
©2025 SRI INTERNATIONAL. ALL RIGHTS RESERVED. PROPRIETARY.

Annapolis, May 16, 2025

Harald Ruess, N. Shankar

Formal Methods Program

email: harald.ruess@sri.com

Shift left / Shift up:
Protecting Safety-Critical Software
Intensive Systems from Malicious Action

3 ©2025 SRI INTERNATIONAL. ALL RIGHTS RESERVED. PROPRIETARY.

Disruption, Failures, and Adversity

Channel Incidences

Hardware Intel FDIV, Spectre/Meltdown

Side Channel Electromagnetic, acoustic, power, timing, optical,
radiation, wear-and-tear (Row Hammer)

Calculation NASA Mariner, Mars Polar Lander, Mars Climate Orbiter,
Ariane-5

Memory/Type Buffer overflow, null dereference, use-after-free, bad cast

Crypto SHA-1, MD5, TLS Freak/Logjam, Needham-Schroder,
Kerberos

Input Validation Buffer over-read (Heartbleed, Cloudbleed)

Race/Reset Condition Therac-25, North American Blackout, AT&T crash of 1990,
Mars Pathfinder

Code injection SQL injection, cross/site scripting, malvertising, data
poisoning

Provenance / backdoor Athens Affair, Solar Winds

Social engineering Pretexting, Honeytrap,Tailgating/Piggybacking

4 ©2025 SRI INTERNATIONAL. ALL RIGHTS RESERVED. PROPRIETARY.

The Cost of Failure

The estimated engineering cost of fixing poor
quality code exceeds $1 trillion annually in the
U.S. alone
• with failure to patch known vulnerabilities being the

largest contributor to these costs

Cybercrime thrives on code vulnerabilities, and
is estimated to be another $8 trillion a year
business and growing
• that is nearly $1 billion every hour

Sources:

www.synopsys.com/blogs/software-security/poor-software-quality-costs-us

cybersecurityventures.com/cybercrime-to-cost-the-world-8-trillion-annually-in-2023

Source: Pieter Bruegel the Elder

5 ©2025 SRI INTERNATIONAL. ALL RIGHTS RESERVED. PROPRIETARY.

State-of-the-practice

Traditional debugging is not only costly but also
largely ineffective in dealing with the complexity of
today’s SW supply chain

• Manual inspection of largely informal specs and code
• Code testing in later development stages

Piling band-aids on top of poor-quality software only
fuels an unwinnable race to the bottom

▪ >40,000 CVEs published in 2024, a 38% increase from 2023
▪ The reactive approach to cybersecurity is no longer sustainable

Code and attacks generated by current LLMs are
likely to make matters worse

Generated by Gemini from unknown sources

6 ©2025 SRI INTERNATIONAL. ALL RIGHTS RESERVED. PROPRIETARY.

Formal Methods to the Rescue?

FM touted to be a viable alternative to
traditional bug hunting

▪ Integration with industrial development processes
 (e.g. Intel, Collins, AWS)
▪ Microprocessors, separation kernels, real-time operating

systems, fault-tolerant algorithms, and crypto libraries nowadays
formally verified almost routinely

▪ Billions of small theorems machine-proved every day

Satisfiability revolution (SMT, BMC, k-induction, IC3)
is making Vannevar Bush’s prophecy come true

But: despite all the progress, FM not widely used … “We may someday click off
arguments on a machine with

the same assurance that we now
enter sales on a cash register”

https://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881/

7 ©2025 SRI INTERNATIONAL. ALL RIGHTS RESERVED. PROPRIETARY.

It’s the Specification, Stupid!

Specification, formal or not, undoubtedly the Achilles’ heel
▪ Imprecise, ambiguous, inconsistent, even outright wrong, and constantly changing
▪ Lack of agreed-upon specifications of basic software building blocks;

• Messy realities of programming languages, emergent API behavior often undocumented, myriad poorly defined standards for data and exchange protocols

Verification, formal or not, rather late in the development cycle
▪ By then, the most egrigious design errors have already been made,
▪ Errors are to be found at least as often in specifications as in their implementation
▪ Design errors are the most costly ones to fix

Formal specification often developed as an afterthought
▪ Unclear relationship between generally accepted specifications (i.e. standards) and their formal counterparts

As a direct result it is not uncommon for even formally verified software to still contain
alarming bugs, which is why some consider FM to be an academic Glasperlenspiel

Specification Implementation Verification

8 ©2025 SRI INTERNATIONAL. ALL RIGHTS RESERVED. PROPRIETARY.

