
AI-Supported Eliminative
Argumentation: Practical Experience
Generating Defeaters to Increase
Confidence in Assurance Cases
Torin Viger, University of Toronto

Software Certification Consortium, Annapolis MD

May 15th, 2025

Evidence

Argument
Structure

Top-Level
Claim

Conclusion

2

Background: Safety Assurance and Assurance Cases

Top-level goal: The

system is acceptably

safe

Decompose over

hazards, subsystems,

environmental

conditions etc.

Present evidence that

the argument's claims

are satisfied

LLMs in Software Engineering and Assurance
Case Development

YYYY-MM-DD - DRAFT 3

▪ Large Language Models (LLMs) are increasingly used to
support software engineering activities:

oWriting and Reviewing Code

oCreating Formal Specifications

▪ LLMs introduce new opportunities for supporting assurance
case development

oAssurance cases can be large, informal and error-prone

oLLMs enable inexpensive analysis of informal arguments.

LLM Applications: Argument Creation

Large Language Model

System
Documentation

Assurance Case
Objectives

LLM Applications: Evidence Suggestion

Large Language Model
Body of available

evidence

Assurance Argument

Supported by
Evidence

Assurance Argument

LLM Applications: Enabling Formal Analysis

YYYY-MM-DD - DRAFT 6

Informal Assurance

Case
Formalized

Assurance Case

Large Language Model
Formal Assurance

Case Analysis
Analysis output

Risks of Large Language Models in Safety
Assurance

▪ Hallucinations and non-determinism limit LLM use in safety-critical
applications

7
Large Language ModelSafety Engineer

Motivation: Large Language Models in Safety
Assurance

▪ Hallucinations and non-determinism limit LLM use in safety-critical
applications

8

Is my vehicle’s automated

braking technology safe
at night?

Yes! Infrared

sensors allow it to
operate safely at

night.

Large Language Model

Great, thanks!

Safety Engineer

Motivation: Large Language Models in Safety
Assurance

▪ Hallucinations and non-determinism limit LLM use in safety-critical
applications

9

Is my vehicle’s automated

braking technology safe
at night?

Yes! Infrared

sensors allow it to
operate safely at

night.

Large Language Model

Wait a minute.. My

vehicle doesn’t have
any infrared sensors!

Safety Engineer

Our Work on LLM Assurance

▪AI-Supported Eliminative Argumentation (AI-EA): LLMs for
supporting defeater identification in ACs

▪ LLMs for supporting change impact assessment

▪Bow-Tie framework for documenting and analyzing the risks
and benefits of LLM use in assurance tasks.

YYYY-MM-DD - DRAFT 10

[5]

[1]

[4]

Running Example: Adaptive Cruise Control
System

11

Eliminative Argumentation and Defeaters

▪ Engineers naturally have doubts about the systems they
design. Assurance case methods should
acknowledge this doubt rather than try to hide it

▪ Eliminative Argumentation (EA) incorporates the notion of
doubt in assurance cases using explicit nodes called
defeaters.

oConfidence is increased by mitigating these defeaters

oUnmitigated defeaters are left as residual risks

12

Assurance Case Example (EA): Adaptive
Cruise Control System

13

Assurance Cases with Defeaters

YYYY-MM-DD - DRAFT 14

Why Do We Need Support For Defeater
Identification?

▪Engineers may overlook defeaters due to blind spots or
confirmation bias

▪Manual effort is required to identify defeaters

oDefeater generation is often done by experienced system
engineers

15

LLM Support for Defeater Identification

16

Benefits

▪ LLMs may identify defeaters omitted by engineers, e.g., due to blind spots, confirmation bias
or lack of time/resources/knowledge

▪ Extremely fast and lightweight

▪ EA defeaters serve as questions that are reviewed by engineers, not as conclusions about
the argument

Risks and their Mitigation

▪ LLM hallucinations create false doubt rather than false confidence

• Leads to over-cautiousness, not safety concerns

▪ We propose AI-EA to support, not replace manual defeater generation

Our Framework: AI-Enabled Supported
Argumentation (AI-EA)

17

[1]
[2]

Challenge: What makes a defeater useful?

