Preemptive Intrusion Detection -
practical experience and detection framework

Phuong Cao

Advisors: Prof. Ravishankar K. lyer and Prof. Zbigniew T. Kalbarczyk
Collaborators: Eric Badger, Surya Bakshi, Simon Kim, Adam Slagell, Alex Withers

ECE ILLINOIS IirriNors

Overview

An advanced persistent threat (APT) uses multiple phases to break into a network, avoid detection, and
harvest valuable information over the long term (Symantec, 2016)

Overview

root@e69823Tc78cc: fopt/cve-2815-7547# tcpdump -XX -r CVE-2815-7547.pcap
reading from ftile CVE-2815-7547.pcap, link-type EN16MB (Ethernet)

13:33:36.545214
BxB8e8
BxB818:
BxB828:
Bxee3e:
Bx8eda.
13:33:36.545224
BxB8e8
BxB818:
BxB828:
Bx0e3e:
gx8eda.

IP localhost.385%38 » localhost

gege eeee eBed 6BEe oéeg apap
@848 6cfa 4806 4811 ctbeé 7188
8881 5682 @835 882c fe3df Sbce
6eae eaee @80 8366 6T6T 8362
6f6f 676c 6583 636T 6dBE L8l

IP localhost.385%38 > localhost.

gege eeee eBBE 6BEE céeg apap
@848 6ctb 4886 4811 cfaft 7188
8881 5682 @835 882c fe3df ebb2
6eae eaee @80 8366 6T6T 8362
6f6f 676c 6503 636T 6dBE 8Blc

.domain: 23582+ A? foo.bar.google.com. (36)

HEBE 4588cc0000000 E.
pee1 70 .El.@.@.........
glee eee15.,.?2[.....
6172 BBBT i foo.bar.g
eael cogle.com.....
domain: 59858+ AAAA? foo.bar.google.com. (36)
BEBE 4588cc0000000 E.
pee1 7fee .El.@.@.........
gleg el5., .0
6173 BBBT i foo.bar.g
eael cogle.com.....

Attack

;

rl

2

Ti

Factor graph based

Attack o
detection

Advanced
_ Attack
Persistent generation

Attack Replay Environment B Snort re p I ay
Interchangeable Wireshark I hreat
monitors
— LIGH_RISK_DOMAIN = SSH HOT CLUSTER = TERMINATE CRITICAL_SERVICE
G > CD OSSEC H e SENSITIVE_HTTP_URI BRNECT_DATABASE
MULTIPLE LOGIN s e
: 1 : ANOMALOUS HOST COMPILE
Container 1 .. | Container n MALWARE_HASH
: : _REGISTRY MATCH
Container Engine (LXC, VM)
Host 0S Initial Internal Escalate Establish Move Command Deliver | Clear
Attack traces Compromisd Reconnaisance Privileges Foothold Laterally Control Payload | Traces
Vo
RESTART SYSTEM SERVICE
- EEJENE_HMP?J'I{? F;}E L NEW SYSTEM SERVICE 2 READ PASSWD FILE B DELETE_BASH_HISTORY
= NEW CRON_JOB EXTRACT DATA CLEAR DOWMNLOADED FILE

FROBE_SOFTWARE_VERSION

Attackers use stolen credentials to bypass authentication

Adobe

"--have i been pwned? SREMLESE VIS,

Check if you have an account that has been Home PGPOt
compromised in a data breach (56M credit cards)

Target

. 40M credit cards
}ernail address or usernam [ReWil={s Ky l (|

LinkedIln
(6.6M passwords)

307,441,708
pwned accounts Sutter Physicians

(3.3M medical records)

https://haveibeenpwned.com/

Our study at National Center for Supercomputing 2011 2015
Applications (2008-2012)

55% of the incidents bypassed authentication
Attack payloads: attackers stole more credentials,

Sent Spam emails! and IaunChed DDOS attaCkS http://www.icir.org/vern/cs261n/papers/Credentials_stealing_NSS-2010.pdf

4. Escalate privilege

Stolen credentials have been used Sscalate privi
m to steal more credentials:

Linux vmsplice Local Root

Legitimate Users d real mUIti'Staged attaCk at NCSA Exploit

whoami
root

2. OS fingerprinting

3. Download exploit

$ uname -a; w

wge

") alice:password123
/vm.c

bob:password456 Linux 2.6.xx, up 1:17, 1

| user
USER TTY LOGIN@
: - : IDLE
Social engineering xxx console 18:40 :
. - .- 16
Email phishing
Password guessing

b

") alice:password123
” bob:password456

Connecting to xx.yy.zz.tt:80..

connected.

Firewall OpenSSH

5. Replace SSH daemon

sshd: Received SIGHUP;
restarting.

Compromised SSH logs clear-text passwords to a file

Attacker Compromised SSH uses a different version (4.3p2)

. compared to other SSH at NCSA

tep 195.22.XXX.XXX.55554 ->
141.142.237.95.22 FIN US

http://server6.bad-domain.com
http://server6.bad-domain.com
http://server6.bad-domain.com

Challenge: Considering a log entry in isolation is not sufficient

Signature-based:

Hash value of network packet payload

Hash value of malicious files

S shasum(vm.c)
dcaa6l2d...

SHA-1 hash value of malicious files

Pros: Work well with known
malicious pattern

Cons: May not be effective in
detecting unknown malicious
patterns or obfuscation of known
patterns

Anomaly-based

Deviation from a normal profile, e.q.,

login activities of users:

- A login from a new device or a new IP address
- A login using privileged accounts, e.g., root

sshd[29120]: Failed unknown for invalid user useré69
sshd[29120]: Failed none for invalid user useré69
sshd[29120]: Failed password for invalid user useré69

syslogs of password attempts on a target user

Pros: Work with unknown
deviation from a normal pattern

Cons: Sensitive to threshold and
tend to have a high false positive
rate 6

Problem: Identify malicious users using host and network logs

Input: host and network logs of the target system
Output: a list of malicious users

Netr
flows \ @
Attack type Se=s —Detector

Multi-staged attacks using known credentials " \
Firewall logs / @

Assumptions
Monitors are setup to collect !ogg System
Attackers do not tamper monitoring logs IDS alerts

1 1VIIT OCUVUITILY 1IVY vdid WV T auilVvi

Graphs (FG)

{benign,
suspiciou

.
benign ‘. suspicious

suspicious ” malicious malicious

LOGIN_REMOTELY OS_FINGERPRINT DOWNLOAD_SENSITIVE COMPILE RESTART SYS SERVICE

A A A

Sunamo - T R SRR O S

command
monitor netflow

command §&
monitor

http://bad-domain.com/vm.c
http://bad-domain.com/vm.c
http://bad-domain.com/vm.c

M1 AUVl WAl T V) 1o A Lypdyo Vi Yivvawviiioue

graphical models

A factor graph (FG) is an undirected graph of
random variables and factor functions.
[Frey et al. 01] f1

A factor function is a mathematical representation of
prior beliefs or expert knowledge.
A factor function is defined:

Graph

: L Known random variables
1. Automatically based on the data of past incidents event e' = download sensitive

2. Manually from expert knowledge of the system event e? = restart system service
user profile u: past_compromise = true

A factor graph is a general representation c?f Bayesian Unknown random variables
Network (causal) and Markov Random Fields (non- state s': user state when observing e
causal). FG have effective inference algorithms. state s?: user state when observing €2

Factor functions: f1, 2, {3, f4
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=910572&tag=1

Factor Graphs equivalent of BN

(D

and MRF
P(A)

P(BIA)

Factor Graph

Bayesian Network
(BN)

()—(

Markov Random Fields
(MRF)

equivalent of BN
f(X,Y)

O

Factor Graph
equivalent of MRF

= N

http://vision.unipv.it/IA2/Factor%20graphs%20and%20the %20sum-product%20algorithm.pdf

I UV LAl IHHITUYI AT NTVIWITUYU VUl OCUVUlIly CAPMUIL WO

and past data

. Definition of factor functions
Known random variables

event e' = download sensitive
event e = restart system service
user profile u: past_compromise = true

1 if e! = download sensitive
f]_ = 35 Sl — HHSF?EEEEUH-H

Unknown random variables () th&i’rwi&&i

state s': user state when observing e’)
state s?: user state when observing €2 1 if e*=restart service

& s' = suspicious

f 2 = ; o
& s° = malicious
State 0 otherwise
INfeudacee possible An example Factor
1 &2 Graph 1 if 2 _ fart »
s’, s“state II e° = Trestart sys service

& 5% = benign
0 otherwise

seguences

benign, benign
benign, suspicious"
benign, malicious,

1 if s ' = suspicious

& st = malicious

& u = past compromise
0 otherwise

malicioirie malicioi e 11

I VO LAl IHHIUYI AU NMIVWWICUYU UVl OCVUVUTILlYy TAPYVUIL O

Known random variables

event e' = download sensitive

event e? = restart system service

user profile u: past_compromise = true

Unknown random variables
state s': user state when observing e’
state s?: user state when observing e?

User state \ f1 2 3 4
Functions
Benign, 0 0 1 0
benign
Benign, 0 0 0 0
suspicious
Suspicious, 1 0 1 0
benign
Suspicious, 1 0 0 0
suspicious
Suspicious, 1 1 0 1
malicious
Malicious, 0 0 0 0
benign
Malicious, 0 0 0 0
suspicious
Malicious, 0 0 0 0
malicious

and past data

An example Factor
Graph

Definition of factor functions

1 if e! = download sensitive

& st = suspicious
0 otherwise

1 if e = restart service
B & s' = suspicious

T
1

& % = malicious
0 otherwise

1 if e = restart SYS Service
& s* = benign

0 otherwise

1 if st = suspicious
& s* = malicious

& u = past compromise
0 otherwise

12

1 have condaucted FG experiments using reail
iIncidents at NCSA

1. Construct factor functions from

51 incidents during 2008-2009 for
training

3. For each user in a test incident,

User u2 is benign

jj manisd construct a per-user factor graph
definition
e R
_ Factor |} | :
Construction functions 1 . f |
| T Belie | |
2008-2009 manual : events Propagation :
51 incidents definition He-used : :
for all users I l l l 1
: factor | e
T Sbe
raw logs extraction | user state benign suspicious malicious |
i 1
: (b1) Construct factor graph (b2) Infer user states E User ul is malicious
: :
: :
i .

manual Represented

2010-2013 reports extraction as .timeline files

b5 incidents

erform interence on ractor grapns using

Markov Chain Monte Carlo or Belief

petection timeliness and Freemption
timeliness

Attack Duration

Detection timeliness Preemption timeliness
—_— —

[-J L\ Tt 9

Nt
The first event Detected by The last event
AttackTagger

Detected by
security analysts

4

14

Detection timeliness and Preemption
15 I I:m:e:h:n:e:ss' . -.

A0

-4

46 of 62 malicious

users were detected
In tested incidents

L |
—
- .

