Verified Collaboration:
How Lean is Transforming Mathematics, Programming, and Al

Leo de Moura
Senior Principal Applied Scientist, AWS
Chief Architect, Lean FRO

May 12, 2025

m

Breaking the Cycle of Uncertainty: Math, Software, and Al You Can Trust
Math, software, and Al often rely on manual review or partial testing.
An error in a theorem or critical software system can have massive consequences.

Progress dies where fear of mistakes lives.

m

Breaking the Cycle of Uncertainty: Math, Software, and Al You Can Trust
Math, software, and Al often rely on manual review or partial testing.

An error in a theorem or critical software system can have massive consequences.

Progress dies where fear of mistakes lives.

Lean: machine-checkable proofs eliminate guesswork and create trust.

If every step is formally verified, we unlock unprecedented confidence and collaboration.

m

Lean is an open-source programming language and proof assistant that is transforming how we
approach mathematics, software verification, and Al.

The Lean project, started in 2013, aimed at merging interactive and automated theorem proving.
Lean provides machine-checkable proofs.
Lean addresses the “trust bottleneck”.

Lean opens up new possibilities for collaboration.

A small example

’Q Welcome

Odd.lean > ...
import Mathlib

1
2
3
4
5
6
7
8
9

10
11
12

def odd (n :

Odd.lean U @

N) :

3 k,

n

=2x k+1

Voo

Lean Infoview >

¥ Odd.lean:15:0
No info found.

» All Messages (0)

A small example

Mathlib is the Lean Mathematical library

’O Welcome Lean Infoview >
Odd.lean > ... ¥ Odd.lean:15:0 S =T |)
; import Mathlib No info found.
3 defodd (n: W) :=3k n=2xk+1 p-AllMessagesi(0) !
Z
5
6
7
8
9
10
11

A small example

’Q Welcome Odd.lean U @
Odd.lean > ...

1 import Mathlib

2

3 def odd (n : W) :=3 k, n=2 %k +1
4

5

6

7

8

9

10

11

Voo

Lean Infoview >

¥ Odd.lean:15:0
No info found.

» All Messages (0)

Definition of an odd number

Our first theorem

’a Welcome
Odd.lean
1 import Mathlib
2
3
4
5 theorem five_is_odd :
6 use 2
7 done
8
9
10
11

Odd.lean U ® Lean Infoview X

¥ Odd.lean:15:0
¥ Tactic state

def odd (n : N) :=3 Kk, n=2%Kk+1 No goals

» All Messages (0)
odd S := by

\ Theorem statement, i.e., the claim being made

Vv @ -
S~ | &)
€ | Y

Our first theorem

’a Welcome
Odd.lean
1 import Mathlib
2
3 def odd (n : W) :=
4
5 theorem five_is_odd :
6 use 2
7 done
8
9
10
11

=
N

Odd.lean U @

Ik, n=2%xk+1

odd 5 :=

A proof

by

Lean Infoview X

¥ Odd.lean:15:0
¥ Tactic state
No goals
» All Messages (0)

vV @
n O
v Y

Our first theorem

38 Welcome Odd.lean 1, U ® Lean Infoview X
Odd.lean > @ five_is_odd v Odd.lean:7:2 e
1 import Mathlib ¥ Tactic state «
2
3 defodd (n:N) :=3k n=2xk+1 1goal
4 -1 v case h
5 theorem five_is_odd : odd 5 := by F5=2%3+1
6 use 3
7 done » Messages (1)
8
. » All Messages (1)
" An incorrect proof
11
12

Theorem proving in Lean is an interactive game

% Welcome Odd.lean 2, U @ Vv % O - Lean Infoview X
Odd.lean > @ square_of_odd_is_odd v Odd.lean:7:2 e
; import Mathlib v Tactic state «
3 defodd (n:MN) :=3k, n=2x%xk+1 1goal
4 n: N
S - Prove that the square of an odd number is always odd odd n 2 odd (n * n)
6 theorem square_of_odd_is_odd : odd n 2 odd (n * n) := by
7 done » Messages (1)
8
9 » All Messages (2)
10 The “game board”
11
12

“You have written my favorite computer game”, Kevin Buzzard

Theorem proving in Lean is an interactive game

) Welcome Odd.lean 2,U ® YV @ O - Lean Infoview
Odd.lean > @ square_of_odd_is_odd v Odd.lean:8:2
; import Mathlib ¥ Tactic state
3 defodd (n: M) :=3k, n=2x%xk+1 1goal
4 n ky : N
5 -- Prove that the square of an odd number is always odd 1 ey : N =2 % ky +1
6 theorem square_of_odd_is_odd : odd n 2 odd (n * n) := by F odd (n * n)
7 intro (ki, ei)
8 done » Messages (1)
9
10 il » All Messages (2)
11
12

A “game move”, aka “tactic”

