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Three Major Dimensions of the Challenge of Robust Learning

Robust Generalization
(open-world, adversarial resilience)

Compositional Reasoning Low energy and memory
(space and time) Smaller training data size

No machine learning paradigm can match the plasticity, efficiency, and reasoning capability
of the human brain.
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Three Major Dimensions of the Challenge of Robust Learning

Robust Generalization
(open-world, adversarial resilience)

Compositional Reasoning Low energy and memory
(space and time) Smaller training data size

Central to solving all three challenges together is the ability to abstract and form concepts.
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Predictive Processing — a Theory of Mind

Predictive coding (also known as predictive processing) is a theory of mind in which the mind is
constantly generating and updating a mental model of the environment. The model is used to
generate predictions of sensory input that are compared to actual sensory input.

Rao and Ballard’99, Friston and Kiebel’09  Stefanics et. al.’14

Predictions ,» ‘E
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Prediction errors

E\\/B‘ (mismatch response)

5# g ki 8
Sensory input
Human perception is model-based, using our context to bias the interpretation of sensors.
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TrinityAl: Neuro-symbolic Architecture Inspired by Predictive Coding

Background Knowledge Mission Specifications
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TrinityAl @ SRI (2017-2024)
(DARPA, NSA, ARL, IARPA,
ARPA-H)

Self-stabilizing loops across layers make TrinityAl
robust to adversarial perturbations.
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TrinityAl: Learn with Less Data and Robust to OOD perturbations

Background Knowledge
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Multimodal High Dimensional Sensor Stream

Mission Specifications

car

truck movable_object

human (19.46%), bicycle (1.04%),
motorcycle (1.11%), car (43.62%), truck
(12.70%), movable_object (22.05%)

Recent References

Kaur et. al. AAAT 2022

Acharya et. al. TJCAI, 2022.
Cunningham et. al. ICML'22
Kaur et. al. ICCPS'23
Gupta et. al. CVPR'23
Magesh et. al. IMLR"24

Model Occlusion (%) | Overall Class-wise accuracy
accuracy | hyman | bicycle | motor- | car | truck | movable

cycle object
CNN - ResNet No occlusion 88.65 92.44 | 57.24 | 61.31 | 92.59 | 69.74 90.69
(Baseline)
CNN - ResNet 30% 83.24 90.99 12.52 | 20.90 |92.48 | 71.15 71.36
(Baseline)
CNN - ResNet 50% 79.17 94.93 2.36 12.48 | 87.33 | 58.94 67.95
(Baseline)
TrinityAl No occlusion 95.51 98.38 66.25 | 73.37 | 97.13 | 82.17 98.62
TrinityAl 30% 94.70 98.72 66.66 | 65.40 | 96.62 | 81.31 96.73
TrinityAl 50% 93.13 97.53 31.36 | 64.88 | 94.17 | 82.10 96.34




TrinityAl: Uncertainty-quantified prediction over novel contexts

Objects violating common contextual relations, such as co-occurrence, size, and shape
relations, in a scene, resulting in compositional novelty.

Refine predictions with high-level contextual cues
(Graph Convolutional Network)

Initial low-level predictions
(Convolutional Neural Network for object detections)

Acharya et. al. "Detecting out-of-context objects using graph context reasoning network." IJCAI 2022.

Background Knowledge Mission Specifications

| l

SYMBOLIC: Logic
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Situation‘ Predicted entity

trajectories and activities
SUBSYMBOLIC: Large

Multimodal Models

L
Activity Predicted entities, Lx
atomic concepts

NEURAL: Entity Recognition
with Generative Classifiers

!

Multimodal High Dimensional Sensor Stream

Roy et. al. “Zero-shot Detection of Out-of-Context Objects Using Foundation Models” WACV 2025.




X - = t'}‘ -

—_— ; »é; _ i * TR \\ ” '
GNN (JCAI'22) | Ours (WACV'25)
MIT-OO0C 23.45 73.29 90.82
lJCAI22-00C 26.78 84.85 87.26

Acharya et. al. "Detecting out-of-context objects using graph context reasoning network." IJCAI 2022.
Roy et. al. “Zero-shot Detection of Out-of-Context Objects Using Foundation Models” WACV 2025.