D 25 (740/0)
S 41 of 46 identified
A malicious users were
- identified before the
system misuse
(]
- . . .«
0.0 0.2 (0.4 .6 0.5 1.0
first Percentage of events observed until attack last
event detection event

15

Performance

TP [TN | FP [FN ISON
: “Tassiier | 9. . 1. . I i iCi
o 5to o000 | 000 1795 Best detection rate (46 of 62 malicious
Support Vector Machine | 27.4 | 100.00 | 0.00 | 72.6 users)
Detection performance of the « Smallest false detection rate (19 users of
techniques 1267 benign users).
v Show that performance of

AttackTagger (AT) is better than
--- Support Vector Machine (SVM) not
by chance

McNemar discrepancy
matrix

a=~:«n'|;+SVM+a b=AT" *=(b+¢)*/(b—¢) Measure discrepancy between: AT and
SVM*, 2 — 48 ATMletection performance was

—AT+ - d=AT- X
c=AT'SVM’, d=AT p-value < significantly different than SVM __
SVM N 0NN

 Null hypothesis H, : both techniques
have the same detection performance.

Limitations of applying Factor Graphs

Factor graph is a complementary to existing
security monitoring infrastructure and detection

techniques.
| | | Factor Graph Er s oo

* |t combines security alerts from signature Detection P

detection and anomalous alerts. /
Traditional .

Pros:

- Can identify an intrusion at an early stage syslogs, netflows,

- Potentially work with variants of known Raw logs IDS alerts
attacks

Cons:

- Requires extensive knowledge of attacks

17

FGs detected 6 hidden users who were not identified by NCSA
security team

Those attacks follow some patterns
from the past attacks.

Incident Date Activity

20k L0125 [5 Suspicious activities

They are variants of known attacks. . : . _ :
20100513 Incorrect credentials (multiple times); Sending

spam emails

20101029 Loqg_u]g in from multiple IP addresses; Suspicious
activities

20101029 Loqg_lr_lg in after a long inactive time; Suspicious
activities

20k Loa [0 2is B Suspicious activities

Suspicious activities: download of a file with sensitive extensions and execution of anomalous commands (w, uname -a) 18

Moving Forward

A Framework is need to experiment with variants of known attacks

19

Outline: Generate, replay and analyze attack variants

Interchangeable Signature—baaed Predicted Class
mnmturs Yes Mo
flows } —Pp | Anomaly-based —p ¢ - - -
Container 1 EI Containern z T = O
actor GGrapn-base [
e Container Engine (LXC, VM =
i P : g } {AﬂaEkTagger} o NoO FP TN
System logs Host 0S <
i::’v?‘f Attack variants Attack replay environment Validation of Result
(unknown attacks) detection techniques
attack
Input:
Host and network logs of past security incidents
Output:

A set of attack variants, each variant is a sequence of events

Servers hosting the framework

A container and a network infrastructure to replay such variant
A report of detection capabillity of detection technigques

Outline: Generate, replay and analyze attack variants

Interchangeable Signature—baﬂed Predicted Class
c monitors Yes Mo
Network < >
flows —p |Anomaly-based —p _— - N
Container 1 EI Container n z T O
: : actor Grapn-base m
- Container Engine (LXC, VM) 3
| AttackTagger 5 No FP TN
System logs Host 0% (gger) <
iﬁf:’v?‘f Attack variants Attack replay environment Validation of Result
(unknown attacks) detection techniques
attack
Input:
Host and network logs of past security incidents
Output:

A set of attack variants, each variant is a sequence of events

A container and a network infrastructure to replay such variant
A report of detection capabillity of detection technigques

Example of an attack variant: Outbound brute-force
SSH attack

Event Original attack
ID Outbound brute-force SSH attack
1 Login using a weak password

sshd: Accepted password for globus from ::
ffff:64.18.xxx.xxx port 33382 ssh2

2 Get operating system 1nfo and list of active users
uname -a; w

3 Read content of the password file
cat /etc/passwd

4 Download a file with a sensitive extension using
HTTP

wget members.lycos.co.uk/smashxxx/s4.sh

5 Install and run the malicious file
chmod +x s4.sh && ./s4.sh

6 Run outbound SSH scan
pscan2 SIP

Detecting an attack variant: signature-based and factor-

bas

|gnngre%ased Factor graph-based

1. Hash value of network packet Analyze relations among all observed
payload or malicious files events using univariate or multivariate

functions [1].
S shasum(s4.sh)

dcaa6l2d... When an attacker uses a different
technique, some of the events may be
Does not work with obfuscated or missing.

modified malicious file.

The factor graph can still operate on the
2. Sensitive system calls: accessing subset of the events and provide a good
secret files detection accuracy.

open(“/etc/passwd”)

May raise a lot of false positives

How can we model attacks that share the common patterns?

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=MMDDvwIAAAAJ&citation_for_view=MMDDvwIAAAAJ:_kc_bZDykSQC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=MMDDvwIAAAAJ&citation_for_view=MMDDvwIAAAAJ:_kc_bZDykSQC

e1: Login using a weak password
e2: Get OS info

e3: Read password file
e4: Download sensitive

e5: Run outbound SSH scan

start

A

A

What i1s an Attack
Variant?

- -
- -
~ ~
~ ~
~ ~
~
><
- -
—» < .
— ~ ~ - -
~ ”
el e2 4'< ~ -~
- e3 S ed P e5 _
e finish
- - b =
N ~ ~ < ~ h
-~ -~ = ~
- -
~x
~ ~
~
So 2
/v\
-~ ~
~ ~
~ ~
stage
Initial Internal Data Establish Deliver
Compromise Reconnaissance Exfiltration Foothold Payload

An attack variant is a sequence of
interchangeable events

Possible ways to get an initial access:
Brute-force weak passwords
Use of stolen credentials
Use of stolen physical devices
Pass-the-token attack

An interchangable event aims to achieve
the same objective as the original event

Defining Interchangeable
Events

Attack stage Description Event (real NCSA alerts) Interchangeable events

LERT WEAK PASSWORD LOGIN

LERT ROOT LOGIN

LERT WATCHED COUNTRY LOGIN
LERT COMPROMISED PROFILE LOGIN
LERT SENSITIVE CREDENTIAL LOGIN

Initial compromise |An abnormal login activity ALERT ANOMALOUS HOST

> > > > >

LERT SENSITIVE FTP URI
LERT SENSITIVE SCP FILE

Escalate privilege |A download of a source code file ALERT SENSITIVE HTTP URI

A

A

ALERT NEW IRC DOWNLOAD
Al

An attempt to gain persistent access |ALERT NEW SYSTEM SERVICE LERT NEW SHELL INIT ENTRY

L]
Z1R [| ATAIEATAXYA

An attempt to gain persistent access |ALERT CHANGE CREDENTIAL LERT NEW USER

A
ALERT NEW SSH AUTHORIZED KEY
A
A

Internal An attempt to connect to command|ALERT COLLECT SYSTEM INFO LERT COLLECT SHELL HISTORY
reconnaissance and control server LERT READ USER LIST

Extraction of secret data ALERT VIEW PASWORD FILE ALERT VIEW PRIVATE SSH KEY
Deliver payload

Misuse of the target system ALERT HIGH NETWORK FLOW |ALERT HOSTING HIDDEN SPAM

Generating Attack variants using Cariesian
product

ace 1. Generate a list of events in a known attack
acf
ac ade 2. For each event in the list
e ad o adf Replace it with the events in the interchangeable event list
X ¢ - be X : ~ bce Record the attack variant
bd bcf
bde 3. Repeat until there is no more attack variant
bdf
A A f A A
a
start /; / finish
b d :
stage
Initial Internal Establish

Compromise Reconnaissance Foothold

An attack skeleton

(D

Event 1
Event 2

AN ATtaCK Replay

Framework

Features:
Database of executable attacks: exploit code, vulnerable packages,

Attack Repository

o

—
g
R sl

~ Variants
Nt

=9
R | .

__-"""J)

Buffer overflow
Privileged escalation
Denial of Service

Cross site scripting
SSL/TLS attacks
Remaote Code Execution
Hypervisor Exploits

Attack Replay Environment

— Interchangeable

f;? zonitors >

Attack Validation

Container 1 - | Container n

Container Engine {LXC, VM)

Host 05

syslog

netflow
m
Attack traces

Signature matching
Anomaly detection

Factor graph
analysis

Focus on log collection: Pre-installed host monitors (syslog) and network monitors (Bro)
Isolation: use virtualization framework such as Linux containers (LXC) or Virtual Machine (QEMU)
Performance: most containers are based on LXC, a light-weight virtualization platform

The replay framework is the evaluation pipeline for attack detection methods.

Case studies

Name Description

Credential-stealing attack Compromise a gateway node that handles user authentication to steal
username and passwords

Outbound brute-force SSH attack Launch outbound brute-force SSH attacks against external target nodes

Outbound Denial of Service attack | Build a botnet and run Denial of Service attacks against external target nodes.

Outline: Generate, replay and analyze attack variants

Interchangeable Signature-based Predicted Class
monitors Yes MNo
flows < > | Anomaly-based 2 o | 7o i
Container 1 EI Container n j
Container Engine (LXC, VM) FE;;L?;B DZ}? S 5 FP TN
System logs Host 0S 99 <
iﬁ::lv(: Attack variants Attack replay environment Validation of Result
(unknown attacks) detection techniques
attack
Input:
Host and network logs of past security incidents
Output:

A set of attack variants, each variant is a sequence of events

A container and a network infrastructure to replay such variant
A report of detection capabillity of detection technigques

rFerrormance comparison or detecting attack

variants
ExPer'ment setup Attack variant detection accuracy
100
Generated 648 attack variants of the three case studies and “Signature-based
evaluated detection capability of the techniques: Frequency-based

20 Factor graph-based

Signature-based

use a specific signature in terms of a file hash or a network

packet checksum in order to identify the malicious user %

Frequency-based *

use the most frequent event observed in the past attacks

as an indicator of future attacks, e.g., alert anomalous host 20

Factor graph-based (AttackTagger) Case study 1 Case study 2 Case study 3

analyze the entire event sequence collectively

rFerrormance comparison or detecting attack

variants
Performance anaIySIS Attack variant detection accuracy
100
Signature-based *Signature-based
*Frequency-based
Attackers can deliver the exploit code using a secure file 20 Factor graph-based

copy protocol (SCP) to evade deep packet analysis

Frequency-based "

Attacker can hijack an existing user session to evade the

40
alerts on anomalous host.

20

Factor graph-based (AttackTagger)

The factor graph operates on all observed events

, _ _ N | Case study 1 Case study 2 Case study 3
The factor graph is designed to be insensitive to variants

Future Work

Combine prediction made by other machine
learning methods such as clustering or
decision tree for a more accurate detection.

Model uncertainty of network and host
monitors

Engage with open source community to
' http://blog.f1000research.com/wordpress/wp-content/uploads/2014/04/reproducibility-small.jpg b ri n g State Of 'th e art attaC kS 'to th e 'te S't bed _

http://csldepend.github.io/itestbed/

Conclusion

A framework to generate variant of known
attacks that may happen in the future

A testbed for replay and detection of attack
variants.