Theorem proving in Lean is an interactive game

) Welcome Odd.lean 2,U ® YV @ O - Lean Infoview X
Odd.lean > @ square_of_odd_is_odd v Odd.lean:9:1 ISR
; import Mathlib v Tactic state « L v
3 defodd (n: W) :=3k, n=2xk+1 1goal
4 n ky : N
5 - Prove that the square of an odd number is always odd ey : N =2 % ky +1
6 theorem square_of_odd_is_odd : odd n 2 odd (n * n) := by F3k, (2%ky +1) * (2*xKky +1) =2%k+1
7 intro (ki, ej;)
8 simp [e., odd] » Messages (1)
9 done > All M 2 I
10 1 essages (2)
11
12

The “game move” simp, the simplifier, is one of the most popular moves in our game

Theorem proving in Lean is an interactive game

% Welcome Odd.lean 2,U ® VY % O - Lean Infoview X
Odd.lean > @ square_of_odd_is_odd v Odd.lean:10:1 S)
; import Mathlib ¥ Tactic state ¢ 1 Y
3 defodd (n:N) :=3k, n=2%k+1 1goal
4 vcase h
5 -- Prove that the square of an odd number is always odd nk, : N
6 thﬁeor‘em square_of_odd_is_odd : odd n 2 odd (n * n) := by 1 €1 :Nn=2%ky +1
7 intro (ki, ei) F(2*%Kky +1) *x (2% ky #+1) =2 % (2 % ky * kg + 2 % ky) + 1
8 simp [ei, odd]
9 use 2 * Ky * kg + 2 x ky » Messages (1)
10 done 1
1 » All Messages (2) I
12

The “game move" use is the standard way of proving statements about existentials

Theorem proving in Lean is an interactive game

) Welcome Odd.lean 1,U ® vV % @D - Lean Infoview X
Odd.lean > ... v Odd.lean:17:0 S |)
; import Mathlib v Tactic state « L ¥
3 defodd (n:N) :=3k, n=2x%k+1 No goals
% » All Messages (1) I
5 - Prove that the square of an odd number is always odd
6 theorem square_of_odd_is_odd : odd n 2 odd (n * n) := by
7 intro (ki, e1)
8 simp [e., odd]
9 use 2 * Ky * kg + 2 x Kk; L
10 linarith
11 done i
12

We complete this level using 1inarith, the linear arithmetic, move

Theorem proving in Lean is an interactive and addictive game

% Welcome Odd.lean 1,U ® VY % O - Lean Infoview X
Odd.lean > ... v Odd.lean:17:0 S |)
; import Mathlib v Tactic state « L ¥
3 defodd (n:N) :=3k, n=2%k+1 No goals
4 » All Messages (1) I
5 - Prove that the square of an odd number is always odd
6 theorem square_of_odd_is_odd : odd n 2 odd (n * n) := by
7 intro (ki, e1)
8 simp [e., odd]
9 use 2 * Ky * kg + 2 x Kk; L
10 linarith
11 done 1
12

“You can do 14 hours a day in it and not get tired and feel kind of high the whole day.

You're constantly getting positive reinforcement”, Amelia Livingston

Mathlib

The Lean Mathematical Library supports a wide range of projects.
It is an open-source collaborative project with over 500 contributors and 1.8M LoC.

“I'm investing time now so that somebody in the future can have that amazing experience”,

Heather Macbeth

L:L Quantamacazine Physics Mathematics Biology = Computer Science Topics Archive

Building the Mathematical Library of the
Future

-

Mathematics

m

Preamble: the Perfectoid Spaces Project

Kevin Buzzard, Patrick Massot, Johan Commelin
Goal: Demonstrate that we can define complex mathematical objects in Lean.
They translated Peter Scholze's definition into a form a computer can understand.

It not only achieved its goals but also demonstrated to the math community that

formal objects can be visualized and inspected with computer assistance.

Math is now data that can be processed, transformed, and inspected in various ways.

Preamble: the Perfectoid Spaces Project (cont.)

Kevin Buzzard, Patrick Massot, Johan Commelin

% Natural numbers

mathoverflow

i Home What are "perfectoid spaces"?

P Here is a completely different kind of answer to this question.

A perfectoid space is a term of type PerfectoidSpace in the Lean theorem prover.
. Valuations 72

Here's a quote from the source code:

structure perfectoid_ring (R : Type) [Huber_ring R] extends Tate_ring R : Prop :=
Lattices .