Neuro-symbolic approach performs better than our prior work with custom-trained GNN
without any training and significantly outperforms VLMs.

Susmit Jha
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TrinityAl: Uncertainty-quantified prediction over longer temporal
context

ge G

Kaur, R. et. al. “iIDECODe: In-Distribution Equivariance for Conformal Out-of-Distribution Detection”. AAAI, 2022.
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Transform input that is invariant or
equivariant and use the difference
between the inference between the
original and transformed input to
compute OOD scores.

Lin et. al. Safety Monitoring for Learning-Enabled CPS in Out-of-Distribution Scenarios. ICCPS, 2025.

Extensions to time series such as
videos: Consider temporal
transformations such as frame-
drop, local reordering, etc.

Kaur, R. et. al. “CODIT: Conformal out-of-distribution Detection in time-series data for cyber-physical systems”.
ICCPS, 2023.

Susmit Jha

11



Failure Cases: Quantitative or Spatial or Temporal Reasoning

o SR
219: a man standing on a street
corner talking on a cell phone

087: a silver car that is parked
in front of a brick building

063: a regigerator filled with food 134: a truck and a taxi are
and drinks with a white door driving down a street

068: a bathroom with a toilet and a
wall with a lot of rolls of toilet paper

Lack of specialized reasoning is a key limitation.

Susmit Jha

189: a man riding a small motorcycle
down a street in front of a house



From a Layered Hierarchy to an Assembly of Self-organizing Agents

Background Knowledge Mission Specifications

| |
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Multimodal High Dimensional Sensor Stream

TrinityAl @ SRI (2017-2024)
(DARPA, NSA, ARL, IARPA,
ARPA-H)

Reasoning
and planning VLM
model

A distributed heterogeneous committee of models can
robustly learn and infer over a common concept space.

Susmit Jha 13



From a Layered Hierarchy to an Assembly of Self-organizing Agents

« Foundation Models communicate with
each other exchanging inferences and
enriching their context.

Reasoning
and planning VLM
model

A distributed heterogeneous committee of models can
robustly learn and infer over a common concept space.
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From a Layered Hierarchy to an Assembly of Self-organizing Agents

Foundation Models communicate with
each other exchanging inferences and

enriching their context. Mission Definition
and KB

Increased context length and improved
reasoning makes FMs more suitable as

the System 2 top-layer with dedicated .‘

. . . \‘ \
reasoning engines available as a too ”v

A distributed heterogeneous committee of models can
robustly learn and infer over a common concept space.

Susmit Jha
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From a Layered Hierarchy to an Assembly of Self-organizing Agents

» Exploit tool-calling / MCP

to make the architecture
self-organizing. Mission Definition and KB

* Train LLMs to decompose

complex tasks as simpler !ﬁlf} :..uf d;
tasks that can be solved 435 %‘—’W"_’ 0 <—> e
by lower—level models. |

+ Assurance by checking O O O O O O O

consistency of inferences Symbollc and Neural Models wrapped with Model-context Protocol Interfacej

not just across layers but

within the same layer. o .
A distributed heterogeneous committee of models can

robustly learn and infer over a common concept space.
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From a Layered Hierarchy to an Assembly of Self-organizing Agents

SANSHA: Self-organizing Assembly of Neuro-Symbolic Heterogeneous Agents
(2024-now: DARPA ANSR, DARPA TIAMAT, ARL |oBT, ARPA-H DIGIHEALS)

Mission Definition and KB

= L0801 ~al)  geab)
JHe) N Q Qe = ,
.ﬁmv 4-;'@ 15!—» o > : Kahneman'’s System 2

O O O O O O O |areems sy

Symbollc and Neural Models wrapped with Model-context Protocol Interface

A distributed heterogeneous committee of models can
robustly learn and infer over a common concept space.
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Connections to Theories on Human Cognition

- 'Elill gal) ldl}
o T RRSARES 8

Marvin Minsky's Society of Mind — intelligence is a “vast society of individually simple processes
known as agents.” Higher-level reasoning arises when small specialist agents are recruited into
larger coalitions, so the deliberative voice is really a negotiated consensus.

