text{ where } m_i = -$
13 θ_0	$\theta_0 = \theta_0 + \mathcal{N}(0, \sigma^2 I);$
14 fo	r iteration t in $[1, \ldots, T]$ do
15	for batch (\mathbf{x}, \mathbf{y}) in \mathcal{D}_{ft} do
16	$ heta_{ ext{t}} = heta_{ ext{t}-1} - \eta \odot rac{\partial \mathcal{L}_{ ext{ce}}}{\partial \mathcal{L}_{ ext{ce}}}$
17	end
18	if $t \mod 2 = 1$ then
10	
19	$ heta_{t} = heta_{t-1} - \eta \odot \boldsymbol{m} \odot$
20	end
	nd
22 re	eturn θ_T

- t, initial backdoor model θ_0 , total tune total iteration T', pre-finetune rning rate η . el $\hat{\theta}$ after T fine-tuning iterations;
- lculate alignment loss using Eq. 3; $() + \alpha * \mathcal{L}_{align};$

/
-1 if
$$i \in N_m$$
 else 1;

$$\frac{\partial \left(f_{\tilde{\theta}}(\boldsymbol{x}),y\right)}{\partial \theta_{t}};$$

$$ightarrow rac{\partial \mathcal{L}_{\mathrm{ce}} \left(f_{\tilde{\theta}}(\boldsymbol{x}), y
ight)}{\partial \theta_t};$$

Ablation Study: Fine-tuning Dataset Construction

TABLE IX: PBP's efficacy with different overlapping ratios of the fine-tuning dataset with the original training dataset.

Overlapping		AndroZoo		EMBER			
Fraction	C-Acc (†)	ASR (\downarrow)	DER (†)	$ $ C-Acc (\uparrow)	ASR (\downarrow)	DER (†)	
0.0	96.86	0.89	98.55	96.41	17.58	89.64	
0.2	96.79	0.03	98.95	96.32	17.42	89.67	
0.4	94.98	0.03	98.04	96.14	12.86	91.86	
0.6	94.55	0.03	97.83	96.44	15.20	92.12	
0.8	96.42	0.03	98.76	96.44	15.84	90.52	
1.0	95.92	0.03	98.51	96.47	14.47	91.12	
Backdoored	98.59	99.72	_	98.99	99.43	_	

• Defender can choose to reuse a part of the training data

- defender to collect data

to erase the backdoor as low to 3% implies a practical/flexible way for

Ablation Study: Fine-tuning Dataset Construction

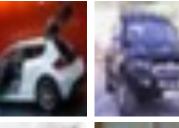
TABLE X: PBP's efficacy with different positive per negative • class ratios with both datasets.

Class		AndroZoo		Class	EMBER			
Ratio	Ratio $\overline{\text{C-Acc}(\uparrow) \text{ASR}(\downarrow) \text{DER}(\uparrow)}$ Ratio		C-Acc (†)	ASR (\downarrow)	DER (†)			
0.01	96.12	49.15	74.04	0.10	83.21	35.02	74.32	
0.04	96.92	0.14	98.96	0.20	94.02	21.31	86.58	
0.08	96.86	0.89	98.55	0.40	95.81	25.92	85.17	
0.10	96.90	0.27	98.88	0.60	95.87	29.03	85.20	
0.12	97.53	0.00	99.16	0.80	96.93	20.79	88.29	
0.15	97.26	0.07	99.33	1.00	96.41	17.58	89.64	
Backdoored	98.59	99.72	_	Backdoored	98.99	99.43	_	

- the performance of PBP
- ۲ 0.04:1!

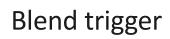
Defender can collect more malwares samples, which can indeed improve PBP can work from pos/neg ratio of

Experiment: Computer Vision Backdoors



Adding a `square`





Adding noise

Blend sinuous signal

PBP outperforms FST (NeurIPS'24) on CIFAR10 dataset with four backdoor attack methods

PDR	Model	Bad	Net	SI	G	Blended		
		C-Acc	ASR	C-Acc	ASR	C-Acc	ASR	
	No-defense	93.22	83.89	92.23	76.95	92.62	97.89	
0.005	FST	88.49	2.02	87.29	17.14	88.79	28.19	
	PBP	88.97	2.44	86.47	0.82	87.25	10.32	
	No-defense	93.17	87.12	91.47	80.48	92.35	95.47	
0.01	FST	89.04	1.53	87.01	13.12	88.67	29.10	
	PBP	88.90	2.00	86.27	4.02	88.70	9.40	
	No-defense	92.51	90.39	91.68	88.60	93.07	98.54	
0.02	FST	88.23	2.13	87.00	6.18	88.94	24.75	
	PBP	89.26	2.41	86.11	1.83	88.73	5.21	
	No-defense	92.52	94.30	93.20	93.77	93.11	99.44	
0.05	FST	89.10	2.61	88.65	8.73	89.81	23.99	
	PBP	88.51	3.03	87.40	0.65	89.63	4.63	

Dung (Judy) Nguyen