A " (complete : is_complete_hausdorff R)

Adic spaces (uniform : is_uniform R)
(ramified : 3 w : pseudo_uniformizer R, @*p | p in Re°)
(Frobenius : surjective (Frob R°/p))

Mathlib > RingTheory > Finiteness.lean ¥ Finiteness.lean:365:2

555

356 theorem FG.stabilizes_of_iSup_eq {M' : Submodule R M} (hM' : M'.FG) (N : N >0 Submodule R M) Vv Tactic state

357 (H:iSup N =M') : 3 n, M =Nn := by 1goal

358 obtain (S, hS) := hM' vease intro

359 have : ¥s : S, 3n, (s : M €Nn :=funs =>

360 (Submodule.mem_iSup_of_chain N s).mp R : Type u_1

361 (by M : Type u_2

362 rw [H, ¢ hS] inst+? : Semiring R .
363 exact Submodule.subset_span s.2) %”Sffl : AddCommMonoid M
364 choose f hf using this 175ff : Module R M

365 Lse S.attach.sup f M' : Submodule R M

366 apply le_antisymm N : N >0 Submodule R M
367 - conv_lhs => rw [¢ hS] B H @ diSup N = 1!

368 rw [Submodule.span_le] S : Finset M

369 intro s hs hS : span R 7S = M'

370 exact N.2 (Finset.le_sup <| S.mem_attach (s, hs)) (hf _) f:{x// xes}t>N
371 - rw [e H] hf : ¥ (s:{x// x€S}), s €N (fs)

372 exact le_iSup _ _ F3n, M =Nn

Mathlib > RingTheory > Finiteness.lean v Finiteness.lean:365:2

555

356 theorem FG.stabilizes_of_iSup_eq {M' : Submodule R M} (hM' : M'.FG) (N : N >0 Submodule R M) Vv Tactic state

357 (H: iSup N=M') : 3 n, M =Nn := by 1goal

358 obtain (S, hS) := hM' N -

359 have : Y¥s :S,3n, (s : M) €Nn :=fun s =>

360 (Submodule.mem_iSup_of_chain N s).mp R : Type u_l

361 (by M : Type u_2

362 rw [H, ¢ hS] inst#? : Semiring R

363 exact Submodule.subset_span s.2) %”Sffl : AddCommMonoid M
364 choose f hf using this 17Sff : Module R M

365 pse S.attach.sup f : .-stzmgzzkzdﬁlz .
366 apply le_antisymm o0

367 - conv_lhs => rw [¢ hS] m H : 1§up ™ =M

368 rw [Submodule.span_le] S : Finset M

369 intro s hs hS : span R 1§ = M'

370 exact N.2 (Finset.le_sup <| S.mem_attach (s, hs)) (hf _) f:dx// x€S8} >N
371 - rw [¢ H] hf : V(s :{x// x€SH. s €N (fs)

1 1 -
372 exact le_iSup _ _ F3n, M M' : Submodule R M

Mathlib > RingTheory > Finiteness.lean ¥ Finiteness.lean:356:44
909

356 theorem FG.stabilizes_of_iSup_eq {M' : Submodule R M} (hM' : M'.FG) (N : N o0 Submodule R M) v Expected type

VS
Defs.lean ~/projects/mathlib4/Mathlib/Algebra/Module/Submodule - Definitions (1) X : : Iype U—;
. : ype U_

25 assert_not_exists DivisionRing structure Submodule (R : Type u) ‘ instt4 : Semiring R
26

inst+® : AddCommMonoid M

27 open Function B instt? : Module R M

28 i o P : Type u_3

29 RUES AR ERUAVRY inst+* : AddCommMonoid P
el instt : Module R P

31 variable {6 : Type u''} {S : Type u'} {R : Type u} {M : Type v} {1 : £ 5 M Rl P

32 m + Type u_2

33) /-- A submodule of a module is one which is closed under vector oper

34 This is a sufficient condition for the subset of vectors in the sui » All Messages (0)

1) to themselves form a module. -/

36 structure Submodule (R : Type u) (M : Type v) [Semiring R] [AddCommM
7/ AddSubmonoid M, SubMulAction R M : Type v

zo

Mathlib > Algebra > Module > Submodule > Defs.lean > @ Submodule

34
35
36
517/

This is a sufficient condition for the subset of vectors in the submodule

to themselves form a module. -/

structure Submodule (R : Type u) (M : Type v) [Semiring R] [AddCommMonoid M] [Module R M] extends

AddSubmonoid M, SubMulAction R M : Type v
V'S

Defs.lean ~/projects/mathlib4/Mathlib/Algebra/Group/Submonoid - Definitions (1)

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

add_decl_doc Submonoid.toSubsemigroup

structure Ad

/-- “SubmonoidClass S M says 'S is a type of subsets s < M that

and are closed under “(x)° -/

class SubmonoidClass (S : Typex) (M : outParam Typex) [MulOneClass_M
MulMemClass S M, OneMemClass S M : Prop

section

/-- An additive submonoid of an additive monoid "M~ is a subset cont
closed under addition. -/

structure AddSubmonoid (M : Typex) [AddZeroClass M] extends AddSubse
/-- An additive submonoid contains ‘0°. -/
zero_mem' : (B : M) € carrier

v Defs.lean:37:8
Vv Expected type

G : Type u''
S : Type u'
Rt : Type u
Mt : Type v
1 : Type w
R : Type u
M : Type v

inst+? : Semiring R
instt+* : AddCommMonoid M
inst# : Module R M

+ Type v

» All Messages (0)

The Challenge

In November of 2020, Peter Scholze posits the Liquid Tensor Experiment (LTE) challenge.