Bernard Baars’ Global Workspace Theory (GWT) — dozens of unconscious processors compete for
access to a shared “workspace”; winning coalitions broadcast their data so other modules can join
in planning, problem-solving, and verbal report—classic System 2 tasks.

Daniel Dennett’'s Multiple Drafts Model — conscious thought is “a variety of interpretations of
inputs,” each a “draft” that can gain or lose influence. No single homunculus; what feels like a
unitary System 2 is whichever draft wins the editing war.

Several theories argue System 2 is not one homogeneous entity but a committee.

Susmit Jha 18



Key Assurance Challenges

the
instrument a person
is holding is a gun.

Person in military
gear is ready to take

The personisin
military gear
and is a threat.
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Key Assurance Challenges

| am only 30% sure the
instrument a person
is holding is a gun.

Person in military
gear is ready to take
a (photographic)

| Missing Uncertainty
Quantification
\ Unsure about gun

The personisin
military gear
andis but not a
threat.

. “shot”
’ Concept Conflation
photograph or bullet

Uncertainty quantification and semantic consistency of concepts are essential.

Susmit Jha 20



Key Assurance Challenges

J%"Eu » e ’q'l_.i
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-
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« Quantify Uncertainty of Responses

« Verify Concepts in Foundation Models are Aligned Mutually and with Humans

Uncertainty quantification and semantic consistency of concepts are essential.

Susmit Jha
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Uncertainty Quantification in Foundation Models: Post-processing
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71 Spiess et al. "Calibration and correctness of language models for code.” ICSE 2025

Magesh et. al. "Principled out-of-distribution detection via multiple testing." Journal
of Machine Learning Research 24, no. 378 (2024): 1-35.
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CLUSTER 2
1. He told her his latest

CLUSTER 1
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2. He did, only not directly

story

CLUSTER 4
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LLM Bayesian Post-Processing: Semantic Clustering and Conformal Prediction

Kaur et. al. Enhancing Semantic Clustering for Uncertainty Quantification & Conformal Prediction by LLMs. Statistical

COQA Dataset TriviaQA Dataset
Model | Eval. | Model| Sem. Ent. |EigV Ours Model| Sem. Ent. |EigV Ours
Acc. |Unnorm/Norm Unnorm/Norm || Ace. |Unnorm/Norm Unnorm/Norm

Llama-13b| GPT-4 || 73.22 | 85.81/86.44 |88.03| 86.35/87.47 | 67.03 | 88.13/87.94 |88.84| 88.33/88.54
Mistral-7b | GPT-4 || 73.38 | 81.91/82.68 |82.82| 82.22/82.95 | 60.68 | 80.99/81.40 [82.03| 81.23/82.03
Mean GPT-4 || 73.30 | 83.86/84.56 |85.43| 84.29/85.21 | 63.86 | 84.56/84.67 |85.44| 84.78/85.29
Llama-13b|RougeL | 72.75 | 86.03/87.05 |87.92| 86.84/88.34 || 64.60 | 85.62/85.19 |85.76| 85.86/85.87
Mistral-7b |[RougeL || 44.74 | 64.37/62.93 |63.43| 64.60/63.48 || 42.33 | 70.18/68.13 |69.41| 70.26/68.81
Mean |RougeL || 58.75 | 75.20/74.99 |75.65| 75.72/75.91 || 53.47 | 77.90/76.66 |77.59| 78.06/77.34
Llama-13b|Deberta|| 63.74 | 80.21/79.48 |82.68| 81.04/81.37 || 63.33 | 84.92/84.34 |85.60 85.23/85.13
Mistral-7b [ Deberta || 11.23 | 23.56/20.71 |20.88| 23.53/21.05 || 33.92 | 62.29/59.53 |60.39| 62.37/60.16
Mean |Deberta|| 37.49 | 51.89/50.10 |51.78| 52.29/51.21 | 48.63 | 73.61/71.94 |73.00| 73.80/72.65

Frontiers in LLMs and Foundation Models, 2024

Susmit Jha



Uncertainty Quantification in Foundation Models: Bayesian LORA

Bayesian Neural Network
ycR" yeR" yeR"
(x) {») : :
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LLM Bayesian Finetuning: Bayesian LORA (under submission to UAI)

dis the embedding dimension of the model and n is the output dimension of the layer.

