Automated SysML
. Model to Memory-Safe
Language Code Generation
~with In grated Al Assistance

Q . .
%né Collins Aerospace David S. Hardin, Ph.D.

AnRTX Business Applied Research & Technology

]
Collaborators on this Presentation

« Collins Aerospace: Isaac Amundson, Junaid Babar, Darren Cofer,
Saqib Hasan, Karl Hoech, Amer Tahat

« Kansas State University. Jason Belt, John Hatcliff, Robby

« Aarhus University (Denmark). Stefan Hallerstede

N .
%,& Collins Aerospace 2
AnRTX Business
li rospace. | This document does not include any export controlled technical data

]
DARPA PROVERS

Pipelined Reasoning of Verifiers Enabling Robust Systems

Develop automated, scalable formal methods tools that are
integrated into traditional development pipelines using “proof
engineering” techniques

Enable traditional product engineers to incrementally produce
and maintain high-assurance national security systems

\ .
%\,/é Collins Aerospace 3

So How Did We Get Here?

DARPA High Assurance Cyber Military Systems (HACMS) DEF CON 29
frivey

We brought a hackable quadcopter with defenses built
on our HACMS program to @defcon
#AerospaceVillage. As program manager
@raymondrichards reports, many attempts to
breakthrough were made but none were successful.
Formal methods FTW!

HACMS ULB

> Pl o) 9:59/2507 Loonwerks.com/projects/hacms = | | o5k T M [pscotiordes —
\/ .
% Collins Aerospace 4
AnRTX Business

© 2025 Collins Aerospace. | This document does not include any export controlled technical data.

Compositional Reasoning for Model-Based Systems Engineering
Assume Guarantee REasoning Environment (AGREE)

« Assume-Guarantee annex for AADL architecture models
— Assumptions describe the expectations that a component has on the environment
— Guarantees describe bounds on the behavior of the component when assumptions are valid
« Compositional analysis to prove correctness of:
— Component interfaces (component assumptions are satisfied by upstream guarantees)
— Component implementations (component assumptions and subcomponent guarantees satisfy guarantees)

e N N
top_level.Impl
(« (« 7\ (= 7\
A sub B sub C sub
Input Input Output Input Output Input2 Output Output
o> > P
A: Input< 10 ‘ A: Input < 20 II I G: Output < 2%Input ‘ A: Input < 20 II [G: Output < Input + 15 ’ G: mode >= 0 -> mode > pre(mode) ’ G: Output < 50
/\ ’ G: Output = if mode = 3 then (Input1 + Input2) else 0 ‘ G: mode >=0
(.
/ Input1
[Input < 20 2 Output < 38 t
J
. J

N .
= g Collins Aerospace 5
AnRTX Business
© 2025 Collins Aerospace. | This document does not include any export controlled technical data.

Resolute

An Assurance Pattern Language and Evaluation Tool for Architecture Models

* The structure of the system architecture dictates the structure of the
assurance case

* Design patterns - Assurance patterns
« Extension of AADL language
» Assurance case instantiated with elements from AADL model

» Specify logical rules for evaluating evidence
« Automated evaluation

goal memory_protection(p : process) <=

*% “Process " p " memory is protected from alterations by other processes" **

strategy "Argue over bound processes";
property(p, 0S) = "seL4" or
forall (mem : memory) . bound(p, mem) =>
forall (q : process) . bound(q, mem) => memory safe_ process(q))

%\:I/é Collins Aerospace

AnRTXBusiness

© 2025 Collins Aerospace. | This document does not include any export controlled technical data.

eeeeeee

AAAAAAA

AdvoCATE (NASA)