“I spent much of 2079 obsessed with the proof of this theorem, almost getting crazy over
it. /In the end, we were able to get an argument pinned down on paper, but | think nobody else
has dared to look at the details of this, and so | still have some small lingering doubts”,

Peter Scholze

The First Victory

Johan Commelin led a team with several members of the Lean community and announced the
formalization of the crucial intermediate lemma that Scholze was unsure about, with only

minor corrections, in May 2021.

“[T]his was precisely the kind of oversight | was worried about when | asked for the formal
verification. [...] The proof walks a fine line, so if some argument needs constants that are

quite a bit different from what | claimed, it might have collapsed”, Peter Scholze

nature

Explore content ¥ Journal information ¥ Publish with us v Subscribe

> article

NEWS | 18 June 2021

Mathematicians welcome
computer-assisted proofin ‘grand
unification’ theory

Achieving the Unthinkable

The full challenge was completed in July 2022.

The team not only verified the proof but also simplified it.
Moreover, they did this without fully understanding the entire proof.

Johan, the project lead, reported that he could only see two steps ahead. Lean was a guide.

“The Lean Proof Assistant was really that: an assistant in navigating through the thick jungle
that this proof is. Really, one key problem | had when | was trying to find this proof was that |
was essentially unable to keep all the objects in my RAM, and | think the same problem occurs

when trying to read the proof”, Peter Scholze

m

Only the Beginning

Independence of the Continuum Hypothesis, Han and van Doorn, 2021
Sphere Eversion, Massot, Nash, and van Doorn, 2020-2022

Fermat's Last Theorem for regular primes, Brasca et al., 2021-2023

Unit Fractions, Bloom and Mehta, 2022

Consistency of Quine's New Foundations, Wilshaw and Dillies, 2022-2024
Polynomial Freiman-Ruzsa Conjecture (PFR), Tao and Dillies, 2023

Prime Number Theorem And Beyond, Kontorovich and Tao, 2024-ongoing
Carleson Project, van Doorn, 2024-ongoing

The Equational Theories Project, Tao, 2024

Fermat's Last Theorem (FLT), Buzzard, 2024-ongoing, community estimates it will take +1M LoC

Automating Quantum Algebra

Here is a concrete example from quantum algebra. It comes from a classification result involving quantum
SO(3) categories. Specifically, the condition that certain relations among trivalent graphs imply a constraint
on the parameters d, t, and c:

example {a} [CommRing a] [IsCharP a 0] (d t ¢ : a) (d_inv PS03_inv : a) :
d*2 * (d+t-d*xt-2)*((d+t+dx*xt)=05>
-dM % (d+t-d*xt-2) %
(2*xd+2xd*xt-4%xd*xtr2+2%d*xtrd+2*%xd2*xtrd-c*x(d+t+d+*1t))=005>
d *x d_inv = 1 >
(d+t-dxt-2) % PS03_inv = 1 >
t2"2 =t + 1 := by
grind +ring

From: "Categories generated by a trivalent vertex”, Morrison, Peters, and Snyder '

Automating Quantum Algebra

example {a} [CommRing a] [IsCharP a 0] (d t ¢ : a) (d_inv PS03_inv : a) :
d*2 * (d+t-d*xt-2)*(d+t+dx*xt)=005
-dMg % (d+t-dxt-2) %
(2*d+2*xd*xt-4*xd*xtr2+2*xdx*x1trqd+2%xd2*trgd-cx (d+t+d=x1t))=005>
d *x d_inv = 1 >
(d+t-d=*xt-2) % PSO3_inv = 1 »
t"2 =t + 1 := by
grind +ring

This is not a toy: it encodes a real algebraic constraint derived from relations among diagrams in a pivotal
tensor category.

Lean can handle this kind of reasoning automatically, in milliseconds.

Automating Quantum Algebra

We can explore new mathematical and physical structures, from topological quantum fields theories to
fusion categories.