A combination of finetuning with uncertainty quantification LORA adaptors and post-hoc
consistency analysis can help detect when foundation models are confabulating/hallucinating.

Susmit Jha 23



Uncertainty Quantification in Foundation Models: Bayesian LORA

Datasets
Metric Method Params (M) | In Dist. Smaller Dist. Shift Larger Dist. Shift
— 61 OBQA | ARC-C ARC-E | Chemistry  Physics
= MLE 3768 | 9170400 | 9015005 95.3li0s | 53.334,, 5417425
§ 5 MAP 3.768 91.60+02 | 9043411 95.48104 | 53.33,,, 56.001; 7
T MC-Droput 3.768 91.80, 0.7 | 90.09405 95.54104 | 52.00426 52.67+1.2
c 4 o | ACC (1) Ensemble 11.305 9253105 | 90.32404 95.1340.1 | 52.67+06 54.3341,
ke Laplace 3.768 91.60+0.7 | 90.62404 95.82.¢, | 4833430 47.Tliose
©3 ‘ BLoB 5.403 9167405 | 9282105 9595102 | 5521118 5347416
o ScalaBL (ours) 3.769 90.60+0.3 | 91.55, ¢4 95.54404 | 5243430 53.82116
8 21 ; Prior SotA { MLE 3.768 6.50:*:0.3 8~11i0.7 3.58:*:0.3 23.66i1_3 22.65:*:3.4
Ours i MAP 3.768 6.40103 | 799:10 3.38102 | 2401419 22.36146
v T MC-DI‘OpOUt 3.768 6.55:*:0'2 8'22i0.9 3.28:*:0'5 24'54i2.9 20.51:*:2'3
00 02 04 06 08 10 12 14 16 ECE ({) Ensemble 11.305 465404 | 650104  3.00404 | 19.78117 16.73122
Number of Additional Parameters Laplace 3.768 247,04 | 456110 2.06,0, | 15.62,4, 11.66.¢5
(Millions) BLoB 5.403 246,05 | 454193 2.50+03 | 1516111 16.62,,
oa | i = ScalaBL (ours) 3.769 2.38:|:0_8 4.29:*:1'2 I'SS:I:OA 16.59:|:2_3 17.2310'9
| MLE 3.768 038000 | 047100 023100 | 1.55:00  1.20400
921 | MAP 3.768 0.37:*:0‘0 0.46i0_1 0.22:“)‘0 1.56i0_0 1-21i0‘0
: 90/ ‘ MC—Dropout 3.768 0.36:*:0‘0 0'47i0.0 0.22:*:0‘0 1'53i0.l 1.2]&:0‘1
~ ‘ NLL () Ensemble 11.305 0.27100 | 034100 0.181¢0 1.3140.0 1.0840.0
§ 88 4 ® | Laplace 3.768 0.24:*:0'0 0'31i0.0 @io,o l'll:t0,0 1'04i0,0
= ‘ BLoB 5.403 02190 | 027100 0.16400 1.33101 0.99,4,
O 861 ‘ ScalaBL (ours) 3.769 023,50 | 026,55 014400 125,40 0.94_
<
841 @ Prior SotA ‘
82 4 Ours &

T T Our approach Bayesian LORA can achieve 0.76 ECE performance with the same

Number of “("N‘.’i‘.ﬂg:;' Parameters accuracy requiring 1792X less additional parameters than SOTA.

A combination of finetuning with uncertainty quantification LORA adaptors and post-hoc
consistency analysis can help detect when foundation models are confabulating/hallucinating.
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Key Assurance Challenges

;‘Jﬁ ) Leain pead
Hw‘qﬂ—b 0, =P 0y

« Verify Concepts in Foundation Models are Aligned Mutually and with Humans

Uncertainty quantification and semantic consistency of concepts are essential.

