
Layered Attestation of a Cross Domain System

An Experiment in Runtime Attestation
Will Thomas, Logan Schmalz, Sarah Johnson, Adam Petz, Perry Alexander
Institute for Information Sciences, The University of Kansas
{30willthomas,loganschmalz,sarahjohnson,ampetz,palexand}@ku.edu

Joshua Guttman, Paul Rowe
The MITRE Corporation
{guttman, prowe}@mitre.org

Trusted Systems
Virtual Institute

mailto:palexand%7D@ku.edu

‣ Relying Party requests appraisal
- specifies needed information
- provides a fresh nonce

‣ Target gathers and generates evidence
- measures OS & applications
- generates cryptographic signatures

‣ Appraiser assesses evidence
- good application behavior
- infrastructure trustworthiness
- good nonce

2

Semantic Remote Attestation

Appraiser Target

attestation

request

evidence

package

Relying

Party

appraisal

result

Attestation of a Cross Domain System
High

Intake

Server Rewrite Filter Export

Incoming Rewritten Outgoing Low

Config

Files

‣ Research Goals
- establish TPM as a functioning root of trust
- bring up a trustworthy runtime attestation system
- perform runtime attestation on the CDS
- perform empirical testing

‣ Tools and Infrastructure
- Copland attestation protocol language
- verified MAESTRO attestation synthesis tools
- formally verified MAESTRO attestation manager
- Invary LKIM

Layered Runtime Attestation
‣ Target

- system to be appraised at runtime
- cross domain system for this experiment

‣ M&A Subsystem
- MAESTRO attestation manager (AM)
- attestation manager key ()
- attestation service providers (ASPs)
- Copland attestation protocol

‣ Operating System
- RedHat Linux
- SELinux
- IMA

‣ Roots of Trust
- storage and reporting (TPM)
- measurement (Firmware)

AM−1 SELinux

Firmware TPM

IMALinux

ASP0AM ASP1 ASPn
…

TargetAppraisal Target

M&A System

Operating System

Roots of Trust

Layered Runtime Attestation

‣ Evidence { E ;; E ;; … ;; E }
- E - evidence from ASP execution
- ;; - bundling operator from protocol
- {…} - Attestation Manager signature

‣ signing key
- signing memorializes good boot
- only AM can access the key
- access is allowed only on good boot to AM

0 1 n AM−1

k k

AM−1

AM−1 SELinux

Firmware TPM

IMALinux

ASP0AM ASP1 ASPn
…

TargetAppraisal Target

M&A System

Operating System

Roots of Trust

proper bundling

∧ satisfies appraisal policy

∧ valid signature

 ⇒ trustworthy target}

Roots of Trust Base
‣ TPM

- Root of trust for Storage and Reporting
- trusted a priori
- evidence signing
- generates, stores and seals AM’s signing key
- binds signing key to an AM

‣ Firmware
- Root of trust for Measurement
- trusted a priori
- bootloader measurement and initiation

SELinux

Firmware TPM

IMALinux

ASP0AM ASP1 ASPn
…

TargetAppraisal Target

M&A System

Operating System

Roots of Trust

Operating System Layer

SELinux

Firmware TPM

IMALinux

ASP0AM ASP1 ASPn
…

TargetAppraisal Target

M&A System

Operating System

Roots of Trust

‣ Measure and start Linux
‣ Measure policy and start SELinux
‣ Measure policy and start IMA

Trusted OS Infrastructure
‣ Firmware measures and starts boot loader

- firmware hashes and starts boot loader (PCR 4)

‣ initramfs contents
- traditional boot materials
- custom measurement script for SELinux and IMA policies and

init system
- IMA will use SELinux types requiring early policy measurement

and SELinux start

‣ Boot initramfs
- bootloader hashes command line to start initramfs (PCR 8)
- bootloader hashes and starts initramfs (PCR 9)

‣ Switch to rootfs
- mount rootfs
- hash IMA and SELinux policies (PCR 11)
- hash init binary
- execute init binary on rootfs
- kernel running with measured IMA and SELinux policies

TPM

Startup
Measurement

Bootloader

Firmware

SELinux

Policy

initramfs

rootfs mount

rootfs switch

command line

policy

measurement

PCR 9 PCR 10
PCR 8

PCR 11 IMA

IMA

Policy init

PCR 4

TPM State
‣ Good PCR 4

- good bootloader
- should measure initramfs
- should use command line specification to start

‣ Good PCR 8 & 9
- good command line starts initramfs
- good initramfs
- good boot materials
- good policy measurement script
- good measurement script invocation

