<BISRI

Shift left / Shift up:
Protecting Safety-Critical Software
Intensive Systems from Malicious Acti

Harald Ruess, N. Shankar

Formal Methods Program

email: harald.ruess@sri.com

Annapolis, May 16, 2025

©2025 SRI INTERNATIONAL. ALL RIGHTS RESERVED. PROPRIETARY.

Disruption, Failures, and Adversity

___ Channel | ________ncidences [

Hardware Intel FDIV, Spectre/Meltdown

Side Channel Electromagnetic, acoustic, power, timing, optical,
radiation, wear-and-tear (Row Hammer)

Calculation NASA Mariner, Mars Polar Lander, Mars Climate Orbiter,
Ariane-5

Memory/Type Buffer overflow, null dereference, use-after-free, bad cast

Crypto SHA-1, MD5, TLS Freak/Logjam, Needham-Schroder,
Kerberos

Input Validation Buffer over-read (Heartbleed, Cloudbleed)

Race/Reset Condition Therac-25, North American Blackout, AT&T crash of 1990,
Mars Pathfinder

Code injection SQL injection, cross/site scripting, malvertising, data
poisoning

Provenance / backdoor Athens Affair, Solar Winds

Social engineering Pretexting, Honeytrap,Tailgating/Piggybacking “wmmr;{m Foternrt Risks Farim

3 ©2025 SRI INTERNATIONAL. ALL RIGHTS RESERVED. PROPRIETARY.

The Cost of Failure

The estimated engineering cost of fixing poor
quality code exceeds $1 trillion annually in the
U.S. alone

* with failure to patch known vulnerabilities being the
largest contributor to these costs

Cybercrime thrives on code vulnerabilities, and
is estimated to be another $8 trillion a year
business and growing

* thatis nearly $1 billion every hour

Sources:

www.synopsys.com/blogs/software-se curity/poor-software-quality-costs-us

cybersecurityventures.com/cybercrime-to-cost-the-world-8-trillion-annually-in-2023

4 ©2025 SRI INTERNATIONAL. ALL RIGHTS RESERVED. PROPRIETARY.

Source: Pieter Bruegel the Elder

State-of-the-practice

Traditional debugging is not only costly but also
largely ineffective in dealing with the complexity of
today’s SW supply chain

* Manualinspection of largely informal specs and code
* Codetesting in later development stages

Piling band-aids on top of poor-quality software only
fuels an unwinnable race to the bottom

= >40,000 CVEs published in 2024, a 38% increase from 2023
= The reactive approach to cybersecurity is no longer sustainable

Code and attacks generated by current LLMs are
likely to make matters worse

5 ©2025 SRI INTERNATIONAL. ALL RIGHTS RESERVED. PROPRIETARY.

Generated by Gemini from unknown sources

Formal Methods to the Rescue?

FM touted to be a viable alternative to
traditional bug hunting

= |ntegration with industrial development processes
(e.g. Intel, Collins, AWS)

= Microprocessors, separation kernels, real-time operating
systems, fault-tolerant algorithms, and crypto libraries nowadays
formally verified almost routinely

= Billions of smalltheorems machine-proved every day

Satisfiability revolution (SMT, BMC, k-induction, IC3)
is making Vannevar Bush’s prophecy come true

But: despite all the progress, FM not widely used ...

6 ©2025 SRI INTERNATIONAL. ALL RIGHTS RESERVED. PROPRIETARY.

AS WE MAY THINK

A TOP U.S. SCIENTIST FORESEES A POSSIBLE FUTURE WORLD
IN WHICH MAN-MADE MACHINES WILL START TO THINK

oot o B 0 obommn”) 14 B D o e o B o R el e, e i e e Mreorn ba -
r.'-! The o wmmns burriag ness wdd goishmanal comge soms b V0 3o Welor D Y o
. b

-
ity e et ol o pemmenbiy Sha wn (e 8 caiiie o A

-

Foo b bmdagams ool pam Jaite bo v mede o) rsasn Ain ee e
D i R O I N DR T)
muthe Miwr badod buove boun able o carry s thoss s toman b o Beas .—-.—...nsu. e s _.._..-.‘_ o

“We may someday click off
arguments on a machine with
the same assurance that we now
enter sales on a cash register”

https://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881/

It’s the Specification, Stupid!

