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‣ Relying Party requests appraisal 
- specifies needed information 
- provides a fresh nonce 

‣ Target gathers and generates evidence 
- measures OS & applications 
- generates cryptographic signatures 

‣ Appraiser assesses evidence 
- good application behavior 
- infrastructure trustworthiness 
- good nonce
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‣ Research Goals 
- establish TPM as a functioning root of trust 
- bring up a trustworthy runtime attestation system 
- perform runtime attestation on the CDS 
- perform empirical testing

‣ Tools and Infrastructure 
- Copland attestation protocol language 
- verified MAESTRO attestation synthesis tools 
- formally verified MAESTRO attestation manager 
- Invary LKIM



Layered Runtime Attestation
‣ Target 

- system to be appraised at runtime 
- cross domain system for this experiment 

‣ M&A Subsystem 
- MAESTRO attestation manager (AM) 
- attestation manager key ( ) 
- attestation service providers (ASPs) 
- Copland attestation protocol 

‣ Operating System 
- RedHat Linux 
- SELinux 
- IMA 

‣ Roots of Trust 
- storage and reporting (TPM) 
- measurement (Firmware)
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Layered Runtime Attestation

‣ Evidence { E  ;; E  ;; … ;; E  }  
- E  - evidence from ASP  execution 
- ;; - bundling operator from protocol 
- {…}  - Attestation Manager signature 

‣  signing key 
- signing memorializes good boot  
- only AM can access the key 
- access is allowed only on good boot to AM
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∧ satisfies appraisal policy 
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 ⇒   trustworthy target}



Roots of Trust Base
‣ TPM 

- Root of trust for Storage and Reporting 
- trusted a priori 
- evidence signing 
- generates, stores and seals AM’s signing key 
- binds signing key to an AM 

‣ Firmware 
- Root of trust for Measurement 
- trusted a priori 
- bootloader measurement and initiation
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Operating System Layer
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‣ Measure and start Linux 
‣ Measure policy and start SELinux 
‣ Measure policy and start IMA



Trusted OS Infrastructure
‣ Firmware measures and starts boot loader 

- firmware hashes and starts boot loader (PCR 4) 

‣ initramfs contents 
- traditional boot materials 
- custom measurement script for SELinux and IMA policies and 

init system 
- IMA will use SELinux types requiring early policy measurement 

and SELinux start 

‣ Boot initramfs 
- bootloader hashes command line to start initramfs (PCR 8) 
- bootloader hashes and starts initramfs (PCR 9) 

‣ Switch to rootfs 
- mount rootfs 
- hash IMA and SELinux policies (PCR 11) 
- hash init binary 
- execute init binary on rootfs 
- kernel running with measured IMA and SELinux policies
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TPM State
‣ Good PCR 4 

- good bootloader 
- should measure initramfs 
- should use command line specification to start 

‣ Good PCR 8 & 9 
- good command line starts initramfs 
- good initramfs 
- good boot materials 
- good policy measurement script 
- good measurement script invocation 

‣ PCR 10 (ignored) 
- memorializes IMA trace 
- not useful for sealing 

‣ Good PCR 11 
- policy measurement ran 
- good initial SELinux and IMA policies 
- good init indicates start with good policies
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Runtime Attestation Layer

‣ Measure and start AM 
‣ Establish ASP libraries 
‣ Ensure AM  availability 
‣ Begin Copland protocol execution 
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AM  Protection and Use−1

‣ Starting and Protecting AM 
- IMA policy prevents bad AM binary starting 
- IMA policy prevents bad ASPs from running 
- SELinux provides runtime access control 
- AM is formally verified to properly execute Copland protocols 

‣ Generating and Protecting AM  
- TPM generates AM  from {AM }  blob 
- SELinux enforces {AM }  access control 
- IMA Extended Verification Mode (EVM) protects {AM }  

permissions 
- Authorized TPM policy must be loaded to enable key 
- SELinux enforces access control over TPM Policy 
- Authorized Policy seals AM  to PCRs 4,8,9,11 

‣ Using AM  
- key is a strongly bound identifier for the AM 
- AM signature binds evidence to the associated AM 
- AM signature memorializes boot 
- effectively extends trust to user-space attestation mechanisms
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‣ AM  cannot be used if 
- {AM }  access prevented by SELinux or IMA 
- TPM policy access prevented by SELinux 
- PCRS 4,8,9,11 are not in a good state
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General Purpose Runtime Attestation
‣ Boot to AM is generic 

- any good signature over evidence { }  is evidence of 
trusted AM 

- configurable, formally verified 
- small, memory safe 

‣ M&A Subsystem 
- runs arbitrary Copland attestation protocols 
- attestation service providers (ASPs) perform attestation tasks 
- Copland attestation protocols sequence ASP execution 
- AM signing itself is an ASP 

‣ Appraisal Targets 
- customize ASPs and protocol for specific applications 
- no requirement to customize target 

‣ Evidence { E }  
- check signature to assure evidence integrity and good boot 
- check evidence to establish trust in target 
- formal semantics for protocol and evidence