6

Oops! l

>
[o [- ——— - - - S 5 G e Em = En = = = . - - .-
H Radio* I OR_Filter* [} H UxAS*] WaypointManager* H
[.' L} I] " I 1 I .
rhdio recv rdcv data OperatingRegion i Ir)put Output CZperalingRegion 1 " 1 " send da(a. uart_send
L]
H 1 1 .' 1 MissionCommand MissionCommand 1
I 3 A N > #
AutomationResponse AutomationResponse 3
.' LineSearchTask S P LineSearchTask pon . PO 1 recv_data uart_recv
&£ . [}
radio_send fend data ?, > ? 1 H .' "
AutomationRequest AutomationRequest I 1 AirVehicleState AirVehicleState "
N > I 1 ja—c—Ua
! 1] -] ’ i
S — [———— | A ———

g/ Problems [T Properties B Console | @ Assurance Case X | i@ AGREE Results
v [¥ Req_WellFormed_OperatingRegion(MissionComputer_Impl_Instance : MC::MissionComputer.Impl, "Req_Wellformed_OperatingRegion", MissionComputer_Impl_Instance : MC::MissionCo

v [[permit_well_formed_OR_data] UxAS component shall only receive well-formed messages

~ [AGREE properties passed
[E AGREE analysis was run

w [Li] Filter OR_Filter : SW::OperatingRegion_Filter.Impl is properly added to component UxAS : Waterways_UxAS::Waterways.i
«/ A CASE_Filter OR_Filter : SW::OperatingRegion_Filter.Impl is connected to component UxAS : Waterways_UxAS::Waterways.i by connection SW::SW.Filter.filter_out_connection

‘ [E] Component OR _Filter : SW::OperatingRegion_Filter.Impl cannot be bypassed
v « Component property implemented

« OR_Filter : SW::OperatingRegion_Filter.Impl implementation is appropriate for OS

« Component proof checked

\ .
= "% Collins Aerospace

AnRTXBusiness
© 2025 Collins Aerospace. | This document does not include any export controlled technical data.

University of New South Wales
selL4

Proofcraft
’ Security. Performance. Proof.

selL4 is...
An operating

Formally Verified Microkernel

« selL4 microkernel guarantees
partitioning of components and
communication, backed by
computer-checked proofs

« selL4 guarantees no infiltration, system microkernel
exfiltration, eavesdropping, A hypervisor
. . Proved correct
interference, and provides fault Bravably secure

containment for untrusted code Fast

» Ensures soundness of the MBSE
design process — components
can be analyzed separately and
composed safely

\ .
M Collins Aerospace 8

AnRTXBusiness
© 2025 Collins Aerospace. | This document does not include any export controlled technical data.

- 001}
DARPA Cyber Assured Systems Engineering (CASE)

» Objective: develop the necessary design, analysis and verification tools that
enable engineers to build cyber-resilient systems, including legacy elements

 BriefCASE
— Integrated model-based systems engineering tool suite based on AADL models

— Analyze architecture models for cyber vulnerabilities and generate cyber resiliency
requirements

— Transform system architecture models to satisfy cyber-resiliency requirements

— Synthesize high-assurance component implementations from formal specifications

— Generate software integration code directly from verified architecture models

— Build to a formally verified secure microkernel target (seL4)

HAMR C ation: Impl

— Assurance:
 Check model conformance to standards

N mb[L Problems [T] Properties El Console (g AGREE Results §3
| Property

w « Verification for
» « Contract Guz

» Verify system design and implementation using formal methods
. » « This compon -
» Document proof of correctness with an assurance case b/ FlightPlanne =

) +/ AttestationG s 8
p </ Filter consist
) « Monitor cons :
» « Component ¢

N .
= g Collins Aerospace
AnRTX Business
© 2025 Collins Aerospace. | This document does not include any export controlled technical data.

