
Protecting Safety-critical Software Intensive Systems
From Malicious Action:

 Strong partitioning using the verified seL4 microkernel and formal methods-
integrated model-based development with SysMLv2 and Rust

John Hatcliff
Robby
Jason Belt

SCC 2025 – May 16, 2025

Kansas State University Collins Aerospace DARPA PROVERS INSPECTA
• Aarhus University
• CMU
• ProofCraft
• UNSW

Galois
• Todd Carpenter, Danielle Stewart

HAMR

SCC 2025 - Hatcliff

HAMR – tool chain for [H]igh [A]ssurance [M]odeling and [R]apid engineering for embedded
systems

Modeling, analysis, and
verification in the AADL
modeling language
(+ SysMLv2)

Deployments aligned
with AADL run-time on
multiple platforms

se
L4

 D
ep

lo
ym

en
t

Lin
ux

 D
ep

lo
ym

en
t

JV
M

De
pl

oy
m

en
t

Component development
and verification in
multiple languages

• Slang (with contracts)
• high integrity subset of Scala
• contract verification framework
• translates to C
• translates to Rust

• Rust (with contracts)
• C

Leveraging analyses from AADL
community

HAMR – Collins Aerospace

Current - Mission computer for UAVs
collaborative UAVs

On DARPA PROVERS, HAMR is being used to develop an experimental version of the
infrastructure for Collins “Air Launched Effects” platform that provides increased
modularity and security --- (final development will be HAMR SysMLv2 to Rust)

https://youtu.be/SwPJHmZQMaM?si=NwTdb3VFpV-MxSreVideo:

SCC 2025 - Hatcliff

https://youtu.be/SwPJHmZQMaM?si=NwTdb3VFpV-MxSre

Separation Kernel Foundation –
Verified Partitioning

SCC 2025 - Hatcliff

Previous HAMR / Collins Aerospace demonstration based on AFRL UxAS – unmanned air system services –
adding cyber-resiliency…

UxAS

Message filters,
scrubbers, etc.

Monitors...

High-Assurance
components for
resiliency (in green)

Separation Kernel Foundation –
Verified Partitioning

SCC 2025 - Hatcliff

Previous HAMR / Collins Aerospace demonstration based on AFRL UxAS – unmanned air system services

HAMR Code Generation for seL4
guarantees that deployed system
has the partitioning and
information flow properties
reflected in the model

seL4 microkernel guarantees partitioning of components
and communication (backed by computer-checked proofs)

Fault
containmentX

No exfiltration X
Legacy code
hosted in VM
(low trust)

Cyber-resiliency
(high criticality)

No infiltration

X

No eavesdropping;
no interference

seL4
configuration

Memory Safe Languages

seL4 microkernel guarantees partitioning of components
and communication (backed by computer-checked proofs)

Legacy code
hosted in VM
(low trust)

seL4
configuration

Rust (with Verus verification)

..maybe adding
Frama-C to
existing HAMR C
code generation

Slang/Scala (with Logika verification)

..both of these emphasize contract-based verification and
automated (randomized) property-based testing against contracts

SCC 2025 - Hatcliff

Models – Analyzeable Abstractions

n GUMBO model level contracts for thread components and
component connections

n Integration contracts are checked in the SysMLv2 IDE
n Thread component contracts are transformed and embedded in

generated application code skeletons for testing and verification

Integration
contracts

Emphasis in

this ta
lk

Thread component functional behavior contracts…

Developer
formalizes
requirements

Developer formalizes
requirements as
contracts

SCC 2025 - Hatcliff

AADL Analysis Example:
Information Flow

SCC 2025 - Hatcliff

The KSU Awas tool (https://awas.sireum.org) generates scalable interactive
visualizations of AADL information flows and model-based hazard analysis results

Information flow graphs can be dynamically browsed and
queried with path logic.

Results from AFRL
and DoD SBIRs with
Adventium Labs

Awas auto-
generates
interactive
information flow
visualizations

https://awas.sireum.org/

Interactive Browsing of
Information Flows (AADL Level)

Example: In Ground Station / UAV example used on DARPA CASE, ask “How does map information
propagate from ground station to UAV and through UAV’s mission computer to produce a waypoint?”