‣ PCR 10 (ignored)
- memorializes IMA trace
- not useful for sealing

‣ Good PCR 11
- policy measurement ran
- good initial SELinux and IMA policies
- good init indicates start with good policies

TPM

Bootloader

Firmware

SELinux

Policy

initramfs

rootfs mount

rootfs switch

command line

policy

measurement

PCR 9
PCR 8

PCR 11 IMA

IMA

Policy init

boot materials

+

policy measurement

script

PCR 4

Startup
Measurement

PCR 10

Runtime Attestation Layer

‣ Measure and start AM
‣ Establish ASP libraries
‣ Ensure AM availability
‣ Begin Copland protocol execution

−1
SELinux

Firmware TPM

IMALinux

ASP0AM ASP1 ASPn
…

TargetAppraisal Target

M&A System

Operating System

Roots of Trust

AM Protection and Use−1

‣ Starting and Protecting AM
- IMA policy prevents bad AM binary starting
- IMA policy prevents bad ASPs from running
- SELinux provides runtime access control
- AM is formally verified to properly execute Copland protocols

‣ Generating and Protecting AM
- TPM generates AM from {AM } blob
- SELinux enforces {AM } access control
- IMA Extended Verification Mode (EVM) protects {AM }

permissions
- Authorized TPM policy must be loaded to enable key
- SELinux enforces access control over TPM Policy
- Authorized Policy seals AM to PCRs 4,8,9,11

‣ Using AM
- key is a strongly bound identifier for the AM
- AM signature binds evidence to the associated AM
- AM signature memorializes boot
- effectively extends trust to user-space attestation mechanisms

−1
−1 −1

k
−1

k
−1

k

−1

−1

TPM

Bootloader

Firmware

SELinux

Policy

AM sealed to PCRs 4,8,9,11−1

initramfs

rootfs mount

rootfs start

command line

policy

measurement

PCR 9 PCR 10
PCR 8

PCR 11 IMA

IMA

Policy init

Attestation

Manager {AM } blob, AM and ASPs protected by IMA and SELinux−1

k

PCR 4

‣ AM cannot be used if
- {AM } access prevented by SELinux or IMA
- TPM policy access prevented by SELinux
- PCRS 4,8,9,11 are not in a good state

−1
−1

k

\

General Purpose Runtime Attestation
‣ Boot to AM is generic

- any good signature over evidence { } is evidence of
trusted AM

- configurable, formally verified
- small, memory safe

‣ M&A Subsystem
- runs arbitrary Copland attestation protocols
- attestation service providers (ASPs) perform attestation tasks
- Copland attestation protocols sequence ASP execution
- AM signing itself is an ASP

‣ Appraisal Targets
- customize ASPs and protocol for specific applications
- no requirement to customize target

‣ Evidence { E }
- check signature to assure evidence integrity and good boot
- check evidence to establish trust in target
- formal semantics for protocol and evidence

∀e . e AM−1

AM−1

SELinux

Firmware TPM

IMALinux

ASP0AM ASP1 ASPn
…

TargetAppraisal Target

M&A System

Operating System

Roots of Trust

proper bundling

∧ satisfies appraisal policy

∧ valid signature

 ⇒ trustworthy target}

Cross Domain System
High

Intake

Server Rewrite Filter Export

Incoming Rewritten Outgoing Low

Config

Files

‣ Moving messages between security domains
- intake receives a message from the high-side writes to

incoming buffer
- rewriter reads from the incoming buffer, applies rewrite rules,

and writes to rewritten buffer
- filter reads from the rewritten buffer, applies address filtering

rules, and writes to outgoing buffer
- export reads from outgoing buffer and outputs to low-side

client

‣ Configuration
- rewrite and filter processes have configuration files
- SELinux policy enforces flow through the system

‣ Messages reaching the low-side client
must be:

- received from the high-side client
- rewritten by a properly configured rewriter
- filtered by a properly configured filter

Adversary Targets

High

Intake

Server Rewrite Filter Export

Incoming Rewritten Outgoing Low

Config

Files

SELinux

Policy

Skipped
Stages

‣ Configuration files for pipeline binaries
‣ Pipeline binaries themselves
‣ Communication paths and buffers
‣ SELinux Policy
‣ IMA and TPM Policy

InjectionExfiltration

The adversary’s primary goal is convincing a
relying party to trust something it should not

ASPs and Protocol
High

Intake

Server Rewrite Filter Export

Incoming Rewritten Outgoing Low

Hash Config

Files

SELinux

Policy

Hash

Binaries

Hash SELinux

Policy

Generate

SignatureLKIM

SELinux

@AM.(L +>+ P +>+ C +>+ B) -> !