Evaluation with both real incidents and
http://blog.f1000research.com/wordpress/wp-content/uploads/2014/04/reproducibility-small.jpg g e n e r a't e d | n C | d e n 't S

34

Case stuay 1 : Credential-stealing
attack

Compromise a gateway node that handles user authentication to steal username and passwords

Variant: To install a backdoor to the target system, the attacker can:
Add a new entry to the shell init file, e.g., Bash’s .bashrc file (per-user persistent access)

Add a new system service (system-wide persistent access)

Legitimate
user Compromised

node

Username:passwd

Username:passwd

Attacker

Credential-stealing attack

Case stuay Z2: Outbound brute-force
SSH attack

Launch outbound brute-force SSH attacks against external target nodes
Variant: To gain persistent access to the compromised machine, the attacker can:

- Create a new user who uses a password chosen by the attacker (ALERT_NEW_USER)

- Change the password of the stolen credential user to a password chosen by the attacker
(ALERT_CHANGE_CREDENTIAL)

Target node

Target node

Compromised

Attacker

Target node

Launch outbound brute-force SSH attack

Case stuay o: Outbound benial ol
Service attack

Build a botnet and run Denial of Service attacks against external target nodes.
Variant: When obtaining an initial access, the attacker can:

- Login using stolen credentials, e.qg., stolen password of a privileged user account such as root
- Login using a weak password, e.g., the password is the same as the username

Compromised

Attacker

Or

Se. Target node
Yieg

Launch Denial of Service attack against an external server

Moving Forward

A Framework is need to:

1.

Generate variants of known attacks
2. Replay variants in an isolated environment

3. Analyze detection ability of different detection techniques

38

BACKUP

Attacks on Factor Graphs

1. Use of a complete new event
E.g., Download of adult movie event

2. Use a longer timeframe of the attacks, in the order of months or
years. So the events will not be put together in a single graph

Solution: Use a memory cell or the user profile to remember past user
activities.

3. Launch the attacks using multiple user accounts

Solution: Use a global factor graph that correlates events from multiple
users
40

Performance of Factor

1. Runtime is linear with tﬁr@ Iaf the graph: O(N + V)

When the FG is a tree, the belief propagation algorithm will compute the exact marginal.
With proper scheduling of the message updates, it will terminate after 2 steps.

2. Memory requirement
Linear with the size of the graph O(N + V)

Possible enhancements:

41

Error Correcting Codes

FG for Hamming Code

®*0 0
29090
00 ®
L R

e Graphical model for (7,4) Hamming code

+

+

Channel Evidence

o

Codeword bits

Parity Checks

e Potential functions with hard constraint

'ﬁ[)&tu(mm Lt mu) S {

1l .z Pay=1

0 otherwise.

e Marginal probabilities = A posterior bit probabilities

11

42

BP on FG

Fig. 6 shows a fragment of a specific factor graph, which we assume forms a part of a

larger tree. The update rules for this fragment are as follows:

variable to subset: (the product rule)
bz alx) = pess(z) - posa(x) (10)
subset to variable: (the sum-product rule)

ace(@) = 3 Fal,y,2) - iy a(y) - pocra(2). (11)
i

termination:
Fr(;r) — ﬁi'x—}.;l(;r) ' ,[I-A_H:(I) (12)
B
”‘x—*ﬂ
s A
l’lﬂl—-Ju:
L

Figure 6: A factor graph fragment, showing the update rules in this case.

BP on FG

The Sum-Product Algorithm (7)

Initialization

P'*:r—:rf(m) =1 ﬁf—rm(m) =— f(m)

44

BP on FG

The Sum-Product Algorithm (8)

To compute local marginals:
* Pick an arbitrary node as root

* Compute and propagate messages from the |leaf
nodes to the root, storing received messages at
every node.

* Compute and propagate messages from the root to
the leaf nodes, storing received messages at every
node.

 Compute the product of received messages at each

node for which the marginal is required, and
normalize if necessary.

45

BP on FG

Sum-Product: Example (1)

lﬁ(x) - fa(mlﬁ :I?g)fb(ﬂig, mg)fﬂ(illg, *1:4)

46

BP on FG

Sum-Product: Example (2)

ﬂ’iiﬁ_*fh(mﬂ) — lulfuqmﬂ (mz)nufr__”fﬁ (.‘1’32)
Phy—zs(T3) = Y fo(@2,3)phay— 5, (22)
£X2

47

BP on FG

Sum-Product: Example (3)

1
= Zfb(-‘lfzgﬂf:a)

= Hfy—z2 (IZ)LLJ‘?:-:_*"IE(‘TZ)
= Zfﬂ(mlulﬁ)#fﬂz—*fm (‘T’E)
L2

U’ﬂ‘z—*ﬁ(mz) = an—?:ﬂg (mz)p:fb_’“m.? (:EQ‘)
Broed®e) =) Flms,m)pe,-5(w)
To

48

BP on FG

Sum-Product: Example (4)

f{', ﬁ(:ﬂ?) — -U;fﬂ._}mﬂ(I:E)”'fh_’mﬂ (‘rz)#fc_’ﬂ'i(lz)

— Zfﬂ(:ﬂl,il’lﬂ) Zfb(m21m3)

= > :> :> :fa(ﬁhifz)fb(ifzpIa)fc(mg,x4)

ry1 T3 T4

=)2 2

ry1 I3 T4

BN for variable elimination

Burglary? Earthquake?
POG=1)] o :

P(X2 =1)
0.001 o @ 0.002

X~1 XE P(Xg — 1)
@ Alarm?? o|o]| 0.001
O]1 0.29
¢ ® e
| 0.95
JohnCalls? MaryCalls?
Xz [P0 = 1) X3 [P(Xs = 1)
0 0.05 O 0.01
1 0.9 1 0.7
Your task is to compute the marginal probability P(Xy).
https://www.cs.cmu.

edu/~15381/slides/var_elim.pdf

MRF for Image Processing

a) b)

https://www.cs.cmul.
edu/~15381/slides/var_elim.pdf

c) d)

o1

Iﬂput Lourees

Information Gathering
Block | Partner Security
Lists Sites Groups

Metwork Laver -

1S (Bro)

Netflows
f;."urﬁ'_i.lsm fdum]?]

Hast LaEM .

Syslog

Monitor

File Integr.ty

(Szmhazin)

Bro Logs \

Network
flow logs

Long term logs

NCSA monitoring infrastructure

[nternal
Research

Proactive
blocks

Inciden:

response and

security team

Figure 3: Monitoring Architecture Deployed at NCSA.

52

Factor graph and Bayes Network

] M @1/
— W 7 X Z . F e -
__| L s T L —O—/ HO— O
W # Z
4 V2 4,
Forney-style factor graph. Original factor graph [FKLW 1997].
? U /1 U
WO ?X Oz W - TX 02
LAY LY
Bayesian network. Markov random field.

53

https://people.kth.se/~tjtkoski/factorgraphs.pdf

Factor graph and Bayes Network

B

Bx Byix Pziy

A 2. An FFG of a Markov chain.

https://people.kth.
qe/~titkoski/factoraranhs ndf

54

Factor graph and HMM

Example:

Hidden Markov Model

mn
p(mﬂz L1, L2y.--3TnsY15Y2,-- -, yﬂ) — p(mﬂ) Hp(mklmk—l)p(yk‘mk—l)
k=1

p(zo) [0= P
p(z1|zo) p(z2|z1)
p(y1|o) p(Ya|z1) ‘
Y Y,
http://www.crm.sns.

it/media/course/1524/Loeliger_A.pdf

Factor graph and HMM

Applying the sum-product algorithm to
Hidden Markov Models

yields recursive algorithms for many things.

Recall the definition of a hidden Markov model (HMM):

T
p(mﬂn L1,T2y..-3TnsY15Y25-- ., ynj — p(mﬂ) HP(EkIEk—l)ﬁ(yk‘iFkﬁl)
k=1

Xo — X1 — Xg —
p(zo) (-2 =
p(z1|Zo) p(z2|21)
p(y1|o) p(Y2|1) p(ys|T2)
Y Yo Y3
Assume that Y1 = 41, ..., Y, = y, are observed (known).

http://www.crm.sns.it/media/course/1524/Loeliger_A.pdf

Factor graph and HMM

Sum-product algorithm applied to HMM:
Estimation of Current State

D(Tny Y1y -+ -y Yn)
p(ylz oo :yﬂ)

x p(mnw Yty - - -, yn)

= Z...ZP(I?U,EM---wmmyl:yﬂw"'?y”)
Z)

Ln—1

o [T

e Exn(mﬂ) "

For n = 2

Xo I S = A2
l |

http://www.crm.sns.it/media/course/1524/Loeliger_A.pdf

Factor graph and HMM

Backward Message in Chain Rule Model

— o s

- Tp——

Px Py |x

If Y =y is known (observed):

Lx(z) = pyix(y|z),
the likelihood function.

If Y is unknown:

Fﬁ:(m) = Zﬁwx(?ﬂif)

Y
= 1.

http://www.crm.sns.it/media/course/1524/Loeliger_A.pdf

Factor graph and HMM

Sum-product algorithm applied to HMM:
Prediction of Next Output Symbol

P(Y1, -« > Yn+1)
PlUn+1lY1y---3Yn) =
(' I) P(?Jl::yn)

X P(Y1, - - -, Yn+1)

L] 5a00 9y

— E}frt(yﬂ)

For n = 2:

Xo X1 X9

—f —i — — —f if——

Y1 Yo J'Ilfﬁ

http://www.crm.sns.it/media/course/1524/Loeliger_A.pdf

I VO LAl IHHIUYI AU NMIVWWICUYU UVl OCVUVUTILlYy TAPYVUIL O

Known random variables

event e' = download sensitive

event e? = restart system service

user profile u: past_compromise = true

Unknown random variables
state s': user state when observing e’
state s?: user state when observing e?

User state \ f1 2 3 4
Functions
Benign, 0 0 0 0
benign
Benign, 0 0 0 0
suspicious
Suspicious, 1 0 1 0
benign
Suspicious, 1 0 0 0
suspicious
Suspicious, 1 1 0 1
malicious
Malicious, 0 0 0 0
benign
Malicious, 0 0 0 0
suspicious
Malicious, 0 0 0 0
malicious

and past data

An example Factor
Graph

Definition of factor functions

1 if e! = download sensitive

& st = suspicious
0 otherwise

1 if e = restart service
B & s' = suspicious

T
1

& % = malicious
0 otherwise

1 if e = restart SYS Service
& s* = benign

0 otherwise

1 if st = suspicious
& s* = malicious

& u = past compromise
0 otherwise

6(

Evaluated value of functions f

User state \ f1 2 3 4
Functions
Benign, benign 0 0 0 0
Benign, suspicious 0 0 0 0
Suspicious, benign 1 0 1 0
Suspicious, 1 0 0 0
SUSPICIOUS
Suspicious, 1 1 0 1
malicious
Malicious, benign 0 0 0 0
Malicious, suspicious 0 0 0 0
Malicious, malicious 0 0 0 0 1

Ssh RFC

Ylonen & Lonvick Standards Track [Page 10

RFC 4252 S5H Authentication Protocol January 2006

From an internationalization standpoint, it 18 desired that i1f a user
enters thelir password, the authentication process will work
regardless of what 0S5 and client software the user is using. Dolng
S0 regulres normalization. Systems supporting non-ASCII passwords
SHOULD always normalize passwords and user names whenewver they are
added to the database, or compared (with or without hashing) to

exlsting entries in the database. 8S8H implementations that both
store the passwords and compare them SHOULD use [RFC4013] for
normalization.

Note that even though the cleartext password 18 transmitted in the
packet, the entire packet is encrypted by the transport layver. Both
the server and the client should check whether the underlying
transport layer provides confidentiality (1.e., 1f encryption 1s
being used). If no confidentiality is provided ("none" cipher),
password authentication SHOULD be disabled. If there 1s no
confidentiality or no MAC, password change SHOULD be disabled.

ID3 (lterative Dichotomiser 3) Tree

Enlrﬂp}r H {S} is a measure of the amount of uncertainty in the (data) set § (i.e. entropy characterizes the (data) set §).