Verify then Generate!

Specification Verification Generation

A better paradigm is to
▪ Align informal and formal specs
▪ Formally verify specs
▪ Generate correct code from specs
▪ Use of integration architecture with well-defined properties

▪ Autoformalizing standards
documents (Arsenal)

▪ Semantic browsing for
generating consistent
stakeholder views of evolving

 (standards) documents (Effigy)

▪ Type-checking for consistent
data, representation, and
use (Predicate Subtypes,
Ontic Types)

▪ V&V of specifications and
abstract programs (PVS)

▪ Correct-by-construction generation of
efficient and memory-safe code (PVS2C)

▪ Correct-by-construction configuration
generation for multi-rate computation
and communication platform (RADL)

9 ©2025 SRI INTERNATIONAL. ALL RIGHTS RESERVED. PROPRIETARY.

Rijndael_step(A, K): byv[16] =

 LET A1 = byteSubst(A),

 A2 = shiftRow(A1),

 A3 = mixColumn(A2)

 IN

 roundkeyXOR(A3, K)

Rijndael_rec(A, KK, (i : below(11))): RECURSIVE byv[16] =

 IF i >= 10 THEN

 roundkeyXOR(shiftRow(byteSubst(A)), KK(i))

 ELSIF i=0 THEN

 Rijndael_rec(roundkeyXOR(A, KK(i)), KK,+1)

 ELSE

 LET A4 = Rijndael_step(A, KK(i)) IN

 Rijndael_rec(A4, KK, i+1)

 ENDIF

 MEASURE 10 – I

Rijndael(A, K): byv[16] =

 Rijndael_rec(A,

 allKeys((LAMBDA (k: below(11)): K),1, 0), 0)

PVS2C: Autogenerating Correct and Efficient Code

PVS2C compiles executable subset of PVS
specifications into stand-alone C code

▪ Functionally correct-by-construction
▪ Memory-safe
▪ No runtime environment needed
▪ “Matches” efficiency of hand-coded C

Benefits
▪ Program verification independent of peculiarities of target programming

language and underlying execution environment
▪ Many program optimizations applied at the declarative level, where

essential identities still hold

Example (Effigy): Auto(in)formalization of PDF standard
documents and generating executable code with PVS2C:
testing, analysis, reference implementation.

10 ©2025 SRI INTERNATIONAL. ALL RIGHTS RESERVED. PROPRIETARY.

RADL: CPS Integration Architecture

Component integration a key pain point in industry

RADL multirate architectural design
▪ Quasi-periodical execution of nodes (at their own periods)
▪ Communication through non-blocking channels
▪ Bounded drift for local clocks and bounded communication latency

RADL covers the complete asynchronous
(DDS/ROS2) to synchronous (TTP) design space

Build system autogenerates glue code for scheduling,
communication, and health checks

Logical architecture guarantees (formally verified)
Message ordering, Bounded/zero message loss, End-to-end latency bounds,
Failure warnings/recovery, No DoS attacks, No deadlocks

RADL properties form basis of CPS assurance cases

Logical
Architecture

Software
Components

Technical
Platform

Autogenerating
Configurations

Autogenerating
Health Checks

12 ©2025 SRI INTERNATIONAL. ALL RIGHTS RESERVED. PROPRIETARY.

Evidential Toolbus (ETB)

Tool integration framework for constructing and maintaining
claims supported by arguments based on evidence.

▪ Creating workflows (e.g. DO178C, ISO26262) and tool integration
▪ Decomposing claims into subclaims according to workflow
▪ Producing checkable evidence supporting these claims
▪ Maintaining the evidence against changes

Decomposition encoded as logic programming rules
 claim :- assumption, subclaim1, subclaim2.

 assumption :- evidence.