Click on map output port
of ground station with
“forward propagation”
option

Immediately see results across different
subsystems.

SCC 2025 - Hatcliff

Separation Kernel Foundation –
Verified Partitioning

SCC 2025 - Hatcliff

Previous HAMR / Collins Aerospace demonstration based on AFRL UxAS – unmanned air system services

HAMR Code Generation for seL4
guarantees that deployed system
has the partitioning and
information flow properties
reflected in the model

Legacy code
hosted in VM
(low trust)

Cyber-resiliency
(high criticality)

2. seL4 provides
assurance of the
platform and
guarantees the
partitioning and
information flow.

1. Architecture dictates the shape
of the system assurance argument

…assurance story goes back to Rushby’s motivation for separation kernel

3. Proven correct components
establish assurance along specified
information flow paths.

Isolette – Infant Incubator System

n Handbook on best practices for
requirements development written
for the FAA by engineers at Collins
Aerospace

n Includes example of an “Isolette”
(infant incubator)

REMH

https://www.faa.gov/sites/faa.gov/files/aircraft/air_cert/design_approvals/air_software/AR-08-32.pdf

• 6 Real-time Tasks
• ~36 component-level requirements
• Interestesting modal behavior

From US FAA Requirements Engineering Management Handbook (REMH)

• Isolette described in 26-page Appendix
(natural language requirements, tables,
informal designs)

• Used as the running example in 100-page
presentation of best practices

SCC 2025 - Hatcliff

https://www.faa.gov/sites/faa.gov/files/aircraft/air_cert/design_approvals/air_software/AR-08-32.pdf

Much Effort to Make “End-to-End”

Requirements

+ + Behavior
Contracts

Concept of
Operations

Architecture
Specifications
(AADL & SysMLv2)

Hazard Analysis
(STPA)

Semi-Formal
and Formal
Use Cases

Deployments on seL4
verified micro-kernel

Software
Implementation

+ Source code
formally verified to
contracts

+ automated property-
based testing

Run-time Monitoring

Deployments on
JVM for Simulation

SCC 2025 - Hatcliff

AADL Modeling Concepts

Code skeleton for
selected thread pattern

Implied API
Pattern for
application code
to access port
communication,
etc.

Developer
configures
computational
structure

Implementation of selected
communication pattern

Event
Data

Event Data
…

AADL Port & Connection
Property Options

buffered notifications
shared data cells
 (or data distribution service)
buffered messages
 (message passing middleware)

+ QoS, buffer sizes, latencies, etc

Periodic
Sporadic
Hybrid
…

AADL Thread
Property Options

+ timing, scheduling
constraints, etc.

...an AADL contract language and testing infrastructure
should be aligned with these patterns.

SCC 2025 - Hatcliff

REMH – Informal Designs
The FAA REMH decomposes the Isolette into a control system and safety monitor
subsystem with three tasks each

Thermostat decomposed into Regulate
Temperature and Monitor Temperature
functions.

Control/Regulate

Safety Monitor

SCC 2025 - Hatcliff

Using AADL to Represent Design
AADL Model is a straightforward rendering of the design diagrams in
the FAA REMH

This example is worked completely end-to-end from
requirements, to contracts, to automatically tested and verified
application code, to deployment on seL4, Linux, JVM, JavaScript.
All artifacts are publicly available.

Manage Heat Source
Thread (Task)

Formal AADL Model

Informal REMH
Design Artifacts

SCC 2025 - Hatcliff

Manage Heat Source Thread
AADL Interface for Manage Heat Source Thread

Desired Temperature Range
(low & high set points)

Subsystem Mode

Current Temperature

Desired On/Off
state for heater

SCC 2025 - Hatcliff

SysMLv2

n Will have wide-ranging commercial tool support as well as open source
implementations

n Re-engineered from the ground up
n No backwards compatibility with SysMLv1 except through translation
n Not built as a profile of UML

n Like AADL, has both a graphical view and textual view
n Many AADL modeling elements have analogues in SysMLv2

n E.g., components, ports, connections, developer-defined attributes
n Aims to provide a stronger “semantics” for system engineering compared to

UML, SysMLv1

Why might SysMLv2 provide a
alternate vehicle for rigorous
model-based development,
including AADL concepts?