18

▪ Key question: How can we systematically evaluate whether
LLM-generated defeaters are useful?

• How can we evaluate whether any defeaters are useful.

Defeater 2: The assurance case

doesn’t consider whether the ACC

is robust against incorrect inputs

from sensors. This could

undermine claim 3150 as it
indicates the test objectives are

not sufficiently complete.

Defeater 1: There might be

an unconsidered factor

somewhere in the ACC

assurance case that

undermines one of its claims

[1]
[2]

Informativeness: Necessary but not Sufficient

19

Defeater 2: The assurance case doesn’t consider whether

the ACC is robust against incorrect inputs from sensors.

This could undermine claim C3150 as it indicates the test

objectives are not sufficiently complete.

[1]
[2]

AI-EA
Workflow

20

[1]
[2]

Evaluation of AI-EA

21

Two methods of empirical evaluation:

o Assessment of 171 defeaters by three reviewers

o User study in which eight practitioners used AI-EA to support
Assurance Case development

• Full details of our evaluation and its results provided in our
related work

[1] [3]

Key Results

YYYY-MM-DD - DRAFT 22

▪ Practitioners found that generated defeaters were clear, concise and easy to review,
~32% of generated defeaters were added to their ACs

o Especially useful as a sanity check after a first pass

▪ ~52% of generated defeaters provided concrete information in all components (what,
where, why)

▪ Only ~5% of generated defeaters contained unrepairable hallucinations (e.g., fully
irrelevant/incoherent)

▪ During the user study, unique defeaters were identified both by humans(~23%) and
by the LLM (~30%)

o Highlights complimentary nature of LLM support

[1] [3]

Try it out!

23

oIt’s essential to have reviewable and reproducible data for LLM
evaluation. Our open-source artifact includes:

oAll 171 generated defeaters and our assessment of them

oSoftware package for re-generating these results

oSupports prompt modifications, can be used on new assurance cases

▪ https://zenodo.org/records/13368055

oLLM Defeater generation has since been implemented in the
assurance case development tool Socrates, developed by Critical
Systems Labs, Inc. (https://criticalsystemslabs.com/)

[1] [3]

https://zenodo.org/records/13368055
https://zenodo.org/records/13368055
http://ihttps/criticalsystemslabs.com/

Assurance Case Evolution

▪ Many critical systems evolve after they are deployed (e.g., over
the air updates)

▪ As systems evolve, their assurance cases need to evolve too

• ACs also evolve during development, when operational or regulatory
environment changes etc.

24

System Prototype

Assurance
Case v1

Assurance
Case v2

Assurance
Case v3

Assurance
Case v4

Deployed System Post-deployment update Regulatory change

…

[4]

Challenges with Change Impact Assessment

▪ Assurance cases are often
expressed in natural language

▪ Can contain thousands of
interconnected nodes

▪ “Local” changes to a system may not
be local in the assurance case

▪ Change impact assessment can be
expensive and error-prone

25[4]

Our Proposal: Supporting Change Impact
with Large Language Models (LLMs)

26

Step 1: Provide

Background to

LLM

Step 2: Describe Update

Scenario and Intended Changes

Intended outcomes
of AC update

Step 3: Identify impacted

nodes using LLM

Update Scenario
Description

LLM Analysis

Impacted Nodes

Rationale

Updated Assurance Case

Step 4: Update Assurance

Case

Manually Updated
Argument Fragment

[4]

Why is Change Impact Assessment well-
suited to LLM support?