Specification, formal or not, undoubtedly the Achilles’ heel

= Imprecise, ambiguous, inconsistent, even outright wrong, and constantly changing

= Lack of agreed-upon specifications of basic software building blocks;
Messy realities of programming languages, emergent APl behavior often undocumented, myriad poorly defined standards for data and exchange protocols

Specification

Verification, formal or not, rather late in the development cycle

= By then, the most egrigious design errors have already been made,
= Errors are to be found at least as often in specifications as in theirimplementation
= Designerrors are the most costly ones to fix

Formal specification often developed as an afterthought

= Unclear relationship between generally accepted specifications (i.e. standards) and their formal counterparts

As a directresultit is notuncommon for even formally verified software to still contain
alarming bugs, which is why some consider FM to be an academic Glasperlenspiel

7 ©2025 SRI INTERNATIONAL. ALL RIGHTS RESERVED. PROPRIETARY.

»

Verify then Generate! <33

A better paradigm is to
= Align informal and formal specs
= Formally verify specs
= Generate correct code from specs
= Use of integration architecture with well-defined properties

Specification
= Autoformalizing standards = Type-checking for consistent = Correct-by-construction generation of
documents (Arsenal) data, representation, and efficient and memory-safe code (PVS2C)
= Semantic browsing for use (Predicate Subtypes, = Correct-by-construction configuration
generating consistent Ontic Types) generation for multi-rate computation
stakeholderviews of evolving ® V&V of specifications and and communication platform (RADL)

(standards) documents (Effigy) abstract programs (PVS)

8 ©2025 SRI INTERNATIONAL. ALL RIGHTS RESERVED. PROPRIETARY.

PVS2C: Autogenerating Correct and Efficient Code

PVS2C compiles executable subset of PVS

specifications into stand-alone C code Riindael_step(A, K): byv[16] =
= Functionally correct-by-construction LETAA; ::rz/itf?sgv?/?;\(?))’
= Memory-safe A3 = mixColumn(A2)
. . . 1\
No runtime environment needed roundkeyXOR(A3, K)

= “Matches” efficiency of hand-coded C
Rijndael_rec(A, KK, (i : below(11))): RECURSIVE byv[16] =

IFi>=10 THEN
. roundkeyXOR(shiftRow(byteSubst(A)), KK(i))
Benefits ELSIF i=0 THEN
o o _ Rijndael_rec(roundkeyXOR(A, KK(i)), KK,+1)
= Program verification independent of peculiarities of target programming ELSE
language and underlying execution environment LET A4 = Rijndael_step(A, KK(i)) IN
= Many program optimizations applied at the declarative level, where ENDll?Fundael_reC(A4, KK, i+1)
essential identities still hold MEASURE 10 — |

Rijn(_j_aeI(A, K): byv[16] =
Example (Effigy): Auto(in)formalization of PDF standard R"Zﬁii'y;r{?ﬁi’ﬁmn;\ (k: below(11)): K),1, 0), 0)

documents and generating executable code with PVS2C:
testing, analysis, reference implementation.

9 ©2025 SRI INTERNATIONAL. ALL RIGHTS RESERVED. PROPRIETARY.

RADL: CPS Integration Architecture

Component integration a key pain point in industry

RADL multirate architectural design

= Quasi-periodical execution of nodes (at their own periods)
= Communication through non-blocking channels
= Bounded drift for local clocks and bounded communication latency

RADL covers the complete asynchronous
(DDS/R0OS2) to synchronous (TTP) design space

Build system autogenerates glue code for scheduling,

communication, and health checks

Logical architecture guarantees (formally verified)

Message ordering, Bounded/zero message loss, End-to-end latency bounds,

Failure warnings/recovery, No DoS attacks, No deadlocks

RADL properties form basis of CPS assurance cases

10 ©2025 SRI INTERNATIONAL. ALL RIGHTS RESERVED. PROPRIETARY.