∀e . e AM−1

AM−1

SELinux

Firmware TPM

IMALinux

ASP0AM ASP1 ASPn
…

TargetAppraisal Target

M&A System

Operating System

Roots of Trust

proper bundling

∧ satisfies appraisal policy 

∧ valid signature

 ⇒   trustworthy target}



Cross Domain System
High

Intake

Server Rewrite Filter Export

Incoming Rewritten Outgoing Low

Config

Files

‣ Moving messages between security domains 
- intake receives a message from the high-side writes to 

incoming buffer 
- rewriter reads from the incoming buffer, applies rewrite rules, 

and writes to rewritten buffer 
- filter reads from the rewritten buffer, applies address filtering 

rules, and writes to outgoing buffer 
- export reads from outgoing buffer and outputs to low-side 

client

‣ Configuration 
- rewrite and filter processes have configuration files  
- SELinux policy enforces flow through the system 

‣ Messages reaching the low-side client 
must be: 

- received from the high-side client 
- rewritten by a properly configured rewriter 
- filtered by a properly configured filter



Adversary Targets

High

Intake

Server Rewrite Filter Export

Incoming Rewritten Outgoing Low

Config

Files

SELinux

Policy

Skipped 
Stages

‣ Configuration files for pipeline binaries 
‣ Pipeline binaries themselves 
‣ Communication paths and buffers 
‣ SELinux Policy 
‣ IMA and TPM Policy

InjectionExfiltration

The adversary’s primary goal is convincing a 
relying party to trust something it should not



ASPs and Protocol
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Protecting Attestation at Runtime

LKIM

‣ Runtime IMA Measurements  
- Policy specifies hashes for ASPs 
- Policy specifies a hash for AM 
- IMA writes log to TPM PCR 10 (currently unused) 

‣ AM  Signature 
- key is TPM resident 
- SELinux controls access to key blob 
- IMA EVM controls key blob permissions 

‣ Linux 
- measured during boot using Invary LKIM 
- remeasured at runtime using Invary LKIM 
- SELinux policy dumped and hashed 
- good signature memorializes boot 
- the AM’s key is not available if boot policy is violated
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Appraising Attestation Results
‣ Trustworthy target if 

- proper bundling 
- evidence satisfies appraisal policy 
- valid signature 

‣ Proper bundling 
- indicates measurement ordering 
- generated by verified AM 

‣ Satisfies appraisal policy 
- E  - LKIM policy appraisal 
- E  - Hashes checked against golden values 
-  - Signature checked with public AM key 

‣ Provisioning requirements 
- gather good hashes 
- generate and distribute AM key pair 
- define LKIM appraisal policy
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proper bundling

good LKIM evidence ∧ good hashes

valid signature
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‣ Boot to an initial measured state 
- establish running AM with bound key 
- IMA hashes and checks AM on invocation 
- AM  is available on good PCRs, good AM and encrypted blob 

‣ Remeasure at runtime 
- AM executes Copland attestation protocols 
- ASPs gather information after IMA check by IMA 
- Protocol execution bundles evidence 
- AM signs gathered evidence with AM  

‣ Appraisal and Remeasurement 
- AM communicates with relying party 
- Appraisal may occur in AM, Relying Party, or third party appraiser 
- Remeasurement may occur in AM or Relying party 

‣ PCRs are the trust link 
- boot measured into PCRs 
- signing key sealed by PCRs 
- signature carries trust meta-evidence 

‣ Layering builds trust bottom up 
- dependencies measured first 
- bundled evidence reflects measurement order 
- verified in earlier work

−1

−1
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Synthesizing Attestation Infrastructure
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‣ Protocol 
- user writes a Copland protocol identifying places and resources 
- evaluating various flexible mechanisms 

‣ Manifest Generator 
- automatically generate manifests for attestation managers 
- formally verified to preserve semantics 

‣ Manifest Compiler 
- automatically generate configurations for verified attestation manager 
- formally verified to preserve semantics 

‣ Attestation Test Bed 
- controlled evaluation environment 
- mixed architecture - ARM, Intel, IoT, Xen, KVM
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Attestation infrastructure is simpler to 
verify than the attestation target



‣ Attacks on attestation target 
- change target without impacting policy compliance 
- change target and repair before measurement (TOCTAU) 

‣ Attacks on evidence and meta-evidence 
- post measurement changes directly to evidence 
- generate signatures using incorrect components 
- cache alterations and poisoning 
- evidence package replay and spoofing 

‣ Attacks on attestation infrastructure 
- compromise AM identity and steal AM’s signing key 
- compromise AM execution and ASP ordering 
- alter ASPs to report incorrect, but compliant evidence 
- attack crypto and attestation protocol infrastructure 
- incorrectly report appraisal results 

‣ Attacks on system infrastructure 
- compromises to hardware 
- changing boot images and boot order 
- TPM, IMA, and SELinux policy modifications

20

Adversary Goals and Attack Mechanisms

The adversary’s primary goal is convincing a 
relying party to trust something it should not

The adversary’s secondary goal is convincing 
a relying party not to trust something it should
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Attack Generation and Testing

cds0.cop
Copland Source

*target: @hv [(inv ksus ker) +<+ @ksus [(ima ksus am) +<+ @ksus (am ksus cds)]]    