Resolint
A linter tool for AADL models

. . . dispatch_protocol_specified() <=
. . Modellng Guldellnes *+* "Threads should have the Dispatch_Protocol property specified” *+
« Define rules in Resolute tha rortd &+ e
Lint_check(t, has_proparty(t, Dispatch_Protocol))
d t d I' rule § Threads should have the dispatch_protocol . I::> valid_dispatch_protocol() <=
CO rrespon O l I IO e Ing dispatch_protocol_specified | poperty specified . % “Threads can only specify a dispatch_protocol property of periodic or sporadic® **
forall (t : thread) . lint_check(t, has_property(t, Dispatch_Protocol) =>
(property(t, Dispatch_Protocol) = "Sporadic” or property(t, Dispatch Protocol) = "Periodic”))

rule

Threads can only specify a dispatch_protocol
valid_dispatch_protocol y specify paich.p

property of periodic or sporadic

guidelines

o

\ J

1 package System Build

« Group rules into rulesets - pubise
corresponding to e resolute

ruleset HAMR {

organizational process, it (print(*Linting WA ruleset®))
customer requirements, U
certification guidelines, and @—; error (valid_dispateh_protocel()

error (one_process())

error (bounded_floats())

tOOI Constra| nts error (bounded_integers())

warning (data_type_specified())
warning (subcomponent_type_specified())

21 error (array_dimension())
error (one_dimensional_arrays())

« Automatically check
compliance with modeling i Problems 52 |] Properties) Console
glJIdellneS II"I OSATE 2 errors, 54 warnings, 1 other ~

Description
v @ Errors (2 items)
@ Components bound to a virtual processor may only communicate with components bound to other processors via event data ports
@ Only one processor-bound process can contain thread or thread-group subcomponents
5 Warnings (54 items)

N .
= g Collins Aerospace 10
AnRTXBusiness
© 2025 Collins Aerospace. | This document does not include any export controlled technical data.

HAMR

Kansas State University

High-Assurance Modeling and Rapid Engineering for Embedded Systems

Modeling, analysis, and
verification in AADL or
SysML v2 modeling
languages

Component development
and verification in
multiple languages

Deployments aligned with
MBSE model semantics
on multiple platforms

;*{‘i§§§i§”§

AN

 Jdlo

P

seL4 Deployment

il
Il
1
Lo
;
1
7

]
]
autlll

Security. Performance. Proof.

verified microkernel

Leverage analyses from AADL community

=D

[
YOJOoral

&

Slang (high integrity subset of Scala)
C (utilizing memory-safe code generation)
Rust (support on DARPA PROVERS)

Linux Deployment

JVM Deployment

HAMR: infrastructure code generation and target platform build tool

N .
= g Collins Aerospace
AnRTXBusiness
© 2025 Collins Aerospace. | This document does not include any export controlled technical data.

11

Tux logo: lewing@isc.tamu.edu

]
DARPA PROVERS: INSPECTA Team

Industrial-Scale Proof Engineering for Critical Trustworthy Applications

Requirements
DevOps
P
‘ | Workflow Container
. P — | oo
System Architecture Compositional Reasoning | P(;°:' BO”": [I;S:] [
——————————— >
Modeling (SysML v2/AADL) (AGREE/GUMBO) 4 Q | m® P P P
‘ S |
. . T ————
Component APl Synthesis |) Correspondence Bo ’ I ata;e ontainer brocec: Aralysls
(HAMR) Proofs (HAMR) GJL Il -— Artifacts Results
‘ \ -—
| g ﬁ
Application Component Verified Synthesis = ———— R
Synthesis (RUSt) 77777777777 > (ROCC]) g Assurance Dashboard Feature | Trends ’
_ Gj— Explainable (;ert» Branch Metrics Metrics
‘ I l. i;nalylsls (gbjectlve Integration Usage
- s B_) esults Overage Branch Metrics Metrics
Application Component | R Automated Reasoning o I
Development (Rust) (Verus) an .
\ J
p ~
Microkernel (set4/ | . Theorem Proving
Microkit) (Isabelle) a Q
| I\ J
Binary
I —
N J N J
Y Y

-
il

W .
= "% Collins Aerospace

BUILDOPS (' ProoFOps)
AnRTX Business

© 2025 Collins Aerospace. | This document does not include any export controlled technical data.

