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Abstract— Proactive security reviews and test efforts are a
necessary component of the software development lifecycle.
Resource limitations often preclude reviewing the entire code
base. Making informed decisions on what code to review can
improve a team’s ability to find and remove vulnerabilities.
Risk-based attack surface approximation (RASA) is a technique
that uses crash dump stack traces to predict what code may
contain exploitable vulnerabilities. The goal of this research is
to help software development teams prioritize security efforts by
the efficient development of a risk-based attack surface
approximation. We explore the use of RASA using Mozilla
Firefox and Microsoft Windows stack traces from crash dumps.
We create RASA at the file level for Firefox, in which the 15.8%
of the files that were part of the approximation contained 73.6%
of the vulnerabilities seen for the product. We also explore the
effect of random sampling of crashes on the approximation, as
it may be impractical for organizations to store and process
every crash received. We find that 10-fold random sampling of
crashes at a rate of 10% resulted in 3% less vulnerabilities
identified than using the entire set of stack traces for Mozilla
Firefox. Sampling crashes in Windows 8.1 at a rate of 40%
resulted in insignificant differences in vulnerability and file
coverage as compared to a rate of 100%.
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The attack surface of a system can be used to determine
which parts of a system’s codebase could have exploitable
security vulnerabilities. The Open Web Application Security
Project (OWASP) defines the attack surface of a system as the
paths in and out of a system, the data that travels those paths,
and the code that protects the paths and the data.! Items not on
the attack surface of a system are unreachable by outside input,
and, therefore, less likely to be exploited. If outside input
cannot be passed to code containing a security vulnerability,
engineering hours spent working on finding and fixing that
vulnerability should be spent elsewhere. Vulnerability
detection and removal techniques, such as security reviews
and penetration testing, can therefore be prioritized to code
attack surface, rather than being applied indiscriminately.
Reducing the amount of code to be inspected may help
improve the economics of security assessments and allow for
more proactive reviews of potentially vulnerable code.

Risk-based attack surface approximation (RASA) [1] is an
approach to identifying code in a software system that is
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contained on the attack surface through crash dump stack trace
analysis. Code that appears in stack traces caused by outside
activity is at risk of having security vulnerabilities as well. For
RASA, all code found in the stack traces from crash dumps is
classified as being on the attack surface of a system. Mining
crash dumps to determine what code is crashing may result in
a useful metric for determining where security vulnerabilities
are in code, because stack traces in crash dumps indicate what
code was involved in a failure. Additionally, attackers may
use stack traces from crash dumps to determine where flawed
input handlers may be in a software system. From the
attacker’s perspective, a repeatable crash could be exploited
as a potential denial of service attack.

The goal of this research is to help software development
teams prioritize security efforts by approximating the attack
surface of a software system via risk-based attack surface
approximation. For some organizations, storing and analyzing
every single crash seen internally and by customers may be
infeasible, as some products can quickly generate hundreds of
millions of crashes if popular. Therefore, we explore the effect
of randomly sampling stack traces from crash dumps on the
final RASA to determine of it is a viable strategy to make
RASA more economical for practitioners.

We explore the following research questions:

RQ1: How effective is risk-based attack surface
approximation in predicting the location of security
vulnerabilities?

RQ2: How does random sampling of crash dump
stack traces affect the variability and effectiveness of
the resulting risk-based attack surface approximation
in predicting the location of security vulnerabilities?

In this paper, we performed a RASA for Firefox and
Microsoft Windows, based on stack traces collected from both
products. To assess RASA, we compare the set of known
security vulnerabilities from each product’s respective bug
database against the files identified as part of the
approximation. After generating the initial RASA, we then
rerun the experiment using random samples of crashes from
Firefox and Windows to determine how sampling may change
the final result, compared to using the entire set of crashes.



We include the following as contributions in this paper:

An evaluation of the effectiveness of risk-based attack
surface approximation for an open source application
that corroborates with an earlier attack surface
approximation study on a proprietary product [1].

An analysis of the effect of random sampling of crash
dump stack traces on the final result of risk-based
attack surface approximation

An exploration of the amount of stack traces from
crash dumps required for actionable results for risk-
based attack surface approximation.