— Y p(x)log, p(x)

T X
Where,

e 5 - The current (data) set for which entropy is being calculated (changes every iteration of the |1D3 algorithm)
e X -Setofclassesin §

» p(x)- The proportion of the number of elements in class & to the number of elements in set §

When H[:S} = (), the set § is perfectly classified (i.e. all elements in § are of the same class).

63

ID3 (lterative Dichotomiser 3) Tree

Information gain J {7 [:31} is the measure of the difference in entropy from before to after the set § is split on an attribute 4. In other
words, how much uncertainty in .5 was reduced after splitting set 5§ on attribute 4.

IG(A,S) = H(S) - ¥ p(t) H(t)

. H(:S) - Entropy of set §

« T - The subsets created from splitting set § by attribute 4 such that 5 = U t
teT

- p[t} - The proportion of the number of elements in { to the number of elements in set §
. H(:t) - Entropy of subset ¢

In ID3, information gain can be calculated (instead of entropy) for each remaining attribute. The attribute with the largest information
gain is used to split the set § on this iteration.

64

Entropy

A formula to calculate the
homogeneity of a sample.

A completely homogeneous sample
has entropy of 0.

- An equally divided sample has entropy
Entropv(S)y > p;log; p, of 1.

h Entropy(s) = - ptlog2 (p+) -p-log2 (p-)
for a sample of negative and positive
elements.

The formula for entropy is:

Entropy Example

Entropy(S) =
- (9/14) Log2 (9/14) - (5/14) Log2 (5/14)
=0.940

Information Gain (1G)

The information gain is based on the decrease in
entropy after a dataset is split on an attribute.

Which attribute creates the most homogeneous
branches?

First the entropy of the total dataset is calculated.

The dataset is then split on the different
attributes.

The entropy for each branch is calculated. Then it
is added proportionally, to get total entropy for
the split.

The resulting entropy is subtracted from the
entropy before the split.

The result is the Information Gain, or decrease Iin
entropy.

The attribute that yields the largest IG is chosen
for the decision node.

Person Hair | Weight | Age | Class
Length

- () Homer 0" | 250 36 M

®) Marge 10”7 150 34 F
() Bart 2" 90 10 M

lisa 6” | 78 8 | F
—) Maggie| 4" 20 1 F

Abe/ 1”7 170 70 M
() Selma 8" 160 41 F

Otto| 10” | 180 | 38 | M
&) Krusty 6”7 200 45 M

Comic 8" 290 @ 38 ?

Entropy(S) = — P logz(P] 7 logz(k j
p+n p+n p+n p+n

Entropy(4F,5M) = -(4/9)log,(4/9) - (5/9)log,(5/9)

= 0.9911 Let us
try
splittin
&0 g ol

Weight

Gain(A) = E(Current set) — Z E(all child sets)
Gain(Weight <= 160) = 0.9911 — (5/9 * 0.7219 + 4/9 * 0) = 0.5900

Entropy(S) = — P logz(P] 7 logz(k j
p+n p+n p+n p+n

Entropy(4F,5M) = -(4/9)log (4/9) - (5/9)log,(5/9)
= 0.9911

[.et us

try
splitting

‘(3/5)10g on HCZ ll/
length

Gain(A) = E(Current set) — Z E(all child sets)
Gain(Hair Length <=5)=0.9911 — (4/9 * 0.8113 + 5/9 * 0.9710) = 0.0911

Entropy(S) = — P logz[P] 7 logz(k j
p+n p+n p+n p+n

Entropy(4F,5M) = -(4/9)log,(4/9) - (5/9)log,(5/9)
= 0.9911

[.et us

try

splitting

Gain(A) = E(Current set) — Z E(all child sets)
Gain(Age <=40)=0.9911 —-(6/9 * 1+ 3/9 *0.9183) = 0.0183

Of the 3 features we had,
Weight was best. But while
people who weigh over 160
are perfectly classified (as

males), the under 160 people
are not pertectly classified...
So we simply recurse!

This time we find
that we can split on
Hair length, and we

are done!

We need don’t need to

keep the data around, just

Weight <=1607?

the test conditions. !)
yes no.
How would
these p?OplG be Hair Length <=2? Male
classified?
/ AN
YCS 1O,

Male Female

It 1s trivial to convert

Weight <= 160?

Decision Trees to g ~
rules... o yoes o
Hair Length <= 2% M al e
ycs 11O
Male Female

Rules to Classity Males/Females

If Weight greater than 160, classify as Male
Elseif Hair Length less than or equal to 2, classify as Male

Else classity as Female

Vmsplice() exploit: unchecked user-provided memory
address let a user writes to kernel memory

DESCRIPTION top

The vmsplice() system call maps nr segs ranges of user memory
described by icov intoc a pipe. The file descriptor fd must refer to a

plpe.

The pointer iov points to an array of l1ovec structures as defined in
<sys/uio.h>:

struct l1ovec {

void *iov base; /* Starting address */
size t 1ov len; /* Number of bytes */

|-

The flags argument 18 a bit mask that is composed by ORing together
zero or more of the following wvalues:

75

Vmsplice() exploit: unchecked user-provided memory
address let a user writes to kernel memory

ll.l"k
* For lack of a better implementation, implement vmsplice() to userspace
* as a simple copy of the pipes pages to the user lov.
!
static long vmsplice to user(struct file *file, const struct iovec _ user *iowv,
unsigned long nr_segs, unsigned int flags)
{

struct pipe_inede_info *pipe;
struct splice desc sd;
55ize t size;

int error;
long ret;
,."l*
* Get user address base and length for this iovec.
i

error = get_user(base, &iov->iov_base);
if (unlikely(ertor))

break ;
error = get_user{len, &lov->iov_len);
if (unlikely(error))

break;

,'“F
* Sanity check this iovec. 8 read succeeds.
ot
if (unlikely(!len))
break;
if (unlikely(!base}) {
error = -EFAULT:
break;

}

sd.len = 8;
sd.total len = len;
sd.flags = tlags;
sd.u.userptr = base;
sd.pos = 8;

gize = _ splice from_pipe(pipe, &sd, pipe_to user);
it (size < B) {

return ret;

Vmsplice() exploit: unchecked user-provided memory address
let a user writes to kernel memory

1. Prepare the shell code: set current uid and gid to O
2.

77

User state \ 4
Functions
Benign, benign 0
Benign, 0
suspicious
Suspicious, 0
benign
Suspicious, 0
suspicious
Suspicious, 1
malicious
Malicious, 0
benign
Malicious, 0
suspicious
Malicious, 0
malicious

78

Moving Forward

Continuously update factor functions to address recent attacks
Deploy Factor Graphs to assist security analysts at NCSA
Generate new attack variants from known incidents

Build a security testbed to:

+ Replay attack variants
+ Evaluate detection capability of various technigues

79

I A VAl HITYI Al NIVWIDVUYU UVl OCVUVUTILY TAPUIT WO Aaliu

past data

Variable nodes are defined Factor functions are defined
using security logs

e': download sensitive
e’: restart system service

1. Automatically based on the data of
past incidents
2. Manually from security knowledge of

the system
s': user state when observing e 1 if ol = download sensitive
s°: user state when observing €° fi = & s! = suspicious
0 otherwise

_State (1 if e = restart service
II‘EB!IEHG& pOSSible An example Factor f _ I sl = SUSPLCIOUS

s, s state Graph : & 5 = r:'-'rmﬁr::iﬂus

sequences 0 otherwise

1 if e = restart SYS SETVICE
& s = benign

benign, benign 0 otherwise

benign, suspicious" |
. . . t—1 _ -
benign, malicious, 1 fgfg s = suspicious
s" = malicious
& u = past compromise
0 otherwise 8C

malicioirie malicioi e

Factor Graph (FG)
definition) @ @) @) @)

A factor graph Is a bipartite, B B \
unc_llrected graph of ran_dom fa fs fo fo f
variables and factor functions. . o the mroduct fu)f(")
aclor grap or C proauc AlT1) T BT r1, T2, I3
[Frey et. al. 01] - folas, xvq)fe(xs, x5). :
o 6
A factor function is a mathematical Eiai Vet egjggﬁggfgng
definition of prior beliefs or expert
knowledge. FG can represent both O Q Q 1Y) Q
causal and non-causal relations.
Markov Random Fields Factor Graph
(MRF) equivalent of MRF

http://vision.unipv.it/IA2/Factor%20graphs%20and%20the %20sum-product%20algorithm.pdf

References.

1. Linkedln leaked 6M hashed passwords (SHA1), unsalted (link)

2. Verizon said that use of stolen credentials is in top 10 threat (link)

3. HomeDepot: Criminals used a third-party vendor’s user name and
password to enter the perimeter of Home Depot’s network. These
stolen credentials alone did not provide direct access tothe company’
s point-of-sale devices. The hackers then acquired elevated rights that
allowed them to navigate portions of Home Depot’s network and to
deploy unique, custom-built malware on its self-checkout systems in

the U.S. and Canada (link) -
4. Black market for stolen credentials (link) U _

5. BKAV uses signature based detection of PE files ersonal nfomatin s pe

http://blog.linkedin.com/2012/06/06/linkedin-member-passwords-compromised/
http://www.verizonenterprise.com/DBIR/2014/?utm_source=earlyaccess&utm_medium=redirect&utm_campaign=DBIR
http://null
http://www.trendmicro.com/vinfo/us/security/special-report/cybercriminal-underground-economy-series/global-black-market-for-stolen-data/

Definition.

Threat: the potential possibility of an unauthorized attempt to: access
information, manipulate, or renders ystem unstable

Risk: accidental and unpredictable exposure of information

Vulnerability: a known weakness of a system that may violate CIA

Attack: a specific formulation of a plan to carry out a threat

Penetration: a successful attack; the ability to obtain unauthorized access

Incident: A successful attack

Incident report: human written forensic analysis of an incident

Log entry: a trace of monitoring program

Event: an abstraction of a log entry

Legitimate user: an authorized user of a system

83

Related Work

A Markov Chain Model of Temporal Behavior for Anomaly Detection, Ye et al.,

In this technique, a Markov chain model is used to represent a temporal profile of normal behavior in a computer and network system. The Markov chain model of the norm profile is learned from historic
data of the system’s normal behavior. The observed behavior of the system is analyzed to infer the probability that the Markov chain model of the norm profile supports the observed behavior. A
low probability of support indicates an anomalous behavior that may result from intrusive activities. The technique was implemented and tested on the audit data of a Sun Solaris system.

One-Class Training for Masquerade Detection, Wang et al.

We extend prior research on masquerade detectionusing UNIX commands issued by users as the auditsource. Previous studies using multi-class
trainingrequires gathering data from multiple users to trainspecific profiles of self and non-self for each user. Oneclasstraining uses data
representative of only one user.We apply one-class Naive Bayes using both the multivariateBernoulli model and the Multinomial model,
andthe one-class SVM algorithm. The result shows that oneclasstraining for this task works as well as multi-classtraining, with the great

practical advantages of collectingmuch less data and more efficient training. One-classSVM using binary features performs best among the
oneclasstraining algorithms

84

http://projects.laas.fr/METROSEC/DOC/WA1_1.pdf
http://www.cs.columbia.edu/~kewang/paper/DMSEC-camera.pdf

References.

6. Anderson report

Examine security audit trails for unauthorized access of data.