Layering reflects a
Chain of Trust

Protecting Attestation at Runtime

LKIM

‣ Runtime IMA Measurements
- Policy specifies hashes for ASPs
- Policy specifies a hash for AM
- IMA writes log to TPM PCR 10 (currently unused)

‣ AM Signature
- key is TPM resident
- SELinux controls access to key blob
- IMA EVM controls key blob permissions

‣ Linux
- measured during boot using Invary LKIM
- remeasured at runtime using Invary LKIM
- SELinux policy dumped and hashed
- good signature memorializes boot
- the AM’s key is not available if boot policy is violated

−1

SELinux

@AM.(L +>+ P +>+ C +>+ B) -> !

Hash Config

Files

Hash

Binaries

Hash SELinux

Policy

Generate

Signature

LKIM

IMA TPM

Signature snaps runtime
and boot trust together

Appraising Attestation Results
‣ Trustworthy target if

- proper bundling
- evidence satisfies appraisal policy
- valid signature

‣ Proper bundling
- indicates measurement ordering
- generated by verified AM

‣ Satisfies appraisal policy
- E - LKIM policy appraisal
- E - Hashes checked against golden values
- - Signature checked with public AM key

‣ Provisioning requirements
- gather good hashes
- generate and distribute AM key pair
- define LKIM appraisal policy

L

P−B
AM−1

{ E ;; E ;; E ;; E }L P C B AM−1

proper bundling

good LKIM evidence ∧ good hashes

valid signature

@AM.(L +>+ P +>+ C +>+ B) -> !

proper bundling

∧ satisfies appraisal policy

∧ valid signature

 ⇒ trustworthy target}

‣ Boot to an initial measured state
- establish running AM with bound key
- IMA hashes and checks AM on invocation
- AM is available on good PCRs, good AM and encrypted blob

‣ Remeasure at runtime
- AM executes Copland attestation protocols
- ASPs gather information after IMA check by IMA
- Protocol execution bundles evidence
- AM signs gathered evidence with AM

‣ Appraisal and Remeasurement
- AM communicates with relying party
- Appraisal may occur in AM, Relying Party, or third party appraiser
- Remeasurement may occur in AM or Relying party

‣ PCRs are the trust link
- boot measured into PCRs
- signing key sealed by PCRs
- signature carries trust meta-evidence

‣ Layering builds trust bottom up
- dependencies measured first
- bundled evidence reflects measurement order
- verified in earlier work

−1

−1

18

Layered Runtime Attestation

Boot Measurement

LKIM

IMA

SELinux

TPM

CDS

SELinux Policy

ASPs

AM

Runtime Measurement
Evidence Storage & Bundling

Layered

Runtime

Synthesizing Attestation Infrastructure

Manifest

Generator

Manifest

Compiler

Test Bed

Protocols

‣ Protocol
- user writes a Copland protocol identifying places and resources
- evaluating various flexible mechanisms

‣ Manifest Generator
- automatically generate manifests for attestation managers
- formally verified to preserve semantics

‣ Manifest Compiler
- automatically generate configurations for verified attestation manager
- formally verified to preserve semantics

‣ Attestation Test Bed
- controlled evaluation environment
- mixed architecture - ARM, Intel, IoT, Xen, KVM

19

Attestation infrastructure is simpler to
verify than the attestation target

‣ Attacks on attestation target
- change target without impacting policy compliance
- change target and repair before measurement (TOCTAU)

‣ Attacks on evidence and meta-evidence
- post measurement changes directly to evidence
- generate signatures using incorrect components
- cache alterations and poisoning
- evidence package replay and spoofing

‣ Attacks on attestation infrastructure
- compromise AM identity and steal AM’s signing key
- compromise AM execution and ASP ordering
- alter ASPs to report incorrect, but compliant evidence
- attack crypto and attestation protocol infrastructure
- incorrectly report appraisal results

‣ Attacks on system infrastructure
- compromises to hardware
- changing boot images and boot order
- TPM, IMA, and SELinux policy modifications

20

Adversary Goals and Attack Mechanisms

The adversary’s primary goal is convincing a
relying party to trust something it should not

The adversary’s secondary goal is convincing
a relying party not to trust something it should