The rest of the paper is organized as follows: Section 2
discusses background and related work, Section 3 presents our
research methodology, Sections 4 and 5 present our case
studies for Firefox and Windows, respectively, Sections 6 and
7 discuss the results and why we ended up with them, Section
8 presents limitations and threats to validity, and Section 9
concludes and discusses future work.

IL.

In this section, we provide a brief overview of related work
and the previous study done in the area of attack surfaces and
defect prediction.

A. Attack Surface

As mentioned previously, The Open Web Application
Security Project (OWASP) defines the attack surface of a
system as the paths into and out of a system, the data that
travels those paths, and the code that protects the paths and the
data. The OWASP attack surface definition also includes “the
sum of all paths for data/commands into and out of the
application.” Howard et al. [17] provided a definition of attack
surface using three dimensions: 1) targets and enablers; 2)
channels and protocols; and 3) access rights. Not all areas of
a system may be directly or indirectly exposed to the outside.
Some parts of a complex software system, e.g. Windows OS,
may not be reachable or exploitable by an attacker. In Figure
1, we present a graphical representation of what the attack
surface of a system is. The nodes with the thick dark arrows
pointing at them are the entry points into a system, showing
where an outsider can pass input into a system. The remaining
shaded nodes and arrows represent the path outside input takes
through the system, with data eventually terminating in the
center of the system.

Manadhata et al. [33] describe how an attack surface might
be approximated by looking at Application Program Interface
(API) entry points. However, the Manadhata approach does
not cover all exposed code, as the authors mention.
Specifically, internal flow of data through a system was not
identified. While the external points of a system are a useful
place to start, they do not encompass the entirety of exposed
code in the system. Internal points within the system could
also contain security vulnerabilities that the reviewer should
be aware of. Previous efforts to determine the attack surface

BACKGROUND AND RELATED WORK

2 http://www.crashlytics.com/blog/its-finally-here-announcing-crashlytics-
for android/
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Figure 1. A visual representation of what an attack surface is for a
system. The darker nodes represent the attack surface, where input flows
through the system. Nodes represent individual binaries, files or
functions in a target system.

of a system have used API scanning techniques [42], but these
techniques have limitations in terms of how much code they
can cover. Further, their approach to measuring attack
surfaces required expert judgment of security professionals to
determine if code is security relevant.

In a previous RASA study [1], researchers found a
correlation between binaries that appear on stack traces from
crash dumps and code that contained at least one security
vulnerability fix. The correlation could be useful to security
professionals when targeting security reviews of codebases.
By targeting security efforts to binaries in the RASA instead
of the entire codebase, security professionals could save
engineering hours. The researchers created the RASA by
parsing stack traces from Windows 8 OS, and including any
binaries involved in a stack trace in their approximation. They
evaluated the effectiveness of their approach by comparing the
approximation against the location of historical vulnerabilities
in Windows 8 OS. In that study, 48.4% of shipped binaries
seen in at least one crash dump stack trace in Windows 8 OS
contained 94.8% of the vulnerabilities seen over the same time
period [1].

However, the industrial study has a few limitations. First,
the approximation was only performed at the binary level of
the application. A single binary could contain thousands of
files, making the metric difficult to act on. Second, the
industrial study only looked at an operating system. To
address these concerns, we constructed an RASA using stack
traces at the file level instead of the binary level on an open
source application instead of an operating system and report
the results in this paper.

B. Exploiting Crash Dumps

The use of crash dumps, including stack traces from the
crashes, is becoming used more frequently for identifying
defects and vulnerabilities? [23][25]. Liblit and Aiken [18]
introduced a technique automatically reconstructing complete
execution paths using stack traces and execution profiles.
Later, Manevich et al. [19] added data flow analysis
information on Liblit and Aiken’s approach to explain
program failures. Other studies use stack traces to localize the
exact fault location [21][22][23]. An increasing number of
empirical studies use bug reports and crash dumps to cluster
bug reports according to their similarity and diversity, e.g.



Podgurski et al. [24] were among the first to take this
approach. Other studies followed [25][26]. Not all crash
dumps are precise enough to allow for clustering. Guo et al.
[27] used crash dump information to predict which bugs will
get fixed. Bettenburg et al. [28] assessed the quality of bug
reports to suggest better and more accurate information for
helping developers to fix bugs.

With respect to vulnerabilities, Huang et al. [29] used
crash dumps to generate new exploits while Holler et al. [30]
used historic crash reports to mutate corresponding input data
to find incomplete fixes. Kim et al. [31] analyzed security bug
reports to predict “top crashes”—those few crashes that
account for the majority of crash dumps—before new
software releases.