SCC 2025 - Hatcliff

AADL / SysMLv2 Integration
OMG Standards Work

RTESC Workgroup – entity responsible for integrating AADL concepts into SysMLv2

SCC 2025 - Hatcliff

Representing AADL in SysMLv2

part def Manage_Heat_Source_i {

 in port current_tempWstatus :
 in port lower_desired_temp :
 in port upper_desired_temp :
 in port regulator_mode :

 out port heat_control :

}

SysMLv2

Developer uses
domain library to
annotate base
SysMLv2 elements
with AADL concepts

RTESC workgroup represents AADL
concepts as SysMLv2 types, attributes, etc.

AADL Domain
Library for SysMLv2

:> Thread

Mark as AADL thread

DataPort { in :> type : Isolette_Data_Model::TempWstatus_i; }
DataPort { in :> type : Isolette_Data_Model::Temp_i; }
DataPort { in :> type : Isolette_Data_Model::Temp_i; }

DataPort { in :> type : Isolette_Data_Model::Regulator_Mode; }

DataPort { out :> type : Isolette_Data_Model::On_Off; }

Set AADL port
categories and types

attribute :>> Dispatch_Protocol = Supported_Dispatch_Protocols::Periodic;
attribute :>> Period = 1000 [millisecond];
attribute Domain: CASE_Scheduling::Domain = 9;

Set AADL pre-defined
property values for this thread

SCC 2025 - Hatcliff

AADL / SysMLv2 Component Types
Visual Comparison

SCC 2025 - Hatcliff

AADL

SysMLv2

Requirements to Contracts

SCC 2025 - Hatcliff

FAA REMH requirements for Manage Heat Source task

Requirements for control laws of this task...

Requirements to Contracts

SCC 2025 - Hatcliff

GUMBO contracts are written together with the thread interface in the AADL
OSATE IDE (using AADL Annex clause)

Component
interface

Developer
formalizes
requirements

Component
contract

AADL GUMBO Contracts for Manage Heat Source Thread, with
traceability to REMH requirements.

Manage Heat Source Contracts

OSATE AADL Editor

Developer
formalizes
requirements

SCC 2025 - Hatcliff

Manage Heat Source Contracts
AADL GUMBO Contracts for Manage Heat Source Thread, with
traceability to REMH requirements.

Mode condition
Compare current
temperature to
desired range

Set the desired state
of the heater

...

...

OSATE AADL Editor

SCC 2025 - Hatcliff

HAMR SysMLv2 Front-end

SCC 2025 - Hatcliff

NEW: We developed a VSCode SysMLv2 HAMR front-end based on the SysIDE VSCode
plug-in (prototype)

SysMLv2
component
interfaces AADL Library Properties

Formal behavior
specifications in
GUMBO contract
language

Support for data type
specifications in the
standardized AADL Data
Modeling Language

Verification results for
model-level contracts

Integration of
MicroKit-based
Rust and C
development for
seL4

AADL / HAMR Formal Semantics
Joint work with
Stefan Hallerstede
(U. Aarhus)

Isabelle
Latex/PDF generated from Isabelle

140+ page literate-style Isabelle/HOL theories for AADL/SysMLv2 HAMR execution
model (guides our design of our contracts and verification/testing framework)

Note limited scope: HAMR subset of AADL/SysMLv2; run-time semantics; connection to code generator by manual inspection

• Enhanced and scope expanded
• Prove soundness of contract framework
• Extend formalization downwards towards