21

Attack Generation and Testing

cds0.cop
Copland Source

*target: @hv [(inv ksus ker) +<+ @ksus [(ima ksus am) +<+ @ksus (am ksus cds)]]

Pretty Printed Source

*target:
 @hv inv ksus ker +<+ @ksus ima ksus am +<+ @ksus am ksus cds

Abstract Syntax Tree

inv ksus ker

ima ksus am

am ksus cds

@ksus

+<+

@ksus

+<+

@hv

Execution Semantics: cds0.gli

l(v2) = msp(hv, inv, ksus, ker, x00)
 & l(v5) = msp(ksus, ima, ksus, am, x0100)
 & l(v7) = msp(ksus, am, ksus, cds, x01010) & prec(v5, v7) & prec(v2, v5)
 & prec(v2, v7).

ms_evt(E) => E = v2 | E = v5 | E = v7.

msp(ksus, ima, ksus, am, x0100)

msp(ksus, am, ksus, cds, x01010)

msp(hv, inv, ksus, ker, x00)

Problem Configuration

% Components
 % Cross-Domain Solution (cds)
 % Attestation Manager (am)
 % Kernel (ker)
 % IMA (ima)
 % Invary (inv)

% Places
 % Kernelspace + Userspace (ksus)
 % Hypervisor (hv)

[bound = 500, limit = 5000, input_order]

 % Assume adversary corrupts CDS but
 % avoids detection by the attestation.
l(V) = msp(ksus, M, ksus, cds, X)
 => corrupt_at(ksus, cds, V).

 % IMA cannot be corrupted
l(V) = cor(ksus, ima) => false.

 % Invary cannot be corrupted
l(V) = cor(hv, inv) => false.

 % AM depends on Kernel
depends(ksus, C, ksus, am) => C = ker.

 % IMA depends on Kernel
depends(ksus, C, ksus, ima) => C = ker.

 % Kernel has no dependencies
depends(ksus, C, ksus, ker) => false.

 % Invary has no dependencies
depends(hv, C, hv, inv) => false.

m4_include(`cds0.gli')m4_dnl
m4_include(`cds0.gli')m4_dnl
m4_include(`thy.gli')m4_dnl

Models

Model 1

cor(ksus, am)

msp(ksus, am, ksus, cds, x01010)

msp(ksus, ima, ksus, am, x0100)

cor(ksus, cds)

msp(hv, inv, ksus, ker, x00)

Model 2

cor(ksus, ker)

msp(ksus, am, ksus, cds, x01010)

msp(ksus, ima, ksus, am, x0100)

msp(hv, inv, ksus, ker, x00)

cor(ksus, cds)

Model 3

cor(ksus, am)

msp(ksus, ima, ksus, am, x0100)

msp(ksus, am, ksus, cds, x01010)

cor(ksus, cds)

msp(hv, inv, ksus, ker, x00)

cor(ksus, ker)

cds0.cop
Copland Source

*target: @hv [(inv ksus ker) +<+ @ksus [(ima ksus am) +<+ @ksus (am ksus cds)]]

Pretty Printed Source

*target:
 @hv inv ksus ker +<+ @ksus ima ksus am +<+ @ksus am ksus cds

Abstract Syntax Tree

inv ksus ker

ima ksus am

am ksus cds

@ksus

+<+

@ksus

+<+

@hv

Execution Semantics: cds0.gli

l(v2) = msp(hv, inv, ksus, ker, x00)
 & l(v5) = msp(ksus, ima, ksus, am, x0100)
 & l(v7) = msp(ksus, am, ksus, cds, x01010) & prec(v5, v7) & prec(v2, v5)
 & prec(v2, v7).

ms_evt(E) => E = v2 | E = v5 | E = v7.

msp(ksus, ima, ksus, am, x0100)

msp(ksus, am, ksus, cds, x01010)

msp(hv, inv, ksus, ker, x00)

Problem Configuration

% Components
 % Cross-Domain Solution (cds)
 % Attestation Manager (am)
 % Kernel (ker)
 % IMA (ima)
 % Invary (inv)

% Places
 % Kernelspace + Userspace (ksus)
 % Hypervisor (hv)

[bound = 500, limit = 5000, input_order]

 % Assume adversary corrupts CDS but
 % avoids detection by the attestation.
l(V) = msp(ksus, M, ksus, cds, X)
 => corrupt_at(ksus, cds, V).

 % IMA cannot be corrupted
l(V) = cor(ksus, ima) => false.

 % Invary cannot be corrupted
l(V) = cor(hv, inv) => false.