II1.

In this section, we discuss our research methodology to
answer our three research questions.

A. Risk-Based Attack Surface Approximation (RASA)

To create the RASA for a target system, we first select a
collection of stack traces from crash dumps from the software
system we are analyzing. These stack traces are chosen from
a set period of time. For each individual stack trace pulled
from a crash dump, we isolate the binary, file, or function on
each line of each stack trace, and record what code artifact was
seen and how many times it has been seen in a stack trace.
Each of the code artifacts from stack traces should then be
mapped to a code artifact in the system. For example, if the
file foo.cpp appears in a stack trace, the matching foo.cpp in
system should be identified. A software system may have
multiple foo.cpp files, so a method for identifying which
foo.cpp was in the crash is required. A list of code artifacts in
a software system could come from toolsets provided by the
company maintaining the system or pulled directly from
source control, in the case of open source projects.

We have created a toolset to parse each individual stack
trace in our target dataset in sequence, and extract the
individual code artifacts that appear on each line. The tool
then outputs the frequency in which each unique code artifact
appears in a stack trace from the parsed set. For this particular
study, we do not consider the number of times a code artifact
appears; only that it appears at least once. The use of
frequency as a potential metric for future RASA studies is
discussed in section 9. To tie stack trace appearances to the
codebase, we generate a list of all source code files from the
system under inspection and combine that list with the list of
appearances in stack traces. A flowchart detailing the process
is shown in Figure 2. In addition to the list of files on the
RASA, we count the number of artifacts that have security
vulnerabilities. An example of a list of files with counts of
appearances on crash dump stack traces is found in Figure 3.
After we have the list of code that appears on at least one stack
trace and the code that had at least one vulnerability fix, we
calculate two RASA evaluation metrics:

RESEARCH METHODOLOGY

1. The percentage of code in the target software system
that appears in at least one stack trace (or the Risk-
based Attack Surface Approximation), and
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2. The percentage of files with security vulnerabilities
that appear in at least one stack trace, or vulnerability

coverage.

For 1) above, we calculate the percentage of files found on
stack traces via the following formula. We define this metric
as File Coverage (FC):

(1) FC code artifacts on at least one stack trace

total number of code artifacts in the system

For 2) above, we calculate our vulnerability coverage via
the following formula. We define this metric as Vulnerability
Coverage (VC):

@) Ve = code artifacts with vulns. on stack trace

total number of code artifacts with vulns.

B. Random Sampling of Crashes

For some organizations, analyzing every crash available
may result in the storage and analysis of hundreds of millions
of crashes. Storing and analyzing that much data may be
unfeasible for the organizations, so a random sampling
approach may be required to limit the amount of crashes
stored and analyzed. However, random sampling of crashes
may result in variations in the final result of RASA,
weakening the approximation and decreasing its usefulness to
practitioners. Determining the effect of random sampling on
the end result of the RASA is therefore important to
understand the use cases of the approach.

To test the effect of random sampling, we take set
percentages of stack traces from the overall dataset in our
study. The stack traces chosen are by random selection. We
then repeat random selection 10 times, resulting in 10 different
sets of stack traces representing the same total percentage of
stack traces from the original dataset. For example, a
practitioner could choose to permanently store 20% of all
crashes reported by users. To simulate this case, we randomly
sample 20% of the crashes from a target dataset 10 times to
determine the resulting variance. We then compare several
metrics on the 10 separate samplings:

1) The percentage of files included on stack traces in each
sample versus the entire set of files in the system.

2) The total coverage of the sampled RASA of the
vulnerabilities included on the attack surface.

3) The change in individual code entities covered on
different samplings, or the standard deviation between the 10
samplings.

4) The change in individual security vulnerabilities
covered on different samplings, or the standard deviation
between the 10 samplings.

From these results, we can then draw conclusions on the
effect of sampling on this approach to RASA.
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Figure 2. A visualization of the workflow for developing a Risk-Based Attack Surface Approximation for a target software system.