INSPECTA Team

Collins Aerospace, Team Lead
« Darren Cofer, Pl

Carnegie Mellon University
Dornerworks

Kansas State University

« with Aarhus University
Proofcraft

University of Kansas
University of New South Wales

%\:I/é Collins Aerospace

Technical Areas
TA1: Proof Engineering

feauements Proof Engineering: Cloud-based DevOps
" — Tool and process Tool

Composi itional Reasoning
’ g Development

v
System Architecture
Modeling (AADL/SysML)

\
Updates Commit I Workflow Container |
|
|
)

J

."’ Pronf Bulld Test cm Doc

0 s 0 s 0 s 0 s O s

.‘_. p P P p p
————————————————————— \
TA2 i’i [Database Container |
m l ‘- Process Analy5|s Usage |
! —] Artifacts Results Data |
[-)

Synthesis (Rust)

v
Application Component }

v
Application Component
Development (Rust)

Component ;PI Synthesis
(HAMR)
| p— } F— Platform Development: 7. mnalysis AL
(seL4/Microkit) (isabelle) App|ication and evaluation Results

on real use cases

I \
Feedback Assurance Dashboard Feature Trends |
Explainable Cert Bran:h Metrics Mem:s |
Analysis Objective
|| I I. RESV“S Coverage Imegratlcn Usage |
Er:lnch Metrics Mem:s |

TA2: Platform Development
+ Open Platform Restricted Platform

— Developed and supported by DornerWorks — Collins Launched Effects (LE) Mission Computer

— Unrestricted UAV mission software, system model — Based on same computer hardware as the Open
with formal properties, multiple VMs, Rust software Platform
components, seL4 kernel

N .
= g Collins Aerospace
AnRTX Business
© 2025 Collins Aerospace. | This document does not include any export controlled technical data.

INSPECTA Proof Chain

System Architecture Model

AGREE/GUMBO Contract AGREE/GUMBO Contract

With INSPECTA, e T ﬁ,@
engineers are component | [Componert
able to generate k] 7 7 J —
comprehensive HAR B gt
formal assurance [mym
across the entire st Codel

development Component Stub
StaCk Without Verus ContraCt v VerUS COntraCt T l B EE EEEERNEEEEEEERN I»GE>

Compositional

Correctness

Verified Synthesis :

»

Verified Code Gen

A L A Proofs

sel4 IIIIIIIIIII>

B

a™
Secure Kernel
V¥ Component Stub Proofs

—f

Rust Component Rust Component

requiring deep Code Code

Component

o
<

Correctness

? ' Proofs
formal methods 07 e
expe rtlse (Verified) Compiler EEEEEEEEEEESR l»(}@
L'_\ L'_\ Corresr%%r}gence
Binary l L

W .
% Collins Aerospace 15
AnRTXBusiness

© 2025 Collins Aerospace. | This document does not include any export controlled technical data.

- 001}
SysML v2

SysML v2 is the second major version of the Systems Modeling Language
» Standarized under the auspices of the Object Management Group

Improved expressiveness relative to SysML v1
* Now similar in expressiveness to AADL

Standard textual form in addition to the graphical form
* Promotes third party tool interaction

Supported by major tool vendors: Siemens, The Mathworks, etc.
* Necessary for mass adoption by the Defense Industrial Base

\ .
%\,/é Collins Aerospace 16

-]
AADL to SysML v2 Transition Example

r—

L upper_desired_tempWstatus » Manage Regulator Interface :
/ displayed_temp p——————————
lower_desired_tempWstatus » playec— p’
— 14 regulator_status
» !

current_tempWstatus

Manage Heat Source !

upper_desired_temp B ﬁ
lower_desired_temp §——F

I t‘ heat_control !‘
—

L";