Audit trails are rarely complete, need to incorporate data from security
experts

Use threshold to trigger alert of unsuccessful logons

Abnormal use of the system: outside of normal time, abl

data reference, etc.

Measure variance in the number of logons that the user

system

http://csrc.nist.
gov/publications/history/ande80.pdf

References.

/. MRF for vision and image processing

Figure 1.6
Two-dimensional hidden Markov model. An MRF on a regular grid, as in figure 1.5, serves here as the prior over) d)
hidden variables in a model that is coupled to an array z of observations. Figure 1.7

MRF model for bilevel segmentation. (a) An image to be segmented. (b) Foreground and background regions
of the image are marked so x; in those regions is no longer hidden but observed. The problem is to infer fore-
ground/background labels in the remaining unlabeled region of the frimap. (c¢) Using simply a color likelihood
h 'tt p " / / WWW C S to ro n 't O model learned from the labeled regions, without the Ising prior, the inferred labeling is noisy. (d) Also introducing
. - . - a pairwise Ising term, and calculating the MAP estimate for the inferred labels, deals substantially with the noise
and missing data. (Results of the CRF variant of the Ising term, described below, are illustrated here.)

edu/~kyros/courses/2503/Handouts/Blak iy
e2011.pdf

References.
9. Statistical learning

Statistical learning theory deals with the problem of finding a predictive
function based on data
Regularization, Regression, and Classification

Regression | edit]

The most common loss function for regression is the square loss function. This familiar loss function is used in ordinary least squares regression. The form

Is:

V(f(3),y) = (y— ()"

The absolute value loss is also sometimes used:
V(f(Z),y) = |y - f(Z)]

Classification |[edit] One example of regularization is Tikhonov regularization. This consists of minimizing

1 n . .
~ Y V(@) + 1111
=1

Main article: Statistical classification

In some sense the 0-1 indicator function is the most natural loss function for classification. It takes the value 0 if the predicted output is the same as the
actual output, and it takes the value 1 if the predicted output is different from the actual output. For binary classification with ¥ = {—1 N | } this is:

V(f(Z),y) = 0(—yf(Z))

where £} is the Heaviside step function.

http://www.cs.toronto.
edu/~kyros/courses/2503/Handouts/Blak o
e2011.pdf

12. Use of k-nearest neighbor classifier for
Intrusion detection

Classify user system calls into normal and abnormal behaviors using KNN
Measure Euclide distance or Cosine similarity between the documents

KDD 99 dataset: TCPDUMP and BSM audit data of attacks injected into
normal traffic. Seven weeks of training and two weeks of testing.

38 types o f network-based attack. Data contains 500 sessions recorded by
Basic Security Module of Solaris machine, containing system calls of
processes involved in the session.

Speculate how the attack could be detected during execution (but not
measure)

Detected 95% of attacks with 5% positive rates (known all the system calls)

- = =

Example of k-NN classification. The o
test sample (green circle) should be
classified either to the first class of blue
squares or to the second class of red
triangles. If k = 3 (solid line circle) it is
assigned to the second class because
there are 2 triangles and only 1 square
inside the inner circle. If k = 5 (dashed
line circle) it is assigned to the first
class (3 squares vs. 2 triangles inside

the outer circle).
4]lB| L@

sim(A, B) = cos(9) = -5

Euclidean Distance

) /

J
_—

{1 — x2)% + (11 — y2)*

14. Identifying compromised users in shared
computing infrastructures: a data-driven
bayesian network approach

Used alerts such as: unknown address, multiple login, command anomaly,
unknown authentication, anomalous host, last login > 90 days, hot cluster
conn, http/ftp sensitive, watchlist IP address, suspicious download

Use Nailve Bayes for detection (30% of the alerts were dependent with other)

Directing the security analysts to users that have high probability of
compromised (help reducing up to 80% of FP)

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6076770&url=http% 3A%2F % 2Fieeexplore.ieee.org%2Fxpls %
2Fabs_all.jsp%3Farnumber%3D6076770

89

14. Identifying compromised users in shared
computing infrastructures: a data-driven
bayesian network approach

Goodness of fit [edit]
Main article: Goodness of fit

In this context, the frequencies of both theoretical and empirical distributions are unnormalised counts, and for a chi-squared test the total sample sizes \ of both these
distributions (sums of all cells of the corresponding contingency tables) have to be the same.

For example, to test the hypothesis that a random sample of 100 people has been drawn from a population in which men and women are equal in frequency, the
observed number of men and women would be compared to the theoretical frequencies of 50 men and 50 women. If there were 44 men in the sample and 56 women,

then

2 (44 — 50)? | (56 — 50)* .
X = 0 | 0 = 1.44.

If the null hypothesis is true (i.e., men and women are chosen with equal probability), the test statistic will be drawn from a chi-squared distribution with one degree of

freedom (because if the male frequency is known, then the female frequency is determined).

Consultation of the chi-squared distribution for 1 degree of freedom shows that the probability of observing this difference (or a more extreme difference than this) if men
and women are equally numerous in the population is approximately 0.23. This probability is higher than conventional criteria for statistical significance (0.01 or 0.05),
so normally we would not reject the null hypothesis that the number of men in the population is the same as the number of women (i.e., we would consider our sample
within the range of what we'd expect for a 50/50 male/female ratio.)

16. Analysis of Security Data from a Large
Computing Organization

An attacker usually (97% of the time) enters with already-stolen credentials

of a legitimate user [20] and hence the behavior is the same as that of a
malicious insider

Nearly 50% of the incidents are detected in the last phase of an attack,
when attackers start misusing the system.

Anomaly-based detectors are seven times more likely to capture an
iIncident than are signature-based detectors. However the signature-based
detectors (due to their specialization) have fewer false positives compared
to the anomaly-based detectors.

http://www.inf.ufpr.br/aldri/disc/TSD/2012/2012_TSD_Apre_Artigos/Tiago_01_DSN11_Analysis.pdf

17. Design and evaluation of a real-time url
spam filtering service

Classify URLs into malicious or benign: the lexical properties of URLs,
hosting infrastructure, and page content (HTML and links). We also collect
new features including HTTP header content, page frames, dynamically

loaded content, page behavior such as JavaScript events, plugin usage, and
a page’s redirection behavior.

__

Training
[HTTP/DNS Cache] L Slackliote
Email ,
Stream J Feature Annotation
\ | Extractors
Dlspatch —p} |
Tweet Queue Crawling | - | Feature ’ Live
Stream Inztanges Database Sparse Feature | !

Vectore mmmp| Classifier

URL Aggregation Feature Collection Feature Extraction Classification

Fig. 2: System flow of Monarch. URLSs appearing in web services are fed into Monarch’s cloud infrastructure. The system visits each URL
to collect features and stores them in a database for extraction during both training and live decision-making.

17. Design and evaluation of a real-time url
spam filtering service

We first divide the training data into m shards

Within each shard, we update the weight vector using a stochastic gradient descent
for logistic regression (Algorithm 2). We update the weight vector one example at a
time as we read through the shard’s data (this is also known as online learning)

After the m shards update their version of the weight vector, we collect the partial
gradients ~g(1)..~g(m) and average them (Algorithm 1, “average” steps). Then, we
perform L1- regularization (Algorithm 1, “shrink” step) on the averaged weight vector
using a truncation function with threshold A — this only applies to feature weights
corresponding to binary features. In particular, all feature weights wi with magnitude
less than or equal to A are set to 0, and all other weights have their magnitudes
reduced by A. This procedure reduces the number of nonzero weight vector entries,
allowing the resulting weight vector to occupy less memory. Because there are fewer
real-valued features (about 100) than binary features (about 107), we do not regularize
the feature weights corresponding to real-valued features.

17. Design and evaluation of a real-time url
spam filtering service

We train our classifier using data sampled from 1.2 million email spam URLs, 567,000
blacklisted tweet URLs, and 9 million non-spam URLs.

Achieved 0.87% false positives and 90.78% overall accuracy

15. Reliability and Security Monitoring of Virtual Machines
Using Hardware Architectural Invariants

A hypervisor framework to perform logging and auditing of system events for Guest
OS Hang Detection, Rootkit Detection and Privileged Escalation Detection.

In 1974, Popek and Goldberg described the “trap-andemulate” model of virtualization [22].
“Trapping” prevents the VM from taking privileged control, and “emulating” ensures that the
semantics of the control are done without violating the VM’s expectations.

The trap-and-emulate can be done either (i) entirely in software via binary translation and/or
para-virtualization, or (ii) using Hardware-Assisted Virtualization (e.g., Intel VT-x and AMD-V).
The latter design, HAV, supports an unmodified guest OS with small performance overhead
and significantly simplifies the implementation of hypervisors. Although here we focus on the
x86 architecture and Intel’s VT-x, t

VM EXxits

In addition to x86’s privilege rings, HAV defines guest mode and host mode
execution. Certain operations (e.g. privileged instructions) are restricted in
guest mode. If a guest attempts to execute a restricted operation, the
processor relinquishes control to the hypervisor. If that happens, the
processor fires a VM Exit event and transitions from guest mode to host
mode. After the host has finished handling the exception, it resumes guest
execution via a VM Entry event. Each type of restricted operation triggers a
different type of VM Exit event. For example, if the guest attempts to
modify the contents of a Control Register (CR), the processor fires a
CR_ACCESS VM Exit event

15. Reliability and Security Monitoring of Virtual Machines
Using Hardware Architectural Invariants

An architectural invariant is a property defined and enforced by the hardware
architecture, so that the entire software stack, e.g., hypervisors, OSes, and
user applications, can operate correctly. For example, the x86 architecture
requires that the CR3 and TR registers always point to the running process’s
Page Directory Base Address (PDBA) and Task State Segment (TSS),
respectively.

architectural invariants as the root of trust when deriving OS state. For
example, the thread_info data structure in the Linux kernel containing thread-
level information can be derived from the TSS data structure, a data structure
defined by the x86 architecture.

15. Reliability and Security Monitoring of Virtual Machines

Using Hardware Architectural Invariants

Process Switch Interception: Architectural Invariant. Process
switches can be observed by monitoring CR_ACCESS VM Exit
events. In x86, the CR3 regqister, or Page Directory Base
Register (PDBR) contains the Page Directory Base Address
(PDBA) for the virtual address space of the running process. As
this base address is unique for each user process, we can use
it as a process identifier. Process Counting Algorithm. We can
count the number of processes running on a guest VM by
monitoring CR_ACCESS events. This algorithm is independent
of any data structure the guest OS uses to manage its
processes. Fig. 3A shows the pseudo-code for the process
counting algorithm. The set of PDBAs (PDBA_set) is empty
when the guest OS boots up. At each CR_ACCESS event in
which CRS3 is modified (CR3 <- PDBA), the algorithm updates
PDBA_set with the value that will be written to CR3

At VM Start: @

PDBA set = {}
Monitor CR ACCESS events
At each CR_ACCESS event (CR3 <- PDBA):
if (PDBA not in PDBA set)
PDBA set += PDBA

Count the Virtual Address Spaces:

// save current PDBA

Saved CR3 = vcpu.CR3

// Remove invalid PDBA

for each PDBA in PDBA set ({
// Step 1: Change Page Directory
vcpu.CR3 = PDBA
// Step 2: Test Page Directory
gpa = gva to gpa(known gva)
if (gpa == UNMAPPED GVA)

remove (PDBA set, PDBA)

}

// restore the PDBA

vcpu.CR3 = Save CR3

return size of (PDBA set)

15. Reliability and Security Monitoring of Virtual Machines
Using Hardware Architectural Invariants

a rootkit can stealthily detach the data objects belonging to the
malicious programs from their usual lists (e.g., remove a
task_struct object from Linux’s task_list). Therefore, a normal

list traversal cannot reveal the detached object.