seL4 proof-base

PROVERS

SCC 2025 - Hatcliff

HAMR Code Generation

Platform configuration
information

System
Build

Auto-generated
Component Infrastructure
Code for Platform

Auto-generated
Component Infrastructure
Code for Platform

Auto-generated
Component Infrastructure
Code for Platform

Code gen for
Component &
Threading
Infrastructure

Code gen for
Application APIs

Application
Code

Application
Code

Application
Code

Application Code
Development

Auto-Generated
Run-Time
Communication
Infrastructure
Code for Platform

Auto-Generated
Run-Time
Communication
Infrastructure
Code for Platform

Code gen for
Communication
Infrastructure

SCC 2025 - Hatcliff

HAMR Code Generation

Platform configuration
information

System
Build

Auto-generated
Component Infrastructure
Code for Platform

Auto-generated
Component Infrastructure
Code for Platform

Auto-generated
Component Infrastructure
Code for Platform

Code gen for
Component &
Threading
Infrastructure

Code gen for
Application APIs

Application
Code

Application
Code

Application
Code

Application Code
Development

Auto-Generated
Run-Time
Communication
Infrastructure
Code for Platform

Auto-Generated
Run-Time
Communication
Infrastructure
Code for Platform

Code gen for
Communication
Infrastructure

SCC 2025 - Hatcliff

Component Application Code Interfaces
Generated from SysMLv2/AADL Model

AADL Model
Implied Semantics

Application Code
in Rust

auto-
generated

Periodic Thread
w/ data ports ……Interfaces/APIs/Skeletons + contracts for application

code are auto-generated from SysMLv2/AADL model.

SCC 2025 - Hatcliff

Component Application Code Interfaces
Generated from SysMLv2/AADL Model

AADL Model
Implied Semantics

Application Code
in Rust

auto-
generated

Periodic Thread
w/ data ports ……Interfaces/APIs/Skeletons + contracts for application

code are auto-generated from SysMLv2/AADL model.

Skeleton for application
code entry point

Component contract (small excerpt)

Verus error indicates that
contract is not yet satisfied

SCC 2025 - Hatcliff

Component Application Code Interfaces
Generated from SysMLv2/AADL Model

AADL Model
Implied Semantics

Application Code
in Rust

auto-
generated

Periodic Thread
w/ data ports …Developer adds application code to contract-

annotated skeleton, and verification/testing
tools check conformance to contracts.

Adding application
code to skeleton

SCC 2025 - Hatcliff

Component Application Code Interfaces
Generated from SysMLv2/AADL Model

AADL Model
Implied Semantics

Application Code
in Rust

auto-
generated

Periodic Thread
w/ data ports

Get Reading a value from the
regulator_mode input data
port using auto-generated API

Putting a value from the
heat_control output data
port using auto-generated API

Put

…Developer uses auto-generate APIs to get
and put data on component ports

Verus indicates that
contract is satisfied

SCC 2025 - Hatcliff

Integrated Model/Code Contracts
Extend existing Slang-based framework to support Rust..

AADL/SysMLv2 Model-Level
Contracts

Rust Component
Implementation

HAMR Code
Generation

Code-Level Rust
Executable
Contracts
(oracles) +
Testing
Infrastructure

Automated property-
based testing

Verify via CMU Verus

Contract Translation
and Embedding / Weaving

Code-Level
Logic-based
Verus
Contracts

SCC 2025 - Hatcliff

Automatically Embedded
Rust/Verus Logical Contracts

Verification of Rust application code against contracts using Verus (excerpts)

Pre

… (clauses for Reqs 3-5 omitted)

Post

SCC 2025 - Hatcliff

Manage Heat Source Contracts

AADL GUMBO Contract (clause REQ_MHS_2)

auto-generated

Application
Code Code

Model

Rust Executable Contract (clause REQ_MHS_2)

Traceability info automatically embedded

auto-generated

Library of
Executable
Contracts

Each clause in model-level GUMBO contracts is translated to a code-level
Boolean function in Rust that works on the appropriate port/thread state elements

SCC 2025 - Hatcliff

Manage Heat Source Contracts

auto-generated

Application
Code Code

Model

auto-generated

Library of
Executable
Contracts

Rust Executable Contract
(aggregated clauses for
post-condition)

Code: Auto-generated in
Testing Library

Model: AADL GUMBO Contract
(all five clauses)

Code generation weaves together
functions for contract clauses to
form a pre-condition checker
and a post-condition checker
(also includes data invariants, etc.).

(see paper for details)

Complete Model-level GUMBO contracts are translated to a hierarchy of
executable Boolean functions in Rust (code-level)

SCC 2025 - Hatcliff

Demo
Verification against contracts using Verus verification tool…

SCC 2025 - Hatcliff

Auto-Generated Property-based
Testing Harness

For every thread component, HAMR auto-generates property-based testing infrastructure for
inserting values into component input ports and for checking values of output ports.