AADL

thread Manage_Heat_Source

v

[current_tempWstatus

¥y

| int i !
{ interface_failure upper_alarm_temp k "’
RS lower_alarm_temp W——W

,_/w; Manage Monitor Interface Manage Heat Source
lower_alarm_tempWstatus / monitor st Thread (TaSk)

features
current_tempWstatus: in data port Isolette_Data_Model::TempWstatus.impl;
lower_desired_temp: in data port Isolette_Data_Model::Temp.impl;
upper_desired_temp: in data port Isolette_Data_Model::Temp.impl;
regulator_mode: in data port Isolette_Data_Model::Regulator_Mode;
heat_control: out data port Isolette_Data_Model::0n_Off;

properties
Dispatch_Protocol => Periodic;
Period => Isolette_Properties::ThreadPeriod;

Kansas State University

N .
= g Collins Aerospace
AnRTX Business
© 2025 Collins Aerospace. | This document does not include any export controlled technical data.

SysMLv2 + AADL Library

part def Manage_Heat_Source_i :> Thread {

in port current_tempWstatus : DataPort { in :> type : Isolette_Data_Model::TempWstatus_i; }
in port lower_desired_temp : DataPort { in :> type : Isolette_Data_Model::Temp_i; }

in port upper_desired_temp : DataPort { in :> type : Isolette_Data_Model::Temp_i; }

in port regulator_mode : DataPort { in :> type : Isolette_Data_Model::Regulator_Mode; }

out port heat_control : DataPort { out :> type : Isolette_Data_Model::0n_Off; }

attribute :>> Dispatch_Protocol = Supported_Dispatch_Protocols::Periodic;
attribute :>> Period = 1000 [millisecond];
attribute Domain: CASE_Scheduling::Domain = 9;

https://github.com/loonwerks/INSPECTA-models/tree/main/isolette/sysml

17

GUMBO Contract Language

» Inspired by AGREE and BLESS
» Aligns with MBSE run-time semantics

GUMBO contracts are specified in
AADL/SysML v2 threads

lang. kspace - i aad| - OSATE2

« Programming language independent ekl st

» Supports multiple quality assurance techniques

« Language Features:
— Data type invariants Sosarr

I building-cc

I building-cc

— Port invariants (integration constraints) & bt

L CASE_simy
U contract-e

— Event-based / Shared-data based inter-thread T
communication Seleeniars

v 4> isolette

— Local state declarations with invariants -ter

*Regulate.aad! 52

400

AHAMR (Quvigs 47

401° I thread Manage_Heat_Source

402

Component
interface

403 | e INPUTS mmmmmme %
404 -- ("Current Temperature") - current temperature (from temp sensor))
405 I current_tempWstatus: in data port Isolette_Data_Model::TempWstatus.impl;
406 ("Desired Range™) - lowest and upper bound of desired temperature range
407 lower_desired_temp: in data port Isolette_Data_Model::Temp.impl; I
408 I upper_desired_temp: in data port Isolette_Data_Model::Temp.impl;
409 ("Regulator Mode") - subsystem mode I
410 | regulator_mode: in data port Isolette_Data_Model::Regulator_Mode;
411
412 I ======== QUTPUTS ======= I
413 -- ("Heat Control™) - command to turn heater on/off (actuation command) I
414 L heat_control: out data port Isolette_Data_Model::On_Off;
415 — o o Em o S G — o —
216 properties

Dispatch_Protocol => Periodic;
18 Period => Isolette_Properties::ThreadPeriod;

> 4 I state
> Gyaadl 425 lastCmd: Isolette_Data_Model::0n_Off;
g . > Cyawas 426 I .
P /P t d t f th d d t t > @ybin 427 = Initialize Entry Point Behavior Constraints
— Fre/rFost condituons 1or thread code entry points g 4285 | initialize
solet | 429° | guarantee
. . Regul 430 initlast(md: last(md == Isolette_Data_Model::On_Off.Off;
— Support for fixed width scalars (e.g., Float32) St 371 prerte LA e e Pewltor b 1 U, e e Contrel st e
" ") > ESMultiTierai | 432 set to :