»

Autogenerating Autogenerating
Configurations Health Checks

Evidential Toolbus (ETB)

Tool integration framework for constructing and maintaining
claims supported by arguments based on evidence. "
Decomposition

= Creatingworkflows (e.g. DO178C, 1S0O26262) and tool integration Theory
= Decomposing claims into subclaims according to workflow Assumption

= Producing checkable evidence supporting these claims
= Maintaining the evidence against changes

Decomposition encoded as logic programming rules
claim :- assumption, subclaim1, subclaim2.
assumption :- evidence.

Example: evidential and continuous integration of Code o ode

analyzers

s)

9

Source: Beyene, R. Evidentialand Continuous Integration of SW Verification Tools

= Portfolio of static code analyzers (a la JPL)

= Modelchecking to prune Al reports; counterexamples/witnesses

= Manual code review using refined reports with model checking inputs
= |ntegratedinJenkins (Disappearing formal methods...)

12 ©2025 SRI INTERNATIONAL. ALL RIGHTS RESERVED. PROPRIETARY.

Main system
development

thread @l
SuC satisfies claims

Building blocks |
. Information flow policy

Inputs are validated 1 !

Compositional Assurance

1. Memory Safety (PVS2C/Rust, CHERI) |
Information flow (Ontic Typing) [] B oo i T

satisfies claims

Architectural information
flow policy implemented

Input Validation (Parsley) .
Isolation (RADL, Hypervisors) -

- ; poplicationcode I
implements
; component !

ok D

contracts !

Generated RADL LynxSecure satisfies SKPP

Efficiency - [T L L
code execution ‘ information flow policy determinism)
= Reduced cost of constructing the
argument through reuse ‘ [e
= Reduced amortized cost of 5
falsification and verification onsde | R

guarantees system is
memory safety PVS2C memory safe

A
|
|
1

.o —

13 ©2025 SRI INTERNATIONAL. ALL RIGHTS RESERVED. PROPRIETARY. [] [] Disclaimer: thisis not an assurance case!

Conclusions P33

Protection of safety&security-relevant software needs to be increasingly proactive

= Shift left for early detection of design flaws
= Identification of edge cases and failure scenarios
Impact of component failure on the overall system

= Shiftup inrigor and abstraction
Support for compositionality, adaptability, and resilience
along with the curation of coherent evidence

Key enabling technologies of the Shift left/Shift up paradigm are generators such as
PVS2C, RADL, and ETB

Hypothesis: with these ingredients it is practical and economical to design and
build large-scale resilient software systems (within a theorem prover?)

Impact on continuous Authority to Operate (cATO) processes

= Continuous curation of assurance cases in CI/CD pipelines
= Composition of assurance cases along software/hardware supply chains
* Independently checkable assurance cases as a central artefact of cATO; possibly automated

14 ©2025 SRI INTERNATIONAL. ALL RIGHTS RESERVED. PROPRIETARY.

Thank youl!

harald.ruess@sri.com

Acknowledgments: The SRI technology mentioned in this presentation has been
supported through DARPA, IARPA, and ARPA-H grants, including HACMS, SafeDocs,
DesCert, Effigy, ARCOS, CHALO, PARADIGM/POET

15 ©2025 SRI INTERNATIONAL. ALL RIGHTS RESERVED. PROPRIETARY.

A Short History of Formal Methods

1970s:

SIFT: State-machine replication, modern fault tolerance

Byzantine Agreement: Tolerating faults with no
assumptions on behavior; later, basis of blockchain

PSOS: Capability-based security, father of CHERI, ARM

Morello

Early FM: JOVIAL Verifier, Boyer-Moore, SMT

Information Flow Analyzer: Pre-noninterference

semantics

HDM: Hierarchical development of secure software

1980s:

Separation Kernel: Later evolved to MILS,
also partitioning/safety

EHDM: Clock synchronization proofs
Noninterference and its intransitive form
Algebraic Semantics and rewriting