HAMR-generated AADL
Thread Infratructure

Repeatedly dispatch
with random values and
check post-condition

Thread
Application
Code

Executable
Contracts

X1, X2, ..., Xn

Integrated
Pre-condition
Checker
Function

Integrated
Post-condition
Checker
Function

Models & contracts

Gen(T1)

Gen(T2)

Gen(T3)

Default random value
generators for each
input port (based on
port type and data
invariants)

Customize as
necessary

Automated:
Start with a
push-button experience
for the user

SCC 2025 - Hatcliff

Scaling Up – Property-based Testing
Server-Based Deployment

n Random generators and contract-based tests are farmed out to a
configurable family of servers

n Test vectors and results are serialized for flexible deployment, reporting,
and replay of the tests

n Currently hosted using our Jenkins setup, but easy for HAMR to
automatically generate deployment scripts, e.g., for AWS, in the future

Map/Reduce Structure for Server-based
Deployment of Contract-based Testing

For Slang property-based testing, HAMR generates a server-based
deployment to run the framework in a distributed/parallel fashion...

...

. . .

. . .

. . .Distribution

Parallelization Servers

Continous Integration /
Delivery of Formal Methods

SCC 2025 - Hatcliff

Architecture

Static Metrics

Component Code
Application

Executable Contracts

Configurations
Config Name1

Config Name2…

Component Model Info
Interfaces

GUMBO Contracts

Component Interface

GUMBO Contracts

Component Code
Component Executable Contracts

Configuration N2

Property Specification Random Number
Generation Profile
Specification

Property Satisfaction
& Coverage

Configurations

Total Tests
 Passing
 Failed
 Unsat

Configuration N2 results per timeout

Configuration Tests
 Passing
 Failed
 Unsat

Configuration N2 results per timeout

Test Vectors

Coverage Reports

Extensive Assurance Artifacts
HAMR provides extensive auto-generation and reporting of assurance artifacts PROVERS:

Integrate with
Collins assurance
dashboard

SCC 2025 - Hatcliff

HAMR Code Generation
 seL4 Platform

SCC 2025 - Hatcliff

HAMR instantiation for Rust - based development on SeL4 microkernel using seL4 microKit

Patition specified as
microkit
Protection Domain

Application code in Rust Platform-independent
because it only talks to AADL RT APIs

Configure
system
partitioning
using seL4
Microkit

AADL
Port & Thread
Infrastructure
Code

m
icroKit Connectors

m
icrokit ConnectorsCommunication specified

using microkit primitives
AADL Adapters

AADL Adapters

AADL Adapters

AADL Adapters

Microkit Kernel Configuration
(excepts)

SCC 2025 - Hatcliff

HAMR auto-generated platform artifacts for seL4 include microKit system description file (XML) that specifies
the configuration of kernel partitions, allowed communication pathways, resource allocation, etc.

Manage
Heat
Source
Thread
(Task)

…

…

microkit.system (excerpts)
HAMR
generation

Memory +
permissions for port
queue

Partition (protection
domain) for
component

Conclusion

n Protect critical systems from malicious attacks using verified
micro-kernels

n Automate and control the development process using a model-
based development approach

n Provide a multi-level contract framework that supports
seamless transition between automated testing and verification

n Models as sound/faithful abstractions of deployed systems
support understanding, simplify development, provide basis for
many forms of analysis

n Semantic foundation (e.g., Isabelle formalization) and
abstraction layers in run-time architecture enables new backends
to be added while achieving consistent semantics

n Integrated assurance case generation framework

SCC 2025 - Hatcliff

Resources

Resources on HAMR web site

n Distribution available for Windows, Linux, and
Mac (also virtualized) hamr.sireum.org

n Documentation, examples, and tutorial
material for HAMR

n Educational resources -- slides, recorded
lectures, and guided exercises for HAMR
Slang back end

Publicly available tool:
http://hamr.sireum.org

n Online resources for
Isolette artifacts

SCC 2025 - Hatcliff

http://hamr.sireum.org/
http://hamr.sireum.org/