Susmit Jha
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Mechanistic Interpretability

Mechanistic View
Legend
When
|0 Mary Key / Value
and ‘
S1 John Query =» =+ Output

S1+1 went  ——

Previous Token
Heads

to
the
store

v

Duplicate Token

S2 lJohn —

gave
a

Heads

drink

| Induction

Heads

Negative Name
Mover Heads

Name
Mover Heads

END to

S-Inhibition
Heads

Backup Name

Mover Heads

Approach: Bottom-up

Algorithmic Level: Node-to-node connections

Implementational Level: Neurons, pathways, circuits

Neuron-level analysis

Anthropic’s Sparse AutoEncoders [Cunningham et al., 2023]
Scaling & Evaluating SAEs, OpenAl 2024

Towards Principled Evaluations of SAEs, Google 2024

Route SAEs to interpret LLMs [Shi et al., 2025]

Model-level analysis

Mechanistic Unveiling of Transformer Circuits [Zhang, 2025]
The optimal BERT surgeon [Kurtic et al., 2022]

Automated Circuit Discovery [Conmy et al., 2023]

Circuit Discovery with Graph Pruning [Yu et al., 2024]
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Concept Probes: Superposition and Polysemantic Representation

Mechanistic Interpretability = Knowledge Graphs as Data Foundation

Q Understanding how neural networks calculate outputs Knowledge Graphs like ConceptNet provide rich information on entities

(nodes) and their relationships (edges). To our knowledge, KGs have

only been used to add context to input queries (RAG-technique) for
gg Polysemanticity Challenge improving LLM performance, not for mechanistic interpretability
Neurons activate for multiple unrelated features

<> Logical Language Representation

Superposition Hypothesis

% We extract KG information and store it in logical language format with
Networks learn more features than dimensions entities as predicates and relationships as connectors between
predicates
Language Model Sparse Autoencoder Feature Dictionary
7 Y g %
HE Embedding =) (_ mEmEO ) Activation Vector Feature | Meaning Isnéerpretability
ore
J, & D, Encoder matrix
(0 <k = N Transformer Blocks ) (tied with decoder) k-0001 | Words ending in “ing” | 0.56
Text Corpus /| ) Add bias + apply ReLU f
(OmMOOBO0000 ) Sparse feature coefficientS/ k-xxxx
C ) \_/ Decoder matrix (dictionary) k-2048 Chemistry terms 0.38
Unembeddin
\ = y, (_ mEEEO ) Reconstructed activation vector .
J c. Interpret the resulting
a. Sample activations b. Learn a feature dictionary using an autoencoder dictionary features
from a language model that learns to represent activation vectors as a

sparse linear combination of feature vectors.
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Concept Probes: Superposition and Polysemantic Representation

An on the Expected
Input “Continent” Attribute = Output

e Knowledge Graphs as Data Foundation

Knowledge Graphs like ConceptNet provide rich information on entities

(nodes) and their relationships (edges). To our knowledge, KGs have
only been used to add context to input queries (RAG-technique) for

“Paris is in the continent of” _ n - “Asia”

Cause

improving LLM performance, not for mechanistic interpretability

Cause

<> Logical Language Representation

“Paris is in the country of” ‘ “France” o o |
We extract KG information and store it in logical language format with

m m entities as predicates and relationships as connectors between
predicates

“Tokyo is a large city.”

Compositional Concepts
What is the national language of the country where Paris is located?

What is the national language of the country where London is located?