 % AM depends on Kernel
depends(ksus, C, ksus, am) => C = ker.

 % IMA depends on Kernel
depends(ksus, C, ksus, ima) => C = ker.

 % Kernel has no dependencies
depends(ksus, C, ksus, ker) => false.

 % Invary has no dependencies
depends(hv, C, hv, inv) => false.

m4_include(`cds0.gli')m4_dnl
m4_include(`cds0.gli')m4_dnl
m4_include(`thy.gli')m4_dnl

Models

Model 1

cor(ksus, am)

msp(ksus, am, ksus, cds, x01010)

msp(ksus, ima, ksus, am, x0100)

cor(ksus, cds)

msp(hv, inv, ksus, ker, x00)

Model 2

cor(ksus, ker)

msp(ksus, am, ksus, cds, x01010)

msp(ksus, ima, ksus, am, x0100)

msp(hv, inv, ksus, ker, x00)

cor(ksus, cds)

Model 3

cor(ksus, am)

msp(ksus, ima, ksus, am, x0100)

msp(ksus, am, ksus, cds, x01010)

cor(ksus, cds)

msp(hv, inv, ksus, ker, x00)

cor(ksus, ker)

cds0.cop
Copland Source

*target: @hv [(inv ksus ker) +<+ @ksus [(ima ksus am) +<+ @ksus (am ksus cds)]]

Pretty Printed Source

*target:
 @hv inv ksus ker +<+ @ksus ima ksus am +<+ @ksus am ksus cds

Abstract Syntax Tree

inv ksus ker

ima ksus am

am ksus cds

@ksus

+<+

@ksus

+<+

@hv

Execution Semantics: cds0.gli

l(v2) = msp(hv, inv, ksus, ker, x00)
 & l(v5) = msp(ksus, ima, ksus, am, x0100)
 & l(v7) = msp(ksus, am, ksus, cds, x01010) & prec(v5, v7) & prec(v2, v5)
 & prec(v2, v7).

ms_evt(E) => E = v2 | E = v5 | E = v7.

msp(ksus, ima, ksus, am, x0100)

msp(ksus, am, ksus, cds, x01010)

msp(hv, inv, ksus, ker, x00)

Problem Configuration

% Components
 % Cross-Domain Solution (cds)
 % Attestation Manager (am)
 % Kernel (ker)
 % IMA (ima)
 % Invary (inv)

% Places
 % Kernelspace + Userspace (ksus)
 % Hypervisor (hv)

[bound = 500, limit = 5000, input_order]

 % Assume adversary corrupts CDS but
 % avoids detection by the attestation.
l(V) = msp(ksus, M, ksus, cds, X)
 => corrupt_at(ksus, cds, V).

 % IMA cannot be corrupted
l(V) = cor(ksus, ima) => false.

 % Invary cannot be corrupted
l(V) = cor(hv, inv) => false.

 % AM depends on Kernel
depends(ksus, C, ksus, am) => C = ker.

 % IMA depends on Kernel
depends(ksus, C, ksus, ima) => C = ker.

 % Kernel has no dependencies
depends(ksus, C, ksus, ker) => false.

 % Invary has no dependencies
depends(hv, C, hv, inv) => false.

m4_include(`cds0.gli')m4_dnl
m4_include(`cds0.gli')m4_dnl
m4_include(`thy.gli')m4_dnl

Models

Model 1

cor(ksus, am)

msp(ksus, am, ksus, cds, x01010)

msp(ksus, ima, ksus, am, x0100)

cor(ksus, cds)

msp(hv, inv, ksus, ker, x00)

Model 2

cor(ksus, ker)

msp(ksus, am, ksus, cds, x01010)

msp(ksus, ima, ksus, am, x0100)

msp(hv, inv, ksus, ker, x00)

cor(ksus, cds)

Model 3

cor(ksus, am)

msp(ksus, ima, ksus, am, x0100)

msp(ksus, am, ksus, cds, x01010)

cor(ksus, cds)

msp(hv, inv, ksus, ker, x00)

cor(ksus, ker)

‣ Generate attacks from CHASE outputs
- CHASE generates all models allowed by a constraint set
- specialized to generate all allowed attack graphs for a Copland protocol
- use attack graphs for generating actual attacks on implementations

‣ Implementing tradeoff studies
- deep vs shallow attestation implementations
- caching measurements of deep components
- tradeoff costs and time vs attack detection

‣ Protocol ordering
- formally comparing protocols continuing
- refinement of the “stronger” concept with utility of evidence
- heuristics implemented in automated lint-like tools