C. Data Requirements

The initial study on RASA was performed on Microsoft
Windows 8 [1] and was done with millions of crashes. Not all
organizations have as much crash information as these large
organizations, so the feasibility of RASA on smaller datasets
should be explored. To explore this idea, we take percentages
of available stack traces from the target software system, from
90% of the total stack traces available to 10% of the available
stack traces. The 100% case is covered by our initial
experiment in Section 3.1. We can then explore the difference
in code coverage in the resultant RASA, and the difference in
covered security vulnerabilities in the resultant RASA. We
expect that an increase in the percentage of stack traces
included in our study will result in our code coverage and
vulnerability metrics converging towards our result with all
stack traces.

For each of these slices, we perform the random sampling
analysis as outlined in section 3.2. From those results, we can
see how sampling affects the result of RASA. As we increase
the percentage of stack traces in each step of our study, we
expect the error bounds of our metrics will decrease.

IV. FIREFOX CASE STUDY

In this section, we discuss our first case study on Mozilla
Firefox. The Firefox team makes crash data from customers
(with identifying information removed) available publicly.
They also make security vulnerability fixes public after the
affected release has passed out of recommended public use.
Firefox is written in several languages and is a large codebase,
with approximately 50,000 files in the production codebase in
the study period of May 2010 through March 2012.

A. Data Collection

Mozilla only makes security vulnerability details available
once the vulnerability has passed out of public use in all
versions of Firefox. Because of that policy, vulnerability
information is only available from before 2012. Therefore, we
could not make use of Mozilla’s primary stack trace data
website, Mozilla Crash Reports®, as it only keeps full stack
traces from crashes for approximately 6-7 months. Instead, we
made use of the historical dumps at https:/crash-
analysis.mozilla.com/crash_analysis/. We performed our
analysis on crashes occurring from May 2010 to March 2012
due to the available security data. An example of the format

3 https://crash-stats.mozilla.com/home/products/Firefox

of code crash strings is found in Figure 4. For the crash-
analysis dataset, this format was consistent throughout the
entire dataset allowing us to build a string parser to grab the
file path and filename from the middle of the string, as
delimited by the colons. Crash dumps from the historical
dataset do not contain the entirety of the stack trace. Only the
topmost filename is included in each trace. While the Firefox
stack traces provide less detail than the Windows stack traces,
observing only the last file seen on the stack trace may be
another approximation technique that eliminates more files
from the attack surface. We explore the impact on the
completeness of RASA, with the metric for completeness

being the number of vulnerabilities seen on the
approximation.

Name Crashes
js/src/jsgc.cpp 79705
layout/generic/nsFrame.cpp 73405
js/src/jsobj.cpp 71040
js/src/xpconnect/src/xpcnative. cpp 51309
xpcom/io/nsLocalFileWin. cpp 41783
layout/generic/nsObjectFrame.cpp 39853
modules/plugin/base/src/ns.cpp 37226
js/src/jstracer.cpp 36076
js/src/jsapi.cpp 35671
js/src/jsinterp.cpp 28912

Figure 3. A subset of the final dataset used for analysis (some names
shortened).

hg:hg.mozilla.org/releases/mozilla-
1.9.2:view/src/nsViewManager.cpp:
448d0d2d310c

hg:hg.mozilla.org/releases/mozilla-
1.9.2:xpcom/threads/nsThread. cpp:
28ef231la65a3

hg:hg.mozilla.org/releases/mozilla-
1.9.1:1layout/generic/nsFrame.cpp:
c307a617e5a5

hg:hg.mozilla.org/releases/Mozilla-
1.9.2:nsprpub/pr/src/md/windows/w95sock
.c:28ef231a65a3

hg:hg.mozilla.org/releases/mozilla-
1.9.1:0bjfirefox/dist/include/string/ns
Algorithm.h:c307a617e5a5
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Figure 4. Examples of files seen in the topmost_filename field in the Firefox
crash dumps.



To collect our security data, we parsed security reports
from Mozilla’s security advisory blog from the same May
2010 to March 2012 period. Each security report presented by
Mozilla has an associated diff or bug report, indicating what
files were changed as part of the security fix. As mentioned
previously, part of the reasoning behind selecting this time
period was the availability of these security reports. Mozilla
does not always release security bug details for newer
vulnerabilities for a variety of reasons, such preventing the
exploit from becoming more widespread. Mozilla makes
vulnerability details available later after they are confident the
issue has been resolved for their users.