Lean is helping researchers reason reliably about complex symbolic systems that were previously handled
only by hand or with unverified computer algebra.

grind +ring is just another move in our interactive game.

example {a} [CommRing a] [IsCharP a 0] [NoNatZeroDivisors a]
(dt: a)

(Q_3_4 : d23x(tMa+3%tA3-112-3xt-1)+d 2% (2%t A4+t 1 2+2%t+1) +d* (A 4-3%tA3+3xtA2+6%t+1) -t/ 2+2%t+2 = 0)
(Q_4_5 : dMaxtAS5+dA3*%(3xtA5-3xt N 4-3xtA3+7xt A 2+5%t+1)
+0A 2% (3%t A5-5xtA4-5xtA3+10%tA2+12%t+2) +d* (tA5-tA4-5%tA3+3%tA2+49%t+5) +t N 4-3xtA3+4%t+1 = 0) :

243+2268%t+7371%xt A 2+6192%tA3-16071xt"4-31161%tA5+11784%t 6+51173%t"7
-4565%t"8-48060%tA9+7055%t A 10+26569%tA11-9795%tA12-5753%tA13+4514%tA14-1020%t A 15+72%t~16 = 0 := by
grind +ring

m

Should we trust Lean?

Lean has a small trusted proof checker.
Do | need to trust the checker?

No, you can export your proof, and use external checkers. There are checkers implemented in
C/C++, Rust, Lean, etc.

You can implement your own checker.

m

What did we learn?

Machine-checkable proofs enable a new level of collaboration in mathematics.
The power of the community.
We don't need to trust our automation/moves.

It is not just about proving but also understanding complex objects and proofs, getting new

insights, and navigating through the “thick jungles” that are beyond our cognitive abilities.

What did we learn?

Another unexpected benefit of formal mathematics: auto refactoring and generalization.

@ general An example of why formalization is useful Mar 31

l Riccardo Brasca toi7eD
I really like what is going on with #12777. @Sebastian Monnet proved thatif €, F and K are fields such that

finite_dimensional F E ,then fintype (E »a[F] K) .We already have docs#field.alg_hom.fintype, that is exactly
the same statement with the additional assumption {is_separable F E .

The interesting part of the PR is that, with the new theorem, the linter will automatically flag all the theorem that can be
generalized (for free!), removing the separability assumption. | think in normal math this is very difficult to achieve, if |
generalize a 50 years old paper that assumes p # 2 to all primes, there is no way | can manually check and maybe
generalize all the papers that use the old one.

¥3 ®s

=-

Software

Lean in Software Verification

Lean is a programming language, and is used in many software verification projects.
You can write code and reason about it simultaneously.
You can prove that your code has the properties you expect.

“Testing can show the presence of bugs, but not their absence”, E. Dijkstra

OCEDAR

https://www.cedarpolicy.com/

Overview Learn Vv Policy playground

FAST, SCALABLE ACCESS CONTROL

Cedar is a language for defining permissions as policies, which describe who should have access to what. It is also a specification for
evaluating those policies. Use Cedar policies to control what each user of your application is permitted to do and what resources

they may access.

Try it out in playground

Integrations) Cedar SDK [2

May 10, 2023: Amazon Web Services announces the Open-Source release of the Cedar SDK. Learn more

def isAuthorized (req

then { decision :=
else { decision :=

https://aithub.com/cedar-policy/cedar-spec

Request) (entities : Entities) (policies : Policies)
let forbids := satisfiedPolicies .forbid policies req entities

let permits := satisfiedPolicies .permit policies req entities

let erroringPolicies := errorPolicies policies req entities

if forbids.isEmpty && !permits.isEmpty

.allow, determiningPolicies
.deny, determiningPolicies

permits, erroringPolicies }
forbids, erroringPolicies }

Response

https://www.cedarpolicy.com/
https://github.com/cedar-policy/cedar-spec

Cedar

Proofs of design properties

— Testinput
* request
* data

* policies

Cedar
Production

Allow/deny

&

s ! o

Allow/deny
diagnostics

Evidence that
production
implementation
matches model

Takeaway: “We've found Lean to be a great tool for verified software development. You get a full-
featured programming language, fast proof checker and runtime, and a familiar way to build both

models and proofs”

m

Cedar

To learn more about Cedar:
https://aws.amazon.com/blogs/opensource/lean-into-verified-software-development/

aWS About AWS ContactUs Supportv My Account~ Sign In Create an AWS Account

N
Products Solutions Pricing Documentation Learn Partner Network AWS Marketplace Customer Enablement Events Explore More Q

AWS Blog Home Blogs ¥ Editions v

AWS Open Source Blog

Lean Into Verified Software Development SR
by Kesha Hietala and Emina Torlak | on 08 APR 2024 | in Amazon Verified Permissions, Open Source, Security, Identity, &
Compliance, Technical How-to | Permalink | @ Comments | # Share Open Source at AWS

Projects on GitHub

https://aws.amazon.com/blogs/opensource/lean-into-verified-software-development/

m

Differential Privacy

A mathematical framework that ensures the privacy of individuals in a dataset by adding
controlled random noise to the data.

Discrete sampling algorithms, like the Discrete Gaussian Sampler, are used to add carefully
calibrated noise to data.

What may go wrong if a buggy sampler is used?