LIPCA 433 I heat_control == Isolette_Data_Model::On_Off.0ff;
J physical 434

> &> ProdCon | 435 I comm Compute Entry Point Behavior Constraints =====

> ¥4 ProdCon 436 compute

> kz‘ . Redunda 437 assumption on set points enforced within the Operator Interface

> §3>Resolint-| 438 I assume lower_is_lower_temp: lower_desired_temp.value <= upper_desired_temp.value;

> EAresolute-e — e e o
LSleam Ba; #. problems [Properties] AADL Property Values & Console History (@ Assurance Case Classifier Information

> &8 steam-boil © ©17OrS. 1 warning, 0 others
+1 . Description Resource Path Location

> hsteam-boil

17 tamn-cant

N .
= g Collins Aerospace
AnRTX Business
© 2025 Collins Aerospace. | This document does not include any export controlled technical data.

1 Warnings (1 item)
Writable Insert 422:16:22174

Kansas State University / Galois

-- indicate that the component maintains an internal state (variables) that influence its behavior

Component
contract

420 Stack_Size => Isolette_Properties::StackSize;
2] e o - o e o o e s e o e e o — — —
422 annex GUMBO| {**

—— ol

Type

LLMs for MBSE Contract Verification: Counterexample Analysis/Resolution

» Counterexamples generated from
MBSE contract verification can be
difficult to analyze by non-experts

* We are utilizing LLMs to analyze these
counterexamples, and suggest repairs

« Any LLM hallucinations are rejected,
because assume/guarantee contract

analysis is performed by a

mathematically rigorous model checker

» We are also exploring use of LLMs for:

* Proof repair

 Documentation assistance

* Model updates

 Help writing formal properties

N .
= g Collins Aerospace
AnRTX Business
© 2025 Collins Aerospace. | This document does not include any export controlled technical data.

System Model

workspace - Car/packages/Caraadl - OSATE2) @ Dash

&S @ o B0 = R v~
Y - I v (. §
Integer_Toy.aadl Car.aadl x

Propercty Consc _Lar_speed =

true -> Target Speed.val = pre(Target Sp
guarantee G_car_1 "actual speed is less than constant ta

const tar speed »> (Actual Speed.val <=
guarantee G car_2 "acceleration is limited”™ :

Agree Nodes::abs(Actual Speed.val - prev

S
end Car;

system implementation Car.Car Impl
subcomponents

THROT: system Transmission::Throttle.Throttle Impl;
CNTRL: system Transmission::Speed Control.Speed Control

AXL: system Steering::Axle.Axle Impl;
SM: system Transmission::State Machine.Impl;

connections

SpeedToThrot: port CNTRL.Actuator Input -> THROT.Actuato
Communication Properties::Timing => immediate;):
AcSpeedToTop: port THROT.Actual -> Actual Speed {Communi
AcSpeedToCntrl: port THROT.Actual -> CNTRL.Actual {Commu
TgSpeedToCntrl: port Target Speed -> CNTRL.Target {Commu
TgPtichToAxl: port Target Tire Pitch -> AXL.Target Tire
Communication Properties::Timing => immediate;):

AcPtichToCar: port AXL.Actual Tire Direction

Communication Properties::Timing => immediate;):
SSToSM: port SM.State Out -> State Signal {Communication

end Car.Car_Impl;

end Car;
Stop-Here

Problems (7] Properties ™) AADL Property Val Classifier Informati > Project Dependenc & Pu

Il Contract Guarantees
+ Subcomponent Assumptions

M [G_car_1) actual speed is less than constant target speed

' [G_car_2] acceleration is imited
+/ This component consistent
o THROT concictont