Susmit Jha 28



Datasets with Ground-truth Concepts for Evaluation

RIVAL-10 (Rich Visual Attributes with Localization) dataset [Moayeri et. al, CVPR22]

) CAT
RIVAL10 adopts CIFAR10 classes via Imagenet.
Track  Car  Plane  Ship  Cat  Dog  Equine Deer  Frog  Bird cilortl: e
- - - hairy
Moving | Wagon | Airliner | Liner Persian | Labrador = Sorrel | Gazelle | Tailed House
van Frog finch
P ﬁ SHIP DEER
Q E NI 1Y
ﬂ — u < . ' metallic long-snout
rectangular horns
| | wet ears
Semi Convert  Military || Container | Egyptian = Golden | Zebra | Impala = Tree Gold long tall hairy
-ible Ship

=

BIRD EQUINE

long-snout
ears

tail mane

hairy

wings
beak
patterned
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wheels
metallic
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DOG
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wings
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TRUCK

wheels
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rectangular
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Datasets with Ground-truth Concepts for Evaluation

RIVAL-10 (Rich Visual Attributes with Localization) dataset [Moayeri et. al, CVPR22]
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Birds(x) :- in(a1,x), wings(a1), in(a2, x), beak(a2), in(a3,x), patterned(a3)
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Foundation Model Semantic Verification Property Language

Semantic Specification Language

truck -
(variables) xeVars s
(concept names) cony,cona EConcepts pane - [}
(classes) ceC ship -
) cat -
E ::= >(x,coni,con2) |predict(z,c) | "E|EANE|EVE 400 I
equine -
hasCon(z,con):= /\ >(z,con,con;) deer -
con;EConcepts A con;7#con frog -
bird - [ ]
EQ Ly 0N EE o AU 5 DET
(Congpec €xpressions) e€FE é -§§ & E o 3 %S é § T ® %, =§° %
(classifiers) f€F:=R?—-RIl o ® § @ g I =
(inputs) veX:=R¢ 4 = g @ &

(concept representation maps) rep € Rep :=Concepts — (R¢ = R)
(semantics) [e] €F' x X x Rep— {True,False}

[>(z,coni,con2)](f,v,rep) :=rep(coni)(v) >rep(conz)(v)
[predict(z,0)](f v.rep) =(argmaz(f (1) ={c})
[[_'e]] (f,'v,'rep) =" [[6]] (f,'v,'rep)
[er Ae2](f.v,rep) :=[ei](f,v,rep) Ale2](f,v,rep)
[e1Ve2](f,v,rep):=[ei](f,v,rep)V [e2](f,v,rep)
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Semantic Verification Using Concept Mapping

. Multimodal Model
Tmap(Z) :: MZ"‘d = Images

E Vision Model .-~ -
#* \\
i \\\\
- .
/P isin
i p
y

Images Text (Caption0
LU LT LU
. Image Image Text
M,d = argmin Z HMfenc(m) +d— gézlf (37) H% Encoder MEE-:-"%} "_““‘”"-*-w Encoder Encoder
M,d |Dtrain| meDtrain ll / -

Consistency ~"*=---.

/ Properties
Run-time “Similarity” score
/ Monitoring (between image
Output Class

and caption)

mage Embedding x Text Embeddingl

Definition 4 (Faithful alignment of representation spaces). Given an en-
coder fenc: X — Z; of a vision model and an image encoder gi"9 : X — Z, of a
VLM g, the representation space of fenc is faithfully aligned with the representation

' wec- EE EE
space of gin9 if there exists a map Tmap: Z§— Z4 such that, car - = I E
im plane - . . ..
Vz €X. Trap(fene(z)) =gomd () ship - B P 5 T
cat - i wm il
Theorem 1. Given a vision model f:X —Y with encoder fen.: X —Z;, and a dog -l mE &
VLM g with encoders g9 : X — Z and gt=t.: T — Z, if the representation space eq:'"e = - = EE =
Of fenc 18 faithfully aligned with the representation space of g9, then the linear frej; ] B
concept representation map, rep, via VLM g can be defined as, bird - [l ] 7]
0 un ] E E w = v X a g — o= T
rep(con) := Ax.cos(Tmap(fenc(z)),cON) SE3 85 3 8 P58 8s3 2 : s :
. . o > = g B E S 2
where con s a vector in Z, whose direction corresponds to concept con. S a 3 o =
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Semantic Verification of Learned Concepts: Relative Comparison

1.0 1.0
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(a) Strength predicates for truck (b) Strength predicates for car