Detection Technique: Our HRKD module employs the context switch monitoring
(Section VI-A) methods to inspect every process/thread that uses the vCPU, regardless
of how kernel objects are manipulated. Each time a process or a thread is scheduled to
use CPUs, it is intercepted by the module for further inspection. This interception
defeats hidden malware; it puts malicious programs back on the inspection list. In order
to detect a hidden user process or thread, the process counting algorithm

How Can a Rootkit Hide from HRKD?: A rootkit can hide from our HRKD by suppressing
CR3 access (for userlevel rootkits) or RSP0 access (for kernel-level rootkits) VM Exits. It
can do so by reusing the CR3 (virtual address space) or RSPO (kernel stack) of an
existing process or kernel thread. Such attacks are called code injection attacks, which
are not actually rootkits. Nevertheless, our HRKD is not designed to detect this class of
How Can a Rootkit Hide from HRKD?: A rootkit can hide from our HRKD by suppressing
CR3 access (for userlevel rootkits) or RSP0 access (for kernel-level rootkits) VM Exits. It
can do so by reusing the CR3 (virtual address space) or RSPO (kernel stack) of an
existing process or kernel thread. Such attacks are called code injection attacks, which
are not actually rootkits. Nevertheless, our HRKD is not designed to detect this class of
attack.attack.

At VM Start:

PDBA set = {}

Monitor CR ACCESS events

@

At each CR ACCESS event (CR3 <- PDBA):

if (PDBA not in PDBA set)

PDBA set += PDBA

Count the Virtual Address Spaces:

// save current PDBA

Saved CR3
// Remove

for each PDBA in PDBA set ({

= vcpu.CR3
invalid PDBA

// Step 1: Change Page Directory

vcpu.CR3

= PDBA

// Step 2: Test Page Directory

gpa = gva to gpa(known gva)
if (gpa == UNMAPPED GVA)
remove (PDBA set, PDBA)

}

// restore
vcpu.CR3 =
return siz

the PDBA
Save CR3
e of (PDBA set)

15. Reliability and Security Monitoring of Virtual Machines

Using Hardware Architectural Invariants

C. Privilege Escalation Detection (PED)

Ninja [5] is a real-world privilege escalation detection
system that uses passive monitoring. Ninja is included in the
mainline repository for major Linux distributions, including
Debian variants like Ubuntu. Ninja periodically scans the
process list to identify if a root process has a parent process
that 1s not from an authorized user (i.e., not defined in
Ninja’s “magic” group). If so, the root process is flagged as
privilege-escalated. Ninja optionally terminates such processes
to prevent further damage to the system. In order to avoid
mistakenly killing setuid/setgid processes, Ninja allows users
to create a “white list” of legitimate executables that are not
subjected to its checking rules. The interval between checks
is configurable (1s by default).

We implement HT-Ninja, which utilizes HyperTap for de-
tecting privilege escalation attacks. We reuse the OS-level
Ninja’s checking rules when looking for unauthorized pro-
cesses and make the following changes:

Transform passive monitoring to active monitoring. We
define the following events at which a process is checked: (1)
first context switch of each process; and (11) every I/O-related
system call (e.g., open, read, write, and Iseek). That ensures
that we check before any unauthorized actions, e.g., file or
network, are conducted.

Using architectural invariants. The original Ninja uses
Linux’s /proc filesystem to obtain information about running
processes. HT-Ninja uses only hardware state, such as the
TR and CR3 registers, to identify current running processes.
HT-Ninja derives OS-specific information, such as User ID
(uid) and Effective User ID (euid), from the TSS structure
and RSP register, which can be combined to obtain the exact
thread_info and task_struct objects of each process.

15. Reliability and Security Monitoring of Virtual Machines
Using Hardware Architectural Invariants

2) GOSHD Mechanism: GOSHD uses the thread dispatch-
ing mechanism discussed in Section VI-A2 to monitor the
VM’s OS scheduler. The EPT_VIOLATION and CR_ACCESS
mechanisms in HAV guarantee that GOSHD can capture all
context switch events. If a vCPU does not generate any switch-
ing events for a predefined threshold time, GOSHD declares
that the guest OS 1s hung on that vCPU. Because the vCPUs
are monitored independently of each other, GOSHD can detect
both partial hangs and full hangs. From GOSHD’s perspective,
guest tasks are scheduled independently on each vCPU. Since
GOSHD monitors the absence of context switching events
to detect hangs, it 1s important to properly determine the
threshold after which it 1s safe to conclude that the OS 1is
hung on a vCPU. If this threshold i1s shorter than the time
between two consecutive context switches, GOSHD generates
false alarms. In order to be sate and fairly conservative, we
profiled the guest OS to determine the maximum scheduling
time slice, and set the threshold to be twice the profiled time.

Guest OS Hang Detection 1) Failure Model: We
consider an OS as being in a hang state if it ceases
to schedule tasks

An example of a software bug that causes hangs in
the OS kernel is a missing unlock (i.e., release) of a
spinlock in an exit path of a kernel critical section. All
threads that try to acquire this lock after the buggy
exit path has been executed end up in a hung state.

In @ multiprocessor system a partial hang usually
results in a full hang. The kernel stays in a partial
hang state until the hang propagates to all available
CPUs. However, if the kernel has no other lock
dependencies with the hung threads, it can stay In
the partial hang state until it gets shut down or
rebooted.

Index

MDP
http://www.autonlab.org/tutorials/mdp09.pdf*

BP on FG

https://www.cs.purdue.edu/homes/alanqi/Courses/ML-09/CS59000-ML-22.pdf

Bayesian Event Classification for Intrusion
Detection

reasons for the large number of false alarms: the lack of integration of additional
information into the decision process.

Bayesian networks improve the aggregation of different model outputs and allow one
to seamlessly incorporate additional information

We have implemented an intrusion detection system that analyzes operating system calls

to detect attacks against daemon applications and setuid programs on machines running

Linux or Solaris. In contrast to the work by Forrest [5, 26], we do not perform detection on
a sequence of system calls but on individual system calls and their arguments.

Find that BN is more accurate than threshold based.

MCNemar Test

The test is applied to a 2 x 2 contingency table, which tabulates the outcomes of two tests on a sample of n subjects, as follows.

Test 2 positive | Test 2 negative | Row total

Test 1 positive a b a+b
Test 1 negative o d c+d
Column total a+c b+d n

The null hypothesis of marginal homogeneity states that the two marginal probabilities for each outcome are the same, i.e. p; + pp = P45 + pcand p. + pg = Pp + Pg.
Thus the null and alternative hypotheses arel!

Ho: po = pe

Hy: py 7 pe
Here p,, etc., denote the theoretical probability of occurrences in cells with the corresponding label.
The McNemar test statistic is:
o (b= c)’

b+c

Under the null hypothesis, with a sufficiently large number of discordants (cells b and c), XE has a chi-squared distribution with 1 degree of freedom. If the _3(2 result is

X

significant, this provides sufficient evidence to reject the null hypothesis, in favour of the alternative hypothesis that p, # p,, which would mean that the marginal
proportions are significantly different from each other.

Fair coin test

e If | X — 5 > __ then reject H,.

e Otherwise, accept H .

The probability of getting k& heads in n flips of a coin 1s (

Flip a coin 10} times. Let X be the number of times that the coin comes up heads.

What number should be in place of the underscore above? The test from the last section had (. This was too
restrictive. Lets try to find the range which would give a test with significance level o = 0.05.

Consider the test above with rejection of H, if | X — 5| > 2. That is to say, we reject H, if X =0, 1, 2,
8, 9, or 10. What is the significant level of the rest?

mn

k) f We calculate

a = P(reject H, | H,)
= P(X <20r X =8| H,)

)+ (1) (2)+ (5) (5) * ()

e If | X — 5| > 3 then reject H,.

o Otherwise, accept H,.

010

The above calculation shows that with this method, the probability of declaring a fair coin to be biased 1s
greater than one tenth. We want this value to be at most one in twenty.

Consider the test above with rejection if | X — 5| > 3. That is to say, we reject H, if X =0, 1, 9, or 10.
What is the significance level of the test?

a = P(reject H, | Hy)

—P(X<lorX >9|H,)

(@) () (5))

o 210

= .02

This significance level meets our requirement that o < 0.05
We can say that the following test has significant level o == (.02:

Flip a coin 10} times. Let X be the number of times that the coin comes up heads.

Masquerade attack

Masquerading (or impersonation; the two terms are
equivalent) is any attack wherein the attackers acts
(emits data packets or the like)as if he was some
other user or entity in the system.

Replay attacks are attacks where the attacker simply
sends a data element (e.g. a data packet) which was
previously sent by some other user, in the hope of
reproducing the effect.

105

Factor Graphs unify Bayesian Networks and Markov Random Fields

=37 ¥ B

(a1) Simple Bayesian Network (SBN) (a2) Naive Bayesian Network (NBN) (a3) Complex Bayesian Network (CBN) (c3-1) Complex FG of the CBN

Markov
Random
Field o

(b1) Simple MRF (SMRF) (b2) Naive MRF (NMRF) (b3) Complex MRF (CMRF) (c3-2) Complex FG of the CMRF

0 0 0 0 @) (@) f e e P
Factor
Graph : : :

benign suspicious malicious

c1) Slmpla FG (c2-2) Naive FG of the NBN (c2-1) Naive FG of the NBN (d) An example Factor Graph (f) Evolution of a factor graph and the inferred user states

Figure 1: Illustrations of Bayesian Network, Markov Random Field, and Factor Graph to model security incidents.

10
A

2. SHA-256
2.1. Overview

SHA-256 operates in the manner of MD4, MD5, and SHA-1: The message to be

hashed is first

(1) padded with its length in such a way that the result is a multiple of 512 bits

long, and then

(2) parsed into 512-bit message blocks M) M@ . MW,

The message blocks are processed one at a time: Beginning with a fixed initial

hash value H'", sequentially compute
HO = HY 4 ¢y (HEY),

where € is the SHA-256 compression function and + means word-wise mod 2?2
addition. H'") is the hash of M.

2.2. Description of SHA-256

The SHA-256 compression function operates on a 512-bit message block and a 256-
bit intermediate hash value. 1t is essentially a 256-bit block cipher algorithm which
encrypts the intermediate hash value using the message block as key. Hence there
are two main components to describe: (1) the SHA-256 compression function, and
(2) the SHA-256 message schedule.

We will use the following notation:

T bitwise XOR

A bitwise AND

vV bitwise OR

- bitwise complement

+ mod 272 addition

R right shift by n bits

5" right rotation by n bits

Table 1: Notation http://www.iwar.erg.
o these operatrs et on 241t v | K/ COMS@C/resources/cipher/sha256-384-

rrdnnJdL

An attack skeleton

(D

Event T
Event 2

Moving Forward

Attack Repository

il -
il)

Etacﬁ% y
~ Variants .
l‘..'%__

Buffer overflow
Privileged escalation
Denial of Service

Cross site scripting
SSL/TLS attacks
Remote Code Execution
Hypervisor Exploits

A security testbed for:

Attack Replay Environment

Interchangeable
monitors

P
Snort

o R

ﬁ Wireshark
CO OSSEC

Attack Validation

Container 1 . ‘ Container n

Container Engine {LXC, VM)

Host 05

o,

syslog
hetflow
Hq—\.