Contract counterexample

LLM prompts
- - |

C O & o.0.00 o ® 0 H @

THROT.Actual.val 11 10 9.09090909090909
THROT.Actuator_Input 110 <10 -9.09090909090909
nan

AGREE-Dog: The counter-example provided by AGREE indicates that
the guarantee "G_car_1" ("actual speed is less than constant target
speed”) has been violated, Let's analyze the counter-example step by

+—— Analysis

#un Counter-example Analysis:

1. **Variable Values:**

- "Actual_Speed.val’: 11, 10, 9.09090909090909
- "Target_Speed.val’: 121,0,0

2. **Guarantees and Properties:**

- ‘const_tar_speed’: ‘true -> Target_Speed.val = pre(Target_Speed.val)
- 'G_car_1":"const_tar_speed => (Actual_Speed.val <=
Target_Speed.val)’

#48# Key Points:

1. **Initial State:**

- At time 0, "Actual_Speed.val’ is 11 and "Target_Speed.val’ is 121, The
guarantee "G_car_1" holds true because "11 <= 121"

2. **Time Step 1:**
- "Actual_Speed.val’ is 10 and "Target_Speed.val’ is 0. Here, the

guarantee ‘G_car_1"is w “D(r' .
etection

nun ssue:

The violation occurs because the "Target_Speed’ is changing to 0 in the
next time step, which makes the guarantee "G_car_1" invalid as the

"Actual_Speed’ is not allowed to catch up immediately to the new
Target_Speed’.

.
nun 52:‘)“‘9“/ | {e pa I r
To fix the problem, we need to ensure that the "Target_Speed’ remain;

constant for the duration over which the "Actual_Speed’ is being
compared. This can be done by introducing a delay or ensuring that t
Target_Speed’ does not change abruptly. We can modify the property

‘ranck Far cnaad’ Pa arcammadata a cranaria whara tha

- 1]
Memory-Safe Programming Languages

¥ w National Security Agency | Cybersecurity Information Sheet

An emerging consensus amongst computer science
thought leaders is that memory-safe programming Software Memory Safety
language technology needs to be adopted more Executive summary

Modern society relies heavily on software-based automation, implicitly trusting

b roa d Iy - developers to write software that operates in the expected way and cannot be

compromised for malicious purposes. While developers often perform rigorous testing to
prepare the logic in software for surprising conditions, exploitable software
vulnerabilities are still frequently based on memory issues. Examples include
overflowing a memory buffer and leveraging issues with how software allocates and de-
allocates memory. Microsoft® revealed at a conference in 2019 that from 2006 to 2018

L J “ N SA reCO m m e n d S u S i n g a m e m O ry Safe I a n g u a g e 70 percent of their vulnerabilities were due to memory safety issues. [1] Google® also

when possible.” (Nov. 2022)

« The White House has published a report BACK TO THE
championing the adoption of memory safe BUILDING
programming languages to enhance software BLOCKS:
security. (Feb. 2024)

» Microsoft, Google, and Amazon have all announced
significant Rust initiatives.

» Memory-safe language requirements are beginning
to appear in U.S. Government contracting.

A PATH TOWARD SECURE AND

MEASURABLE SOFTWARE

FEBRUARY 2024

N .
= g Collins Aerospace
AnRTX Business
© 2025 Collins Aerospace. | This document does not include any export controlled technical data.

20

-]
Why Memory-Safe Languages? Why now?

Memory-safe languages are not new

* For example, Collins successfully used Ada in major commercial and government
avionics products in the 1980s and 1990s

 Collins used SPARK effectively on high-assurance products for the intelligence
community in the 2000s

Recent improvements in compiler technology have made memory safety very low cost
Additionally, novel memory ownership models (e.g, in Rust) have allowed references
to be used safely

Development organizations have tired of continual memory errors, causing a never-
ending parade of security vulnerabilities, despite the use of increasingly sophisticated
analysis tools

\ .
% Collins Aerospace 21

-]
The Rust Programming Language

« The INSPECTA team is focusing our memory-safe language research on
Rust

* Rust has several assurance advantages over C/C++, including:
» Improved type safety
» Vastly improved memory safety
* No arbitrary pointer arithmetic
* ...in short, 80% of C/C++ security flaws are eliminated outright!