Concept-based Analysis of Neural Networks via Vision-Language Models. Mangal et. al. SAIV 2024
Debugging and Runtime Analysis of Neural Networks with VLMs. Hu et. al. CAIN 2025

We can specify and verify semantic properties over concepts and check for consistency of
representation between two models.
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Semantic Verification of Concepts: Relative Comparison

Quantitative Measure of li Sw; Sui,[l@-,ui] €B,Vi= {15---319}
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Concept-based Analysis of Neural Networks via Vision-Language Models. Mangal et. al. SAIV 2024
Debugging and Runtime Analysis of Neural Networks with VLMs. Hu et. al. CAIN 2025
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Semantic Verification of Concepts: Relative Comparison

Ground-Truth Summary HeatMap
(images with GT truck)
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Aggregate summary of concept representation in a model and its consistency with
subconcepts.
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Semantic Verification of Concepts: Identifying Conceptual Gaps
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Ground-Truth Heatmap for Truck
(adversarial images)
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Differential Heatmap
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Predicates for truck that are non-robust: eg. wheels > tail, wheels > floppy-ears, metallic > long-snout
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Semantic Verification of Concepts: Localizing Errors

ground-truth class: ship ground-truth class: cat ground-truth class: dog

X M
2 ‘
.

. A=
Encoder Error Head Error Encoder Error Head Error Encoder Error

Head Error

CLIP: ship, ResNet18: frog, CLIP: ship, ResNet1s: dog, CLIP: cat, ResNetis:dog, CLIP: cat, ResNetis: equine, (Lip:dog, ResNetis: equine, CLIP:dog, ResNetis: cat,
CLIP viarmap: frog CLIP viarmap : ship CLIP viarmap: dog CLIP viarmap : cat CLIP viarmap : equine CLIP viarmap : dog
Mutation location # encoder error # head error

No mutation (original ResNetI8) 61 84
Mutation 1n Encoder 4271 405
Mutation in Head 101 4571

1183 (orig decomp) | 3064 (orig decomp)

Mutation 1n Residual Block 3 438 (alt decomp) 3809 (alt decomp)

Concept-based Analysis of Neural Networks via Vision-Language Models. Mangal et. al. SAIV 2024
Debugging and Runtime Analysis of Neural Networks with VLMs. Hu et. al. CAIN 2025
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Assured Self-organizing Assembly of Neuro-Symbolic Heterogeneous

Agents

Mission Definition and KB

NN

2 _:*‘.a.iﬂ' :__.QJ.Ji ) 2 lﬂi )
-hr‘ 44@-%«—»" 0 ="

OOOOOOO

Symbollc and Neural Models wrapped with Model-context Protocol Interface

Uncertainty quantification and semantic consistency of concepts are essential.
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Thank youl

SANSHA: Self-organizing Assembly of Neuro-Symbolic Heterogeneous Agents
(DARPA ANSR, DARPA TIAMAT, ARL 10BT)

Mission Definition and KB * Quantify Uncertainty of
// .\"\‘ Responses
L TS DI ‘!3[' . .
4—;‘“@"5‘_’* RURR ‘¢="g~ Kahneman’s System 2 *  Verify Concepts in

Foundation Models are
Aligned Mutually and

O O O O O O O
Kahneman's System 1

Symbolic and Neural Models wrapped with Model-context Protocol Interface

An independent nonprofit R&D institute with deep ~ We are hiring ...

@) SRI roots in Silicon Valley with a nearly 80-year legacy. susmit.jha@sri.com

https://nusci.csl.sri.com
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Semantic Verification of Concepts

Quantitative Measure of

8 8
Satisfying Spec x
71 : 7 "
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Specifications Specifications

Specification 25 that has the lowest value for the violation measure € suggesting that if the ResNet18 model predicts
truck, it likely that rectangular>patterned holds; specification 5 suggests that wheels>colored—eyes is less likely.

Concept-based Analysis of Neural Networks via Vision-Language Models. Mangal et. al. SAIV 2024
Debugging and Runtime Analysis of Neural Networks with VLMs. Hu et. al. CAIN 2025
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