Attack traces

Y

Signature matching
Anomaly detection

Factor graph
analysis

Generation: collection of exploit code, vulnerable software
Replay: isolated sandbox like infrastructure

Analysis: evaluation of different detection technique

Target are known attacks and variant of such attacks

WUuCouv
ns

Backup slides

Research Overvi

Attack Replay Environment

monitors

Interchangeable

les|:

D

ﬁ Snort

(

3 0SSEC

Wireshark

Container 1

= I Container n

Container Engine (LXC, VM)

Host 0S

syslog

netflow

Attack traces

An APT attack:

+ spans an extended period of time (in the order of days or

weeks)

+ uses sophisticated technigques to bypass authentication,

— SSH_HOT_CLUSTER
—p FAILED_PASSWORD HIGH_RISK_DOMAIN il il —» TERMINATE_CRITICAL_SERVICE
MULTIPLE LOGIN SENSITIVE_HTTP_URI g
ANOMALOUS_HOST COMPILE
MALWARE_HASH
_REGISTRY_MATCH
ni Internal Escalate Establish Move Command Deliver | Clear
Compromisg Reconnaisance Privileges Foothold Laterally Control Payload | Traces

SCAN_MNETWORK
—» FINGERPRINT_OS

PROBE_SOFTWARE_VERSION

Replay of
attacks in an
ISolated
environment

inject malicious code, and extract secret data.

RESTART_SYSTEM_SERVICE
— MNEW_SYSTEM_SERVICE
NEW_CRONM_JOB

Generation
of attack
variants

Advanced
Persistent
Threat

Sharing
of
attack
tr%c:es

1

. READ_PASSWD_FILE
EXTRACT_DATA

Attack
traces

B DELETE_BASH_HISTORY
CLEAR_DOWNLOADED_FILE

analysis

ML based (Factor graph)
Signature based
Anomaly based

root@e69823fc78cc: fopt/cve-2815-7547# tcpdump -XX -r CVE-2815-7547.pcap
link-type EN18MB (Ethernet)

reading from file CVE-2@15-7547.pcap,

13:32:39.545214 IP localhost.38538 »
BxBEBE: epee Deea Qeed e0ee
8x0816: ee4e 6cta 4608 4011
Bx8828: 8881 5682 8835 882c
Bx88368: ©28D PoRa A8Be 8366
@x@e4e: 6f6T 676c 6583 636F
13:33:38.545224 IP localhost.38538 »
BxBEB6: ©pee Deea Qeed e0ee
8x8816: ee48 6ctb 4808 4811
Bx8828: 8881 56382 8835 B882c
Bx88368: ©28D Popa ABBe 8366
@x0e46: 6T6T 676cC 65683 636T

ccalhost
gega apae
cfba 7fee
fe3df Sbce
6f6f @362
Gdea asal
localhost
gega apae
cfaf 7faee
fedf e6b2
6f6f @362
Gdea a8lc

.domain: 23582+ A? foo.bar.google.com. (36)

808 4588cnc0s000 E.
eeel 7fee .Pl.@g.@.........
2188 Beal LY A
6173 BEEF ouuiws foo.bar.g
Bael oogle.com.,
.domain: 59858+ AAAA? foo.bar.google.com. (36)
EB0E 4588cnc00000 E.
peo1 7fee .@QL.@.@.........
Pl1es Beal = T
6173 BEEF ouuiws foo.bar.g
paal oogle.com.

Life cycle of an APT

p SSH_HOT_CLUSTER g TERMINATE_CRITICAL_SERVICE

— HIGH_RISK_DOMAIN
GCONNECT_DATABASE

SENSITIVE_HTTP_URI
COMPILE
MALWARE_HASH
_REGISTRY_MATCH

—p FAILED_PASSWORD
MULTIPLE_LOGIN
ANOMALOUS_HOST

Initial Internal Escalate Establish Move Command Deliver | Clear
Compromise Reconnaisance Privileges Foothold Laterally Control Payload | Traces

RESTART_SYSTEM_SERVICGE
—p» NEW SYSTEM SERVICE \ READ_PASSWD_FILE DELETE_BASH_HISTORY

SCAN_NETWORK
_b.
NEW CRON JOB EXTRACT_DATA CLEAR_DOWNLQADED_ FILE

—» FINGERPRINT_OS
PROBE_SOFTWARE_VERSION

11

— \ / 3 -. -
6000+ 5+ mllllqns 34M+ 45+ GB
connection log
users compressed log

S events

o-minute snapshot of network trafflc in and out_of
NCQA e

INaAliViidl WCOIILCI 1V YUPTI VULTIPULITTYy

Appllcatlons

Heterogeneous host and

netglygl% logs

Netflows
IDS alerts
Human-written

reports

160 incidents in the past 7

vears (2008-2014)
Brute-force attacks

Credential compromise
Abusing computing
infrastructure

Send spam

Launch Denial of Service

attacks.

AN

Summary of Data

Security logs

NCSA incidents (116) NCSA operational log Attack containers (5)

NCSA incident reports Apache web server log

(116)

Bro logs: conn, ssli, alerts,

Raw logs (25) etc.

SQL Injection

Bro logs

Scoreboand Key: SR .

*_" Waiting for Connection, ™" Starimg up, "R” Reading Requess, P rIVI I eg e ESCG I atl O n
“w” Sendieg Reply, "" Keepalive (read), "p™ DMNS Lookup,

“¢" Closing connection, “L" Logging, "6" Gracefully fmishing,
"1” ke cleanip af warker, " .~ Open slot with no current process

Sry PID Acc MCPU 55 Reg ConnChikl Sle Client VHuost Request

0-0 5402 N19VI1ES4G _ 11.950 2 00 15.14 891629 198.144.99.177 www latimes.com GET Mhive/commonincludes google-adsense-content-1a honl?client -

00 5402 (VIOT/1IG295_ 11960 1 00 1435 907481 G4.2003830 www latmes.com GET hivejavascriptsidragdrop.js HTTE1.1 Re mote C Od e Exec ution

. 00 5402 0VITRA1TE00 _ 11.960 B9 0.0 1539 901689 131.103.136.38 www. latimes.com GET /‘entertaimmentnews/la-ct-memonial-hawthome-201 1061.2,0, 260
ema“ alerts 00 5402 V1701791 W 11,920 1] 00 13.42 900200 204.2.222.211 www latimes.com GET /server-stams’ HTTP/L.1
00 5402 V15116597 _ 11.950 2 00 1632 905427 184842086 www latimes.com GET hive/commonincludes google-adsense-content-1a homl7clien
B S INTHRA T TIHS W 11 8Bh [[i} 17 30 HGRMAN Nl 7 7397 M4 wwnw ladmes coom HIE A T Ssnenmsminresneis 1 8 ssrean-mresrvs-lamimemee b aee-300 2100
redp_ip_b tunnel_pe
pfields ks uid Id.org _hi Morg p Hresp ki idresp_jp profo servete dursbion orig Dytes resp bytes comn stete local_orig missed bytes history orig pets orig ip Dyies resp_pkts yies Enks Orig CC rESp CC pier
sySIOgS et Bicne LA adir pEart i P EFUE LI T imerval fowAt -1, Firineg Bl L= 1T H Firing -1 -1 £ Sni £ S dei[atring] FiFing ¥iring string

142 e N0 Cros tp 2 MO SS5pmved L4l 142 183 4aEe61 141 142 2.3 23 udp dns 0000224 120 FL1A5F T O Do 4 292 4 Big[emphy] US LS miics-2d=-1
1416395555 Ctyeef 2 CIRBCAGWTE TR 1864159 J5CBI 141 14274100 13t 5 197613 o 0D F 0%) 120 & Olempty] TR L fids-14-1
1426305555 CHyL&F 1 pam S SE b 107 5 15,180 0353543 F19 N2 3E9tcp = = . . D F 0% 1 48 i O|emplyl US U5 miilds-26d
1416395 0 CCHFERRTIM 7o 2G| L+l 1a21sl2 42047 149 165 1151 3324Tudp EE T oo i A & Olemply] US s fids- 16-8
147 p2os 5002 I H | W r TS T4 1482 14817 453390145 1653351 33453udp S0 T oo 1 30 i Ofemiply) U3 U5 nids-3&8
14163965 0 Cud p4nd it LI00 W' b4l 147 1512 475149 1652251 A3+56wdp L T oD 1 et o Olempty] US Wi fids-16-8
14163555 CWAMcpR It H Coagkd 125227 28200 43385543 219 M55 R 50 F 0% 1 et o Olempty] Tw U3 flds-26-8

4

Overview of detection
approaches

Taxonomy of machine-learning based approaches

OO

Signature-based Naive Bayes

co@m

z
R

Anomaly-based Logistic Regression

) §dd

SEQUENGE

HMMSs

co@m

)

SEQUENGE

Linear-chain factor graph

11

> 1%

GENERAL
GRAPHS Generative directed models

co@m

>

GENERAL
GRAPHS

General factor graph

https://cs.brown.edu/courses/csci2950-p/lectures/2013-04-25 crfMaxProduct.pdf
https://irlynepil.wordpress.com/2015/03/21/computer-virus/
http://www.pdl.cmu.edu/PDL-FTP/Monitoring/kdd 2012.pdf
http://virus.wikidot.com/creeper

https://cs.brown.edu/courses/csci2950-p/lectures/2013-04-25_crfMaxProduct.pdf
https://cs.brown.edu/courses/csci2950-p/lectures/2013-04-25_crfMaxProduct.pdf
https://irlynepil.wordpress.com/2015/03/21/computer-virus/
https://irlynepil.wordpress.com/2015/03/21/computer-virus/
http://www.pdl.cmu.edu/PDL-FTP/Monitoring/kdd_2012.pdf
http://www.pdl.cmu.edu/PDL-FTP/Monitoring/kdd_2012.pdf

Factor Graphs unify Bayesian Networks and Markov Random Fields

() (@ (D () (&) (& () (&
Bayesian j
Network IE H E H HE

(a1) Simple Bayesian Network (SBN) (a2) Naive Bayesian Network (NBN) (a3) Complex Bayesian Network (CBN) (c3-1) Complex FG of the CBN

Markov
Random
Field o

(b1) Simple MRF (SMRF) (b2) Naive MRF (NMRF) (b3) Complex MRF (CMRF) (c3-2) Complex FG of the CMRF

e ee ee ORI O AY)

Factor I

OROHONOR
benign suspicious malicious

c1) Slmpla FG (c2-2) Naive FG of the NBN (c2-1) Naive FG of the NBN (d) An example Factor Graph (f) Evolution of a factor graph and the inferred user states

Figure 1: Illustrations of Bayesian Network, Markov Random Field, and Factor Graph to model security incidents.

11
7

Modeling User States using Factor Graph

A factor graph is a bipartite, undirected

graph of random variables and factor
functions.