Pretty Printed Source

*target:
  @hv inv ksus ker +<+ @ksus ima ksus am +<+ @ksus am ksus cds
    

Abstract Syntax Tree

inv ksus ker

ima ksus am

am ksus cds

@ksus

+<+

@ksus

+<+

@hv

Execution Semantics: cds0.gli

l(v2) = msp(hv, inv, ksus, ker, x00)
  & l(v5) = msp(ksus, ima, ksus, am, x0100)
  & l(v7) = msp(ksus, am, ksus, cds, x01010) & prec(v5, v7) & prec(v2, v5)
  & prec(v2, v7).

ms_evt(E) => E = v2 | E = v5 | E = v7.
    

msp(ksus, ima, ksus, am, x0100)

msp(ksus, am, ksus, cds, x01010)

msp(hv, inv, ksus, ker, x00)

Problem Configuration

%  Components
  % Cross-Domain Solution (cds)
  % Attestation Manager (am)
  % Kernel (ker)
  % IMA (ima)
  % Invary (inv)

% Places
  % Kernelspace + Userspace (ksus)
  % Hypervisor (hv)

[ bound = 500, limit = 5000, input_order ]

  % Assume adversary corrupts CDS but 
  % avoids detection by the attestation.
l(V) = msp(ksus, M, ksus, cds, X)
 => corrupt_at(ksus, cds, V).

  % IMA cannot be corrupted
l(V) = cor(ksus, ima) => false.

  % Invary cannot be corrupted
l(V) = cor(hv, inv) => false.

  % AM depends on Kernel
depends(ksus, C, ksus, am) => C = ker.

  % IMA depends on Kernel
depends(ksus, C, ksus, ima) => C = ker.

  % Kernel has no dependencies
depends(ksus, C, ksus, ker) => false.

  % Invary has no dependencies
depends(hv, C, hv, inv) => false.
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m4_include(`thy.gli')m4_dnl
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msp(ksus, ima, ksus, am, x0100)

msp(ksus, am, ksus, cds, x01010)

cor(ksus, cds)
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cor(ksus, ker)
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‣ Generate attacks from CHASE outputs 
- CHASE generates all models allowed by a constraint set 
- specialized to generate all allowed attack graphs for a Copland protocol 
- use attack graphs for generating actual attacks on implementations 

‣ Implementing tradeoff studies 
- deep vs shallow attestation implementations 
- caching measurements of deep components 
- tradeoff costs and time vs attack detection 

‣ Protocol ordering 
- formally comparing protocols continuing 
- refinement of the “stronger” concept with utility of evidence 
- heuristics implemented in automated lint-like tools

Attack graphs define event orderings 
in successful attacks



‣ Components targeted in testing 
- boot measurement infrastructure 
- runtime measurement infrastructure 
- CDS system configuration and components 

‣ Attacks on configurations 
- altering component configuration 
- changing SELinux, IMA and TPM policy 

‣ Attacks on executables 
- changing component runtime behavior 
- replacing or modifying executables 

‣ Attacks across lifecycle 
- boot time attacks 
- runtime attacks 
- transitioning from boot trust to runtime trust
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Testing Results

Attacks Considered
Component Configuration Executable
Hardware ✘ ✘

TPM ✔ ✘

Bootloader ✔ ✘

LKIM ✔ ✘

Kernel ✔ ✔

IMA ✔ ✔

SELinux ✔ ✔

AMs ✔ ✔

ASPs ✔ ✔

CDS Comp ✔ ✔



‣ Boot transition to runtime is messy 
- boot trust must be reflected in runtime appraisal 
- yet there is no moment when runtime starts 
- integration with low level apparatus helps (IMA, SELinux, 

TPM) 

‣ The AM’s signing key is critical 
- a good AM key signature memorializes trusted boot 
- AM key compromise invalidates all attestation results  
- the AM key is long-lived and difficult to protect 

‣ Design for attestation 
- short lived processes are more difficult to attack 
- processes run only when needed 
- dependencies first and layering is essential 
- separate infrastructure from application 

‣ M&A must be easier to verify than its target  
- an attestation system is simpler than its target 
- managers, ASPs, policies are reusable 
- boot to a good attestation manager is reusable
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‣ Long-running attestation 
- re-measurement intervals 
- evidence caching and behavior 
- evidence behavior over time 

‣ Larger layered targets 
- multi-machine attestations and appraisal 
- evidence bundling and abstraction 
- external appraisal services 

‣ Evidence as program understanding 
- formal notions of measurement and abstraction 
- temporal evidence properties 
- composition evidence properties
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Next Up…
linter

systematic

testingprotocol


generator

type 
analysis

adversary

modelsadversary


models

system

model

‣ Protocols From Systems 
- move the user from protocol authoring to system modeling 
- generate protocols from system models 
- include adversary models 

‣ Put Evidence Semantics to Work 
- linter to provide protocol writing guidance 
- type analysis to predict protocol behavior 
- understanding protocol orderings 

‣ Separation issues in AM and ASPs 
- compartmentalization of ASP execution 
- separation within the AM 
- verus modeling for ASPs
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