» Rust supports modern programming idioms such as a match primitive,
traits, immutability by default, etc.

» Basic Rust syntax is familiar to C/C++ developers, easing the transition

» The Rust compiler produces code which is competitive in speed to C/C++

\l .
%\,/é Collins Aerospace 29

© 2025 Collins Aerospace. | This document does not include any export controlled technical data.

]
Verus: Rust Code Verification

» Verus is an open source Rust code verification environment under
development by Carnegie Mellon University and numerous other researchers

« Verus has been utilized in a number of operating system, concurrent data
structure, and distributed algorithm verification efforts

» Verus utilizes Rust syntax to express precondition and postcondition
annotations, loop invariants, etc.

* Verus employs an SMT solver to attempt to prove postconditions, given the
preconditions

\ .
% Collins Aerospace 23

]
Rust-Related Work on INSPECTA

HAMR now supports the generation of Rust source code from SysML v2 models
» For seL4, we use a new Rust userspace API developed by Nick Spinale

* The KSU/Aarhus team is translating GUMBO system model contracts to the
Verus Rust verification environment

The University of Kansas is developing Rust code generation for their
attestation protocol specifications written in the Rocq theorem prover

Dornerworks is writing open model application code in Rust

CMU is enhancing Verus to support INSPECTA, reducing fragility in their SMT
backend, and creating a connection to the Lean theorem prover

\ .
% Collins Aerospace o4

SysML v2 model with GUMBO contracts translated to
Rust/Verus by the KSU HAMR tool

inspecta (Workspace) 03 [J EJ _l

®

T:J H‘ 2 ¢ bash] 4

{} impl ManageHeatS cLld L U e
: postcondition not satisfied
src/manage_heat_source.rs:156:5

((old(self).api.regulator_mode == RegulatorMode: : INIT)
==> (self.api.heat_control == HeatControl::0FF))

&
((old(self).api.regulator_mode == RegulatorMode: : FAILED)

&
self.last_command == self.api.heat_control

'

// rust implementation
self.api.heat_control = match self.api.regulator_mode {
RegulatorMode: : INIT => HeatControl::0FF,

self.last_command = self.api.heat_control;

verification results:: 8 verified, 1 errors
JB:inspecta junaids i

A
S Collins Aerospace Carnegie Mellon University 25
n usiness
© 2025 Collins Aerospace. | This document does not include any export controlled technical data.

-]
Conclusion

 The INSPECTA team is making formal verification across the entire software
development stack accessible to non-formal methods experts through automated
analysis, DevOps integration, a ProofOps console, and improved user feedback

« Keys to achieving this goal include integration with the SysML v2 System Modeling
Language, and support for modern memory-safe languages, specifically Rust

* Much important INSPECTA Research was not mentioned in this talk, including:
— AGREE/GUMBO contract language harmonization (Collins / KSU)
— Verified Component Synthesis (KU)
— Lifecycle Attestation (KU / Collins)
— sel4 proof engineering (Proofcraft), Microkit, and Lions OS (UNSW)

» Check it out — code, papers, links:
— https://loonwerks.com/projects/inspecta.htmi

\ .
% Collins Aerospace 26

© 2025 Collins Aerospace. | This document does not include any export controlled technical data.

Thank You!

Contact: david.hardin@collins.com

This work was funded by DARPA contract FA8750-24-9-1000.

The views, opinions and/or findings expressed are those of the authors
and should not be interpreted as representing the official views or
policies of the Department of Defense or the U.S. Government.

N .
= g Collins Aerospace
AnRTX Business
© 2025 Collins Aerospace. | This document does not include any export controlled technical data.

27