Privacy Violations: leakage of sensitive information

Incorrect Results: distorted analysis results

m

SampCert

A project led by Jean-Baptiste Tristan at AWS.

An open-source Lean library of formally verified differential privacy primitives.

Tristan's implementation is not only verified, but it is also twice as fast as the previous one.

He managed to implement aggressive optimizations because Lean served as a guide, ensuring
that no bugs were introduced.

m

SampCert would not exist without Mathlib

SampCert is software, but its verification relies heavily on Mathlib.

The verification of code addressing practical problems in data privacy depends on the
formalization of mathematical concepts, from Fourier analysis to number theory and topology.

Verifying Cryptography with Aeneas at Microsoft

They verify (and fix/improve) the Rust code as written by software engineers

Code is evolving (new optimizations for specific hardware): They must adapt to rewrites

Maintained by
software
engineers

®

v src
& common.rs
® ffirs
® hash.rs
® key.rs
® lib.rs
® mlkem.rs
® ntt.rs
® test.rs

Aeneas

Automatically
generated

Code regenerated and
proofs replayed in Cl

v Code
Funs.lean

FunsExternal_Template.lean
FunsExternal.lean
Types.lean

v Properties =
BarrettReduction.lean
Basic.lean
CompressEncode.lean
CompressEncodeSpecAux.lean
MontReduction.lean
NormMod.lean
Ntt.lean
NttSpecAux.lean

Polynomials.lean

Extensible (custom automation)
Libraries (Mathlib)

Pure, functional
model

Prove properties about

Maintained by
proof engineers

KLR: a language and elaborators for machine learning kernels

Define a common representation for kernel functions with a precise formal semantics along with
translations from common kernel languages to the KLR core language.

KLR is also open source.

private def evalTensorScalar (ts : TensorScalar) (t: ByteArray) : Err ByteArray := do
match ts with
| TensorScalar.mk op® cO rev@ opl cl revl =>
let fO0 <- evalAluOp opO
let f1 <- evalAluOp opl
let cO := cO.toLEByteArray
let cl1 := cl.toLEByteArray
apply2 f0 revl@ cO f1 revl cl t

KLR: a language and elaborators for machine learning kernels

KLR uses bit-vectors, fixed integers, etc.

private def decBVé64 : DecodeM (BitVec 64) :=
let u8_64 : DecodeM UInté4 := next >>= fun x => return x.toUInté4
return ((<- u8_64) <<< 0 |||
(<- u8_64) <<< 8 |||
(<- u8_64) <<< 16 |||
(<- u8_64) <<< 24 |||
(<- u8_64) <<< 32 |||
(<- uB8_64) <<< 40 |||
(<- u8_64) <<< 48 |||
(<- u8_64) <<< 56).toBitVec

bv_decide: another powerful move

A verified bit-blaster by Henrik Boving, Josh Clune, Siddharth Bhat, and Alex Keizer

Uses LRAT proof producing SAT solvers: Cadical

/-

Close a goal by:

1. Turning it into a BitVec problem.

2. Using bitblasting to turn that into a SAT problem.

3. Running an external SAT solver on it and obtaining an LRAT proof from it.
4. Verifying the LRAT proof using proof by reflection.

syntax (name := bvDecideSyntax) "bv_decide" : tactic

“Blasting” popcount with bv_decide

def popcount : Stmt := imp { def pop_spec (x : BitVec 32) : BitVec 32 :=
X := x - ((x >>> 1) &&& 0x55555555); go x 0 32
X 1= (x &&& 0x33333333) + ((x >>> 2) &&& 0x33333333); “Mere o o o B
x iz (X + (x >>> 4)) && OXOFOFOFOF; gom:zm.1 ?_l:,\ll_i; 32) (pop : BitVec 32) (i : Nat) : BitVec 32 :=
X 1= X + (x >>> 8); | 8 => pop
X 1= x + (x >>> 16); | i+ 1 =>
X = X &&& Ox0000003F; let pop := pop + (x &&& 1#32)

} go (x >>> 1#32) pop i

theorem popcount_correct
3 p, (run (Env.init x) popcount 8) = some p A p "X" = pop_spec X := by
simp [run, popcount, Expr.eval, Expr.BinOp.apply, Env.set, Value, pop_spec, pop_spec.go]
bv_decide

L IVIN

“Blasting” popcount with bv_decide

Imp.lean > {} Imp.Stmt > @ popcount_correct v Tactic state € 1 Y
50% theorem popcount_correct : 1goal
51 3 p, (run (Env.init x) popcount 8) = some p X : Value
52 simp [run, popcount, Expr.eval, Expr.BinOp.app F ((x - (x >»> 1 88& 1431655765#32) 88& 858993459#32) + ((x - (x >>> 1 88&
53 bv_decide 1431655765#32)) >>> 2 88& 858993459#32) +
54