Example: evidential and continuous integration of
▪ Portfolio of static code analyzers (a la JPL)
▪ Model checking to prune AI reports; counterexamples/witnesses
▪ Manual code review using refined reports with model checking inputs
▪ Integrated in Jenkins (Disappearing formal methods…)

Checkin

Portfolio
of code

analyzers

MergeRefine

Code
Review

Source: Beyene, R. Evidential and Continuous Integration of SW Verification Tools

Claim

Subclaim Subclaim

Assumption

Evidence

Decomposition
Theory

Evidence

13 ©2025 SRI INTERNATIONAL. ALL RIGHTS RESERVED. PROPRIETARY.

Compositional Assurance

Building blocks
1. Memory Safety (PVS2C/Rust, CHERI)
2. Information flow (Ontic Typing)
3. Input Validation (Parsley)
4. Isolation (RADL, Hypervisors)
5. …

Efficiency
▪ Reduced cost of constructing the

argument through reuse
▪ Reduced amortized cost of

falsification and verification

Logical Architecture
satisfies claims

RADL
Architectural

Implementation

Application code
implements
component

contracts

RADL Architectural
 Properties

Formal
Verification

Software
Verification

Testing Runtime
Verification

Architectural information
flow policy implemented

correctly on technical
platform

Separation
kernel

Generated RADL
configurations exactly

implements architectural
information flow policy

LynxSecure satisfies SKPP
(including isolation, flow

control policy,
determinism)

Formal
Verification

Formal
Verification

SuC satisfies claims

RADL Architectural
Design

Information flow policy
satisfied

Ontic Typing

Inputs are validated

Verified Parsers,
Ontic Typing

Memory safe
code execution

OR

CHERI
guarantees

memory safety

Rust type
system is

memory safe

Formal

Verification

Code

generated by

PVS2C

Formal

Verification Disclaimer: this is not an assurance case!

Main system

development

thread

14 ©2025 SRI INTERNATIONAL. ALL RIGHTS RESERVED. PROPRIETARY.

Conclusions

Protection of safety&security-relevant software needs to be increasingly proactive
▪ Shift left for early detection of design flaws

▪ Identification of edge cases and failure scenarios
▪ Impact of component failure on the overall system

▪ Shift up in rigor and abstraction
▪ Support for compositionality, adaptability, and resilience
▪ along with the curation of coherent evidence

Key enabling technologies of the Shift left/Shift up paradigm are generators such as
PVS2C, RADL, and ETB

Hypothesis: with these ingredients it is practical and economical to design and
build large-scale resilient software systems (within a theorem prover?)

Impact on continuous Authority to Operate (cATO) processes
▪ Continuous curation of assurance cases in CI/CD pipelines
▪ Composition of assurance cases along software/hardware supply chains
▪ Independently checkable assurance cases as a central artefact of cATO; possibly automated

15 ©2025 SRI INTERNATIONAL. ALL RIGHTS RESERVED. PROPRIETARY.

Thank you!

harald.ruess@sri.com

Acknowledgments: The SRI technology mentioned in this presentation has been

supported through DARPA, IARPA, and ARPA-H grants, including HACMS, SafeDocs,

DesCert, Effigy, ARCOS, CHALO, PARADIGM/POET

16 ©2025 SRI INTERNATIONAL. ALL RIGHTS RESERVED. PROPRIETARY.

A Short History of Formal Methods
1970s:
SIFT: State-machine replication, modern fault tolerance

Byzantine Agreement: Tolerating faults with no
assumptions on behavior; later, basis of blockchain