Attack graphs define event orderings
in successful attacks

‣ Components targeted in testing
- boot measurement infrastructure
- runtime measurement infrastructure
- CDS system configuration and components

‣ Attacks on configurations
- altering component configuration
- changing SELinux, IMA and TPM policy

‣ Attacks on executables
- changing component runtime behavior
- replacing or modifying executables

‣ Attacks across lifecycle
- boot time attacks
- runtime attacks
- transitioning from boot trust to runtime trust

22

Testing Results

Attacks Considered
Component Configuration Executable
Hardware ✘ ✘

TPM ✔ ✘

Bootloader ✔ ✘

LKIM ✔ ✘

Kernel ✔ ✔

IMA ✔ ✔

SELinux ✔ ✔

AMs ✔ ✔

ASPs ✔ ✔

CDS Comp ✔ ✔

‣ Boot transition to runtime is messy
- boot trust must be reflected in runtime appraisal
- yet there is no moment when runtime starts
- integration with low level apparatus helps (IMA, SELinux,

TPM)

‣ The AM’s signing key is critical
- a good AM key signature memorializes trusted boot
- AM key compromise invalidates all attestation results
- the AM key is long-lived and difficult to protect

‣ Design for attestation
- short lived processes are more difficult to attack
- processes run only when needed
- dependencies first and layering is essential
- separate infrastructure from application

‣ M&A must be easier to verify than its target
- an attestation system is simpler than its target
- managers, ASPs, policies are reusable
- boot to a good attestation manager is reusable

23

What We Learned

Appraiser Target

attestation

request

evidence

package

Relying

Party

appraisal

result

‣ Long-running attestation
- re-measurement intervals
- evidence caching and behavior
- evidence behavior over time

‣ Larger layered targets
- multi-machine attestations and appraisal
- evidence bundling and abstraction
- external appraisal services

‣ Evidence as program understanding
- formal notions of measurement and abstraction
- temporal evidence properties
- composition evidence properties

24

Next Up…
linter

systematic

testingprotocol

generator

type
analysis

adversary

modelsadversary

models

system

model

‣ Protocols From Systems
- move the user from protocol authoring to system modeling
- generate protocols from system models
- include adversary models

‣ Put Evidence Semantics to Work
- linter to provide protocol writing guidance
- type analysis to predict protocol behavior
- understanding protocol orderings

‣ Separation issues in AM and ASPs
- compartmentalization of ASP execution
- separation within the AM
- verus modeling for ASPs

‣ Perry Alexander - KU
- palexand@ku.edu

‣ Adam Petz - KU
- ampetz@ku.edu

‣ Will Thomas - KU
- 30wthomas@ku.edu

‣ Logan Schmalz - KU
- loganschmalz@ku.edu

‣ Sarah Johnson - KU
- sarahjohnson@ku.edu

‣ Joshua Guttman - MITRE
- guttman@mitre.org

‣ Paul Rowe - MITRE
- prowe@mitre.org

‣ James Carter - NSA
‣ Stephen Smalley - NSA
‣ Daniel DeGraff - NSA

25

People and Publications
‣ Petz, A., W. Thomas, A. Fritz, T. Barclay, L. Schmalz, and Perry

Alexander, “Verified Configuration and Deployment of Layered
Attestation Managers,” Proceedings of the 22nd International
Conference on Software Engineering and Formal Methods
(SEFM’24), LNCS 15280, November 4-8, 2024, Aveiro, Portugal.

‣ Petz, A., P. Alexander, “An Infrastructure for Faithful Execution of
Remote Attestation Protocols,” Proceedings of the NASA Formal
Methods Symposium (NFM’21), May 24-28, Norfolk, VA.

‣ Johnson, S. and P. Alexander, “Ordering Attestation Protocols,” n
preparation for Network and Distributed System Security (NDSS’26)
Symposium, San Diego, California, February 23-27, 2026.

‣ Thomas, W., L. Schmalz, A. Petz, P. Alexander, J. Guttman, “Layered
Attestation in Action: Attesting to a Cross-Domain Solution,” in
preparation for Network and Distributed System Security (NDSS’26)
Symposium, San Diego, California, February 23-27, 2026.

mailto:palexand@ku.edu
mailto:ampetz@ku.edu
mailto:30wthomas@ku.edu
mailto:loganschmalz@ku.edu
mailto:sarahjohnson@ku.edu
mailto:guttman@mitre.org
mailto:prowe@mitre.org