((x - (x >> 1 88& 1431655765#32) 88& 858993459#32) +

((x - (x >>> 1 88& 1431655765#32)) >>> 2 8&8& 858993459#32)) >>>

4 88&

252645135#32) +
((x - (x >»> 1 88& 1431655765#32) 88& 858993459#32) +

((x - (x >>> 1 88& 1431655765#32)) >>> 2 88& 858993459#32) +

((x - (x >> 1 88& 1431655765#32) 88& 858993459#32) +

((x - (x >> 1 88& 1431655765#32)) >>> 2 88& 858993459#32)) >>>

4 88&
252645135#32) >>>
8 +
(((x - (x >>> 1 88& 1431655765#32) 88& 858993459#32) +
1 ((x - (x >>> 1 88& 1431655765#32)) >>> 2 88& 858993459#32) +
((x - (x >> 1 88& 1431655765#32) 88& 858993459#32) +
((x - (x >> 1 88& 1431655765#32)) >>> 2 88& 858993459#32)) >>>
4 88&
252645135#32) +
1 ((x - (x >>> 1 88& 1431655765#32) 88& 858993459#32) +
- ((x - (x >> 1 88& 1431655765#32)) >>> 2 88& 858993459#32) +
((x - (x >>> 1 88& 1431655765#32) 88& 858993459#32) +
((x - (x >> 1 88& 1431655765#32)) >>> 2 88& 858993459#32)) >>>
4 88&
252645135#32) >>>
8) >>
16 8&8&

63#32 =
(x 88& 1#32) + (x >>> 1 88& 1#32) + (x >>> 2 88& 1#32) + (x >>> 3 &8& 1#32) + (x >>>
4 88& 1#32) +

grind in Software Verification

example (x : BitVec 8) : (x + 16)*(x - 16) = x*2 := by
grind +ring

def siftDown (a : Array Int) (root : Nat) (e : Nat) (h : e < a.size := by grind) : Array Int :=
if _ : leftChild root < e then
let child := leftChild root
let child := if _ : child+1l < e then
if a[child] < a[child + 1] then child + 1 else child
else child
if alroot] < a[child] then
let a := a.swap root child
siftDown a child e
else a
else a
termination_by e - root

theorem siftDown_size {a root e h} : (siftDown a root e h).size = a.size := by
fun_induction siftDown <;> grind [siftDown]

What did we learn?

Machine-checkable proofs enable you to code without fear.

Powerful proof automation.

Industrial projects: Verified compilers, policy languages, cryptographic libraries, etc.

Many more at the Lean Project Registry: https://reservoir.lean-lang.org/

amazon | science

Research areas v Blog Publications Conferences Code and datasets Academia v Careers

AUTOMATED REASONING

How the Lean language
brings math to coding
and coding to math

https://reservoir.lean-lang.org/

Al

m

Lean Enables Verified Al for Mathematics and Code

LLMs are powerful tools, but they are prone to hallucinations.
In Math, a small mistake can invalidate the whole proof.

Imagine manually checking an Al-generated proof with the size and complexity of FLT.
The informal proof is over 200 pages.

Buzzard estimates a formal proof will require more than 1M LoC on top of Mathlib.

Machine-checkable proofs are the antidote to hallucinations.

Al Proof Assistants

Several groups are developing Al that suggests the next move(s) in Lean's interactive proof game.
LeanDojo is an open-source project from Caltech, and everything (model, datasets, code) is open.

OpenAl and Meta Al have also developed Al assistants for Lean.

https://leandojo.org/
https://openai.com/index/formal-math/
https://ai.meta.com/blog/ai-math-theorem-proving/

= Q €he New Hork Times
Artificial Intelligence > A.l's Math Problem ALl Training Data Di: i 's Risk-Tal Fine Print Changes Quiz: Fake or Real Images?

Move Over, Mathematicians, Here

Comes AlphaProof

ALl is getting good at math — and might soon make a worthy
collaborator for humans.

& shareullartice 2> [] Qa7

Ringing the gong at Google Deepmind’s London headquarters, a ritual to celebrate each A.I. milestone,
including its recent triumph of reasoning at the International Mathematical Olympiad. Google Deepmind

m

What did we learn?

Machine-checkable proofs enable Al that does not hallucinate.
LLMs are getting better and better at explaining Lean code.
In an era of big data and LLMs, machine-checkable proofs ensure trust in results.

Al systems that prove rather than guess.

=-

Before we wrap up...

Lean Enables Decentralized Collaboration

Lean is Extensible Machine-Checkable Proofs

Users extend Lean using Lean itself. You don't need to trust me to use my proofs.
Lean is implemented in Lean. You don't need to trust my automation to use it.
You can make it your own. Code without fear.

You can create your own moves.