A factor graph can describe complex

dependenCIGS amOng randOm VarlableS Flfg (1. A)f:?Cth grap\h for the Product fA(.Slfl)fB(l?z)fc(ﬂ?h a2, $3)
using univariate or multivariate factor 7'

functions. -)

ffz f1 /
A factor function is a mathematical I - t’(

definition of prior beliefs or expert o e
knowledge. It can represent both causal
and non-causal relations

benign suspicious malicious

(f) Evolution of a factor graph and the inferred user states

11

Q http://vision.unipv.it/IA2/Factor%20graphs%20and %20the % 20sum-product%20algorithm.p:

Experimenting Factor Graphs
with Attack Variants

Attack
Variants

An attack variant is a sequence of

An attack is a sequence of observed events interchangeable events

Interchangeable
Events

Root

login T R A A A
| I [I

Previously | O | | | ' ' :<>: : |

compromised : | ' f E ' : : . l | |

| | I I | | I | |

Use stolen | : | : | : : O | | E> !

- — | | |

credential \. O ! | ! | | | | |)
| | [|

- e e e e e ol —-— s e e e s ol —_—e e e e o= ol - = mm =

Bruteforce - |:| Q
password

Initial Internal Establish Command & Clear
Compromise Reconnaissance Foothold Control Traces
12

An Attack Variant
Example

An attack is a sequence of observed events An attack variant is another variant of events
Observation Original attack Variant attack
1 Login using a weak password Brute-force guess SSH password
2 Login from multiple IP addresses Login using an inactive account
3 Disable Bash command history logging Set number of command history recorded by Bash to O
4 Download a sensitive file using HTTP Download a sensitive file using telnet/scp/dns
5 Compile and run the source exploit file Compile and run the source exploit
6 Inject backdoor to the SSH authentication service Install backdoor as a system service
/ Establish connection with C&C server using IRC Establish connection with C&C server using DNS

12

iInNterchangeable

Events

Attack stage Description Event (real @ NCSA|Interchangeable events
alerts)
Initial compromise An abnormal login ALERT ANOMALOUS|ALERT WEAK PASSWORD LOGIN
activity HOST ALERT ROOT LOGIN
ALERT WATCHED COUNTRY LOGIN
ALERT COMPROMISED PROFILE
LOGIN
ALERT SENSITIVE CREDENTIAL
LOGIN
Escalate privilege A download of a source|ALERT SENSITIVE|ALERT SENSITIVE FTP URI
code file HTTP URI ALERT SENSITIVE SCP FILE
ALERT NEW IRC DOWNLOAD
Establish foothold An attempt to gain|ALERT NEW SYSTEM|ALERT NEW SHELL INIT ENTRY
persistent access SERVICE
Establish foothold An attempt to gain|/ALERT CHANGE |ALERT NEW USER
persistent access CREDENTIAL ALERT NEW SSH AUTHORIZED KEY
Internal reconnaissance |An attempt to connect to|ALERT COLLECT |ALERT COLLECT SHELL HISTORY
command and control|SYSTEM INFO ALERT READ USER LIST
Server
Deliver payload Extraction of secret data |ALERT VIEW |ALERT VIEW PRIVATE SSH KEY
PASWORD FILE
Deliver payload Misuse of the target|ALERT HIGH|ALERT HOSTING HIDDEN SPAM
system NETWORK FLOW

o

Generating Attack variants using Cariesian
product

generate_variant(L):
.] —p indexes = [0,0,...,0]
1. Generate a list of events in the attack while indexes != None:
print(indexes)
indexes = next_indexes(indexes,L)

2. For each event in the list _ next_indexes(indexes,L):
It wi ' ' n = length(index
Replace it with an event in the interchangeable event "~ lengthlindexes)

while True:
indexes|i] == indexes[i] + 1
e if indexes[i] < length(L[i]): break
indexes[i]=0
3. Repeat until there is no more attack variant i=i-1
if i <0: return None
return indexes

Record the attack variant

Interchangeable
Events

Root

login \:" ______ r——===n r

——————

Previously

| [I I

I [I I

| I I I I

| | [I |

| I [I I
compromised \. ! . A | ! . |
I I (I ~ -~ ~ - | —— I P P g |
| | I T~ | | -7 |
| I | b X F —»!
| | I | |
I | I | |

|
|
Use stolen :
credential | — |
L S S
Bruteforce Q
password
Initial Internal Establish Command & Clear
Compromise Reconnaissance Foothold Control Traces
12

An attack skeleton

Event T
Event 2

AN ATtaCK Replay

Framework

Attack Repository

Variants

Buffer overflow
Privileged escalation
Denial of Service

Cross site scripting
SSL/TLS attacks
Remote Code Execution
Hypervisor Exploits

Attack Replay Environment

monitors

Interchangeable

<

>

ﬁ Snort

Wireshark

CO OSSEC

Attack Validation

Container 1 . ‘ Container n

Container Engine (LXC, VM)

Host OS

T

syslog

hetflow
H_/_—\
Attack traces

Signature matching
Anomaly detection

Factor graph
analysis

UVE-2U10-/94/.
glibc getaddrinfo() stack-based buffer
overflow

A vulnerability in glibc networking module that allows
REMOTE CODE EXECUTION

Attacker triggers the vulnerability by trick the victim to

resolve a hosthname using an attacker-controlled DNS server ,
1. getaddrinfo(foo.example.com)
Vulnerable client
Rouge ,
2. a ver ong response AAAA...A
DNS server Y 20T TERR { qlibe 2.9
The client will crash upon receiving a very long response SRR e 9 '
from the attacker-controlled DNS server.
Remote code execution exploits are in development
1 2 https://sourceware.org/ml/lr:?r(;-lalpha/Qm6-02/mngO416.

Workflow of replaying CVE-2015-7547

Create vulnerable

Execute an MITM
attack

Collect attack traces

client and attacker
server y

Analyze attack traces

K SECURy

/debian
Victim: Debian Jessie localhost.domain: 23582+ A? foo.bar.goc addl notice peer

W/ glle 29 DORE Bl BBLR 45886

ctba 7+ee eapl 7+ee @1@@ DHS_lah'E'l_ltﬂﬂ_lﬂﬂg =
_ fedf Sbce €188 88815. ;.2 ... DNS_truncated RR rdlength 1t len
AttaCker DNS server 6f6f 8362 6172 B6ET 'Fﬂlﬂ.l:lﬂl"'.g DHS_E-ﬂ-nﬂ_{:ﬂunt_tﬂﬂ_largE -
“Stenmg on port o3 Gded aeal eael oogle.com..... Fbro
12

Problem:
Old release
New repository

When a patch is released, the package repository is
updated with the patched packages.

All popular Linux distributions (CentOS, Ubuntu,
Debian, etc.) employ this practice.

It is very challenging to install a specific version of a
package because all of its dependencies have been
updated.

Debian wheezy
December 31 2014

Debian Jessie
December 31 2015

Debian Jessie
March 51" 2016

glibc 2.23

curl 7.38

Libc6 2.19

Timemachine:
Old base image
Snapshot repository

Timemachine tool
builds a Debian Linux from a Debian base image

configures Debian to use “Snapshot” repository of a
specific date

A specific software package can be installed using
specific dependencies in the Snapshot repository

Debian base image

Debian Jessie

January 1%t 2016

Snapshot repository
January 112016

EAPCIITICIILAl YWWOTATIOVW O AlLLACA I agger OlIl Recdl-
World Incidents

Raw logs Human-written
1. Construct factor functions from incident reports
51 incidents (2008-2010) 11:00:57 sshd: Failed password for root The security team received ssh
23:08:26 sshd: Failed password for root Suspicious alerts from <machine>
h manual 23:08:30 sshd: Failed password for nobody forthe user <user>. There were
definition : -
—_ 23:08:38 sshd: Faililed password for <user> also some Bro alerts from the
: Factor || 23:08:42 sshd: Falled password for root |, chine <machine>. From the Bro
Construction tunciionz I 23:08:57 sshd: Failled password for root sshd loas the user ran the
[T™&23:09:22 sshd: Failed password for root . 9
4 - following commands
2008-2009 manual
51 incidents definition He-used uname -a ..
for all users
unset HISTFILE
" | wget <xx.yy.zz.Vabs.c -0 a.c;gcc
auto script .
raw logs extraction d.C -0 4a,

Timestamp

Relative order of events in an

Absolute
Timestamg

incident | manual Represented

2010-2013 reports | extraction as .timeline files A lute ti t th .
65 incidents e\?gr?t: e time between the incident
2. Extract events from 65 test Automated Manual

incidents (2010-2013)

b

petection timeliness and Freemption
timeliness

Attack Duration

Detection timeliness Preemption timeliness
—_— —

[-J L\ Tt 9

Nt
The first event Detected by The last event
AttackTagger

Detected by
security analysts

4

Detection timeliness and Preemption
15 I I:m:e:h:n:e:ss' . -.

A0

-4

46 of 62 malicious

users were detected
In tested incidents

L |
—
- .

D 25 (740/0)

_4’.; : 41 of 46 identified

. malicious users were
- identified before the

system misuse

| (]

first Percentage of events observed until attack last

event detection event

13

Performance

TP [TN | FP [FN ISON
: “Tassiier | 9. . 1. . I i iCi
o 5to o000 | 000 1795 Best detection rate (46 of 62 malicious
Support Vector Machine | 27.4 | 100.00 | 0.00 | 72.6 users)
Detection performance of the « Smallest false detection rate (19 users of
techniques 1267 benign users).
v Show that performance of

AttackTagger (AT) is better than
--- Support Vector Machine (SVM) not
by chance

McNemar discrepancy
matrix

a=~:«n'|;+SVM+a b=AT" *=(b+¢)*/(b—¢) Measure discrepancy between: AT and
SVM*, 2 — 48 ATMletection performance was

—AT+ - d=AT- X
c=AT'SVM’, d=AT p-value < significantly different than SVM _,
SVM N NNNN4 e —

 Null hypothesis H, : both techniques
have the same detection performance.

Incident ID

20100416

20100513

20101029

20101029

20101029

Detection of unidentified malicious

Activity

lllegal activities

Incorrect credentials (multiple times); Sending spam emails
Logging in from multiple IP addresses; lllegal activities
Logging In after a long inactive time; lllegal activities

lllegal activities

ldentified six hidden malicious users
who were not Iidentified In the

Detection of unidentified malicious

| Event Description [UserState |
A user supplies an incorrect

PASSWORD | Credential at login. A repeated benign Brute-force guess passwords
{r% t:i;ne 3) alerts indicates password guessing g

or bruteforcing.
LOGIN A user logs into the target system SUSPLCLOUS
A user connects to a high-risk ' j
domain, such as one hosted
using dynamic DNGS
(e.g., .dvndns, .noip) or a site
HIGHRISK providing ready-to-use exploits
DOMAIN (e.g., milwOrm.com).
The dynamic DNS domains can be

registered free and are easy to setup.
Attackers often use such domains

to host malicious webpages.

A user downloads a file with Download source code of a

a sensitive extension

Connect to a high-risk domain
to get exploit code

SUSPLCLOUS

SENSITIVE » root exploit (.c) file

URL (e.g., .c, .sh, or .exe). malictouws
Such files may contain shell
code or malicious executables.

CONNECT A user connects to an _Inle_rnet o Connect to a Command &
Relay Chat server, which is often maltctous

L used to host botnet Control servers. Control server via IRC
A user requests an URL containing | !
known suspicious strings,

SUSPICIOUS | e.g., leet-style strings

URL such as expllit or rO0t,

or popular PHP-based
backdoor such as ¢99 or ra7.

maliciows