Benefits:

- Fast, lightweight support without requiring formalization / maintenance of traceability links

o Complimentary to other approaches

- Applicable to a wide range of update scenarios

- Leverages semantics of assurance case nodes to inform impact assessment

Risks

- Recommending irrelevant nodes

- Omitting critical impacted nodes

27[4]

Evaluation

Preliminary evaluation:

- LLMs are effective at identifying impacted nodes in highly
constrained update scenarios (e.g., replacing all instances of
one AC pattern with another, typographical changes)

Ongoing evaluation

- Evaluation over a wider range of update scenarios and
assurance cases

oWhat update scenarios can LLMs effectively support?

oWhat data can be used to improve their effectiveness?

28[4]

Managing LLM Risks and Benefits: The Bow-
Tie Framework

YYYY-MM-DD - DRAFT 29
[5]

Summary and Future Work
- Managing risks and benefits of LLM applications is essential

- Defeater generation and Change Impact Assessment represent two promising LLM applications where risks can be minimized by
supporting, not replacing, existing methods

- We present AI-EA, a framework for generating and evaluating LLM defeaters

o Empirical evaluation shows it is effective in supporting practitioners

- To support deeper analysis of future LLM applications, we introduce the bow-tie framework for

Ongoing and Future Work:

- Extended evaluation of LLM Change Impact Assessment

- Improved defeater generation with advanced prompting and defeater customization

- Application of the bow-tie framework to additional use-cases, e.g., supporting formalization of assurance cases.

30

Collaborators

Logan Murphy, University of Toronto
Alessio Di Sandro, University of Toronto
Aren Babikian, University of Toronto
Marsha Chechik, University of Toronto

Claudio Menghi, University of Bergamo

Simon Diemert, Critical Systems Labs, Inc.
Jeff Joyce, Critical Systems Labs, Inc.
Laure Millet, Critical Systems Labs, Inc.
Olivia Foster, Critical Systems Labs, Inc.
Erin Cyffka, Critical Systems Labs, Inc.
Naweed Anwari, Critical Systems Labs, Inc.

Sahar Kokaly, General Motors
Ramesh S, General Motors

YYYY-MM-DD - DRAFT 31

Thank You!

YYYY-MM-DD - DRAFT 32

[4]

[5]

[3]

[2]

[1]

	Slide 1: AI-Supported Eliminative Argumentation: Practical Experience Generating Defeaters to Increase Confidence in Assurance Cases
	Slide 2: Background: Safety Assurance and Assurance Cases
	Slide 3: LLMs in Software Engineering and Assurance Case Development
	Slide 4: LLM Applications: Argument Creation
	Slide 5: LLM Applications: Evidence Suggestion
	Slide 6: LLM Applications: Enabling Formal Analysis
	Slide 7: Risks of Large Language Models in Safety Assurance
	Slide 8: Motivation: Large Language Models in Safety Assurance
	Slide 9: Motivation: Large Language Models in Safety Assurance
	Slide 10: Our Work on LLM Assurance
	Slide 11: Running Example: Adaptive Cruise Control System
	Slide 12: Eliminative Argumentation and Defeaters
	Slide 13: Assurance Case Example (EA): Adaptive Cruise Control System
	Slide 14: Assurance Cases with Defeaters
	Slide 15: Why Do We Need Support For Defeater Identification?
	Slide 16: LLM Support for Defeater Identification
	Slide 17: Our Framework: AI-Enabled Supported Argumentation (AI-EA)
	Slide 18: Challenge: What makes a defeater useful?
	Slide 19: Informativeness: Necessary but not Sufficient
	Slide 20: AI-EA Workflow
	Slide 21: Evaluation of AI-EA
	Slide 22: Key Results
	Slide 23: Try it out!
	Slide 24: Assurance Case Evolution
	Slide 25: Challenges with Change Impact Assessment
	Slide 26: Our Proposal: Supporting Change Impact with Large Language Models (LLMs)
	Slide 27: Why is Change Impact Assessment well-suited to LLM support?
	Slide 28: Evaluation
	Slide 29: Managing LLM Risks and Benefits: The Bow-Tie Framework
	Slide 30: Summary and Future Work
	Slide 31: Collaborators
	Slide 32: Thank You!