B. Random Sampling

To create our random samples to answer our data sampling
and randomization questions, we make use of the random
library in Python 3.X to create our random samples. We
consider each stack trace for inclusion in our sample by
generating a random number from 0 to 1 and comparing it
against our desired percentage for inclusion. For example, if
we want to include approximately 30% of stack traces in our
RASA, then we take all stack traces that have random
numbers generated for them that are less than 0.3. It is
important to randomly sample each individual stack trace
rather than randomly choosing sets of stack traces (by hour,
minute, or day) as specific time periods may be weighted
towards specific types of crashes. By considering every stack
trace for random inclusion in our dataset as opposed to blocks
of time, we simulate how a version of RASA running for a
practitioner may choose to keep crashes for later analysis.

V. WINDOWS CASE STUDY

In this section, we discuss our second case study on
Microsoft Windows 8.1.

A. Data Collection

Each line of a stack trace is organized as follows. The
binary is shown at the beginning of the string, followed by a
“I” delimiter and the function name. In the square brackets,
the full path of the file associated with this binary/function
relationship is shown. Not all stack traces will include the
name of the source file. Some stack traces may even display
anonymous placeholders for functions and binaries,
depending on the permissions and ability to identify these
details during runtime. For example, Windows stack traces
contain no details about artifacts outside Windows, e.g. a
third-party application causing the crash.

Each stack trace is parsed and separated into individual
artifacts, including binary name, function name, and file
name. We then map each of these artifacts to code as they are
named in Microsoft’s internal software engineering tools. File
information is not always available. In these cases, we make
use of software engineering data indicating relationships
between binaries, files, and functions to find the missing data
if possible. If these symbol tables contain the function name
referenced by the stack trace, we pull the corresponding
source file onto the attack surface. In case the function name
is not unique, e.g. overloading the function in multiple files,
we over approximate the attack surface and pull all possible
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source files onto the attack surface. If no function name can
be found, e.g. function not shipped with Windows, we leave
the file marked as unknown. Thus, this approach generates an
attack surface that is an approximation of reality.

When code is seen in a stack trace, we place information
about that code into a database table containing all code on the
attack surface approximation. When this code is added to the
database, we enter as much information as possible about the
line in the stack trace. In some cases, this is just the binary, as
the file and function cannot be mapped. Other cases may have
the exact file and/or function. We also collect the list of
artifacts appearing directly before and after each artifact in
each stack trace. This data can be used in a variety of helpful
ways, particularly in visualizing these relationships in graph
format as seen in Figure 1.

Sometimes actual entities within the system are unable to
be mapped from the stack traces. For example, errors
occurring during the process of creating the stack trace could
result in unknown code entities on the trace. When a mapping
is unable to be made, we label that entity as “unknown,” and
do not place that entity on the attack surface. The output used
by the development and security teams is a classification of
whether an entity is on or off the attack surface. This
classification can be used for prioritizing defect fixing,
validation, and verification efforts.

After parsing out individual traces, we were left with
approximately 9 million crashes from Windows 8.1 to run our
sampling study.

We map security bug information to specific code artifacts
found during our parsing of crash dump stack traces. We
collect security bug information at the file level, and map the
bug information to files from stack traces. Individual bugs are
also defined as pre-release or post-release, depending on when
the bug was found during the development process. Pre-
release is defined as bugs found in code before its official
release to customers, where official does not include customer
alpha or beta releases. Post-release is defined as bugs found in
code after an official release. We use post-release bugs as our
set of vulnerabilities for this study.

B. Random Sampling

To create our random samples, the collection of stack
traces was placed in a MSSQL database, with a table
dedicated to individual lines for individual classes, and a
second table with mappings for individual crashes to the
version of Windows that crash was found on. Using the C#
programming language, we randomly sampled individual
crashes at each sampling size (10% of the available crashes,
20% of the available crashes, etc. If a crash was chosen for a
particular sample, we included files that were seen in that
crash in RASA for that run. For Firefox, this is the last file
seen for a particular crash, while in Windows this is all files
seen in the crash. We ran 10 samples at each sampling level
using 10 different fixed seeds so the analysis could be
replicated. We aggregated the 10 runs for each sample size
into average percentage of shipped files for Windows 8.1
covered by RASA, average percentage of vulnerabilities
covered, and the standard deviation of our random runs for
both statistics.



TABLE L. RESULTS OF RISK-BASED ATTACK SURFACE APPROXIMATION ANALYSIS ON MOZILLA FIREFOX.