OBJ3: Modular and equational
programming

IDES: Intrusion detection, evolved to
network intrusion detection

Institutions: Abstract model theory for
specification and programming

1990s:

Interrogator: Cryptographic protocol verification
State of the Art FM: PVS, RRM, Maude

PVS: Interactive specification and verification
Model-check the brain: human factors verification
Lazy compositional verification

RRM: performant rewrite rule machine

Maude: model-checking concurrent systems
Reflective Logic for meta-programming
Reconfiguration from first principles

AAMPS5: Microprocessor verification

Bitvector decision procedures

Predicate abstraction

Floating-point verification

16 ©2025 SRI INTERNATIONAL. ALL RIGHTS RESERVED. PROPRIETARY.

<3 SRI

2020s:

Assurance 2.0: Rigorous assurance cases @)
State of the Art FM: PVS, Maude continue

Ontic types: Meaningful typing

CoProver: LLM-assisted interactive theorem proving

Stitches: Seamless system of systems integration
Zero-Knowledge: Verification of proof systems and code

DPRIVE: Hardware design for fullyhomomorphic encryption
CDSAT: Conflict-Driven Reasoning

Semantic Browser: Validated informal specifications

2010s:

DimSim/SimCheck: Simulink analyzer

2000s:

ICS: First advanced SMT solver

OCCAM: Debloater
CHERI architecture

Cyberlogic: Logic of evidential transactions Yices2 SMT solver

SQL:kCO mbining finite and infinite-state model State of the Art FM: PVS, Maude continue
checking
ARSENAL: Semantic parsing
CAPSL: Crypto-protocol analysis
RADL: Resilient multirate architectures
Pathway logic: Analyzing biological pathways
Parsley: Verified parsing/unparsing
Provenance: Theoryand tools
Sherlock: Neural net analyzer
State of the Art FM: PVS, Maude continue
Kernel of Truth: Verification of proof checkers against
Calendar automata: Verification of fault-tolerant trusted kernel
distributed real-time algorithms
PVS2C: : Autogenerating efficient code from specifications
WMC: Witness-producing model checker
Reverse engineering of hardware
Parikh automata that count
ETB: Evidential toolbus, assurance workflow
Relational abstraction: generalizes qualitative
physics OGIS: Oracle-guided inductive synthesis

PCE: analyzing Markov logic networks SeaHorn: static analyzer

Assurance 2.0: Rigorous Assurance Cases

Modern approach to systematically developing,
presenting, and assessing rigorous assurance cases

= Bloomfield, Rushby, Confidence in Assurance 2.0 Cases, 2024

Assumption

Indefeasible Confidence

= Emphasizes deductive reasoning in argument steps
= Theories thatjustify assurance methods

= |dentification, analysis, and refutation of potential defeaters — arguments or
evidence that could undermine the assurance case.

= Defeaters for the systematic identification and handling of potential doubt

= Confirmation theory: does evidence support aclaim? how well does it
discriminate against alternative claims?

Benefits

= |mproved clarity and transparency, enhanced confidence as all reasonable doubts
are addressed, systematic identification of weaknesses, support forinnovation,
automation for developing and assessing assurance cases

17 ©2025 SRI INTERNATIONAL. ALL RIGHTS RESERVED. PROPRIETARY. Source: Bloomfield, Rushby, Assurance 2.0

	Slide 1: Shift left / Shift up: Protecting Safety-Critical Software Intensive Systems from Malicious Action
	Slide 3: Disruption, Failures, and Adversity
	Slide 4: The Cost of Failure
	Slide 5: State-of-the-practice
	Slide 6: Formal Methods to the Rescue?
	Slide 7: It’s the Specification, Stupid!
	Slide 8: Verify then Generate!
	Slide 9: PVS2C: Autogenerating Correct and Efficient Code
	Slide 10: RADL: CPS Integration Architecture
	Slide 12: Evidential Toolbus (ETB)
	Slide 13: Compositional Assurance
	Slide 14: Conclusions
	Slide 15: Thank you!
	Slide 16: A Short History of Formal Methods
	Slide 17: Assurance 2.0: Rigorous Assurance Cases