Lean is a game where we can implement your own moves

¢ Welcome Odd.lean 1,U ® VY % @ - Lean Infoview X
Odd.lean > ... v Odd.lean:17:0 =
; import Mathlib ¥ Tactic state « @
3 defodd (n:N) :=3k, n=2x%k+1 No goals
4 » All Messages (1)
5 - Prove that the square of an odd number is always odd
6 theorem square_of_odd_is_odd : odd n 9 odd (n * n) := by
7 intro (ki, ei1)
8 simp [es, odd]
9 Use2*k1*k1+2*k1 —
10 linarith
11 done 1
12

The 1inarith “move” was implemented by the Mathlib community in Lean!

Lean is a game where we can implement your own moves

¢ Welcome Odd.lean 1,U ® VY %y @D - Lean Infoview X
Odd.lean > ... v Odd.lean:17:0 =
; import Mathlib ¥ Tactic state « @
3 defodd (n:N) :=3k, n=2x%k+1 No goals
4 » All Messages (1)
5 - Prove that the square of an odd number is always odd
6 theorem square_of_odd_is_odd : odd n 9 odd (n * n) := by
7 intro (ki, ei1)
8 simp [es1, odd]
9 use 2 x kg * kg + 2 *x k; b
10 linarith
11 done 1
12

The 1inarith “move” was implemented by the Mathlib community in Lean!

The bv_decide and grind “moves” are also implemented in Lean!

You can use Lean to introspect its internal data

The tool lean-training-data is implemented in Lean itself. It is a Lean package.

A similar approach can be used to automatically generate proof animations.

fA-\’U

ammatmn

I—(a+b)"2—a"2+b"2+2*a*b

https://github.com/kim-em/lean-training-data

m

Lean FRO: Shaping the Future of Lean Development

The Lean Focused Research Organization (FRO) is a non-profit dedicated to Lean's development.
Founded in August 2023, the organization has 19 members.

Its mission is to enhance critical areas: scalability, usability, documentation, and proof automation.
It must reach self-sustainability in August 2028 and become the Lean Foundation.

Philanthropic support is gratefully acknowledged from the Simons Foundation, the Alfred P. Sloan

Foundation, Richard Merkin, and Alex Gerko.

FROs accelerate scientific progress / Lean as a Catalyst

James Webb Telescope and CERN illustrate a common pattern in science: a need for projects that are bigger

than an academic lab can undertake, more coordinated than a loose consortium or themed department, and

not directly profitable enough to be a venture-backed startup or industrial R&D project.

https://www.convergentresearch.org/about-fros

https://www.convergentresearch.org/about-fros

Lean FRO: by numbers

19 releases and 4,047 pull requests merged in the main repository only since its launch in July 2023.

Public roadmaps: https://lean-fro.org/about/roadmap-y2/

Lean project was featured in multiple venues NY Times, Quanta, Scientific American, etc.

= q €he New Nork Times

A.l. and Chatbots > CanA.lBe Fooled? Testing aTutorbot ~ Chatbot PromptstoTry A.l's Literary Skills ~ What Are the Dangers of A.l.?

A.L Is Coming for Mathematics, Too

For thousands of years, mathematicians have adapted to the
latest advances in logic and reasoning. Are they ready for artificial
intelligence?

When Computers Write Proofs, What's the Point of Mathematicians?

youtube.com

https://lean-fro.org/about/roadmap-y2/

Growth of Lean projects on GitHub

4000
Lean FRO
3000 launched

2000

1000

January 2021 January 2022 January 2023 January 2024 January 2025

New installations of Lean Development Environment (2024 to present)

40000
30000
20000

10000

April 2024 July 2024 October 2024 January 2025

How can | contribute?

Help building Mathlib.

Want to engage with the vibrant Lean community? Join our Zulip channel.

Interested in ML kernels? Contribute to the KLR project.

Want to contribute to a large formalization project? Join the FLT formalization project.

Start your own open-source Lean project! Your package will be available on our registry Reservaoir.

Start using Lean online: live.lean-lang.org

Support the Lean FRO: Funding, partnerships, or simply advocating the project.

http://github.com/leanprover-community/mathlib4
https://leanprover.zulipchat.com/
https://github.com/leanprover/KLR
https://github.com/ImperialCollegeLondon/FLT
https://reservoir.lean-lang.org/
http://live.lean-lang.org/

Software

Conclusion

Lean is an efficient programming language and proof assistant.

Mathematics

The Mathlib community is changing how math is done.

It is not just about proving but also understanding complex objects and proofs, getting new insights, and

navigating through the "thick jungles” that are beyond our cognitive abilities.
Lean tracks details, so humans focus on big ideas.
Decentralized collaboration with Lean: Large teams can collectively tackle huge proofs without losing track.

The entire discipline thrives when no one has to “take it on faith.”

Thank You

https://leanprover.zulipchat.com/

X: @leanprover

LinkedIn: Lean FRO

Mastodon: @leanprover@functional.cafe
#leanlang, #leanprover

https://www.lean-lang.org/