PSOS: Capability-based security, father of CHERI, ARM
Morello

Early FM: JOVIAL Verifier, Boyer-Moore, SMT

Information Flow Analyzer: Pre-noninterference
semantics

HDM: Hierarchical development of secure software

1990s:
Interrogator: Cryptographic protocol verification

State of the Art FM: PVS, RRM, Maude

PVS: Interactive specification and verification

Model-check the brain: human factors verification

Lazy compositional verification

RRM: performant rewrite rule machine

Maude: model-checking concurrent systems

Reflective Logic for meta-programming

Reconfiguration from first principles

AAMP5: Microprocessor verification

Bitvector decision procedures

Predicate abstraction

Floating-point verification

1980s:
Separation Kernel: Later evolved to MILS,
also partitioning/safety

EHDM: Clock synchronization proofs

Noninterference and its intransitive form

Algebraic Semantics and rewriting

OBJ3: Modular and equational
programming

IDES: Intrusion detection, evolved to
network intrusion detection

Institutions: Abstract model theory for
specification and programming

2000s:
ICS: First advanced SMT solver

Cyberlogic: Logic of evidential transactions

SAL: Combining finite and infinite-state model
checking

CAPSL: Crypto-protocol analysis

Pathway logic: Analyzing biological pathways

Provenance: Theory and tools

State of the Art FM: PVS, Maude continue

Calendar automata: Verification of fault-tolerant
distributed real-time algorithms

WMC: Witness-producing model checker

Parikh automata that count

Relational abstraction: generalizes qualitative
physics

PCE: analyzing Markov logic networks

2010s:
DimSim/SimCheck: Simulink analyzer

OCCAM: Debloater

CHERI architecture

Yices2 SMT solver

State of the Art FM: PVS, Maude continue

ARSENAL: Semantic parsing

RADL: Resilient multirate architectures

Parsley: Verified parsing/unparsing

Sherlock: Neural net analyzer

Kernel of Truth: Verification of proof checkers against
trusted kernel

PVS2C: : Autogenerating efficient code from specifications

Reverse engineering of hardware

ETB: Evidential toolbus, assurance workflow

OGIS: Oracle-guided inductive synthesis

SeaHorn: static analyzer

2020s:
Assurance 2.0: Rigorous assurance cases

State of the Art FM: PVS, Maude continue

Ontic types: Meaningful typing

CoProver: LLM-assisted interactive theorem proving

Stitches: Seamless system of systems integration

Zero-Knowledge: Verification of proof systems and code

DPRIVE: Hardware design for fully homomorphic encryption

CDSAT: Conflict-Driven Reasoning

Semantic Browser: Validated informal specifications

…

17 ©2025 SRI INTERNATIONAL. ALL RIGHTS RESERVED. PROPRIETARY.

Assurance 2.0: Rigorous Assurance Cases

Modern approach to systematically developing,
presenting, and assessing rigorous assurance cases

▪ Bloomfield, Rushby, Confidence in Assurance 2.0 Cases, 2024

Indefeasible Confidence
▪ Emphasizes deductive reasoning in argument steps
▪ Theories that justify assurance methods
▪ Identification, analysis, and refutation of potential defeaters – arguments or

evidence that could undermine the assurance case.
▪ Defeaters for the systematic identification and handling of potential doubt
▪ Confirmation theory: does evidence support a claim? how well does it

discriminate against alternative claims?

Benefits
▪ Improved clarity and transparency, enhanced confidence as all reasonable doubts

are addressed, systematic identification of weaknesses, support for innovation,
automation for developing and assessing assurance cases

Claim

Subclaim Subclaim

Assumption

Evidence

Theory

Evidence

Source: Bloomfield, Rushby, Assurance 2.0

	Slide 1: Shift left / Shift up: Protecting Safety-Critical Software Intensive Systems from Malicious Action
	Slide 3: Disruption, Failures, and Adversity
	Slide 4: The Cost of Failure
	Slide 5: State-of-the-practice
	Slide 6: Formal Methods to the Rescue?
	Slide 7: It’s the Specification, Stupid!
	Slide 8: Verify then Generate!
	Slide 9: PVS2C: Autogenerating Correct and Efficient Code
	Slide 10: RADL: CPS Integration Architecture
	Slide 12: Evidential Toolbus (ETB)
	Slide 13: Compositional Assurance
	Slide 14: Conclusions
	Slide 15: Thank you!
	Slide 16: A Short History of Formal Methods
	Slide 17: Assurance 2.0: Rigorous Assurance Cases