Sample

Size Avg Yfiles Avg %vulns Stdev %files Stdev %vulns
10% 12.8% 70.9% 0.03% 0.49%
20% 13.8% 71.9% 0.03% 0.42%
30% 14.3% 72.2% 0.03% 0.34%
40% 14.7% 72.6% 0.02% 0.37%
50% 15.0% 72.8% 0.03% 0.35%
60% 15.2% 73.0% 0.03% 0.30%
70% 15.4% 73.1% 0.03% 0.35%
80% 15.5% 73.3% 0.03% 0.27%
90% 15.7% 73.4% 0.02% 0.16%
100% 15.8% 73.6% X X

TABLE IL RESULTS OF RISK-BASED ATTACK SURFACE APPROXIMATION ANALYSIS ON WINDOWS 8.1 .

Sample

Size Avg Yfiles Avg %vulns Stdev %files Stdev %vulns
10% 13.8% 32.0% 0.03% 0.1%
20% 16.6% 35.9% <0.01% 0.1%
30% 18.3% 38.1% <0.01% 0.08%
40% 19.6% 39.5% <0.01% 0.1%
50% 20.7% 40.8% .<0.01% 0.1%
60% 21.4% 41.9% <0.01% 0.1%
70% 22.1% 42.5% <0.01% 0.1%
80% 22.7% 43.3% <0.01% 0.07%
90% 23.2% 44.2% <0.01% 0.05%
100% 23.6% 44.5% X X

VI.  RESULTS

In this section, we present our results and discuss what
each of the results means for security professionals.

A. Attack Surface Approximation (RQ1)

RQ1: How effective is risk-based attack surface
approximation in predicting the location of vulnerabilities?

After applying RASA to Mozilla Firefox, 15.8% of files
contained 73.6% of the vulnerabilities in our study. When
applied to Windows 8.1, 11.6% of files contained 20.2% of
vulnerabilities in our study. The initial study on Windows 8
found that 48.4% of binaries contained 94.8% of historical
vulnerabilities when filtering by binaries with a minimum of
one appearance on a stack trace.

We have improved the granularity of attack surface
approximation compared to the previous study [1], in addition
to the quantitative improvements in coverage and specificity.
By performing attack surface approximation at the file level,
we provide more actionable results for practitioners. While a
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single binary file could contain thousands of individual files
for developers to review, files are typically a more
manageable level of granularity for a developer, depending on
the development practices of the organization using attack
surface approximation. We have lost vulnerability coverage in
comparison to the original study, indicating a tradeoff as we
modify RASA for more practical levels of granularity.

B. Random Sampling (RQ2)

RQ2: How does random sampling of crash dump stack
traces affect the variability and effectiveness of the
resulting risk-based attack surface approximation in
predicting the location of security vulnerabilities?

The average number of files covered by RASA and the
average number of security vulnerabilities covered by RASA
at various random sampling points is found in Table 1 for
Mozilla Firefox and Table 2 for Microsoft Windows 8.1. As
the size of the random sampling increases, we see that the
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average number of files covered by RASA also increases,
while the standard deviation of the individual runs shows no
discernable trend. For coverage of security vulnerabilities, we
also see a slight increase in coverage as the random sampling
size increases. In the case of security vulnerability coverage,
we see that the standard deviation decreases as the sample size
increases.

From these results, we conclude that randomly sampling
stack traces for the two datasets do not result in appreciable
changes in code coverage or vulnerability coverage from run
to run. The standard deviation in both cases is small in
comparison with the total number to be insignificant in
practical terms for determining what code is on the RASA.

A graph of vulnerability coverage for our implementation
of RASA for Mozilla Firefox is found in Figure 5. In this
graph, we observe that the difference between using 10% of
the total crashes of Firefox versus 100% of the total crashes is
less than 4% in total vulnerability coverage. Additionally, we
see that the trend line levels off quickly, with less than 1%
difference in total coverage of vulnerabilities starting at a 40%
sampling of crashes. We conclude from this graph that
random sampling of crashes has a minimal effect on RASA’s
ability to cover security vulnerabilities.

A graph of total file coverage (the number of files on
RASA versus the total number of files in the system) for
Firefox is found in Figure 6. From this graph, we see an
increase in the number of files included on the RASA as the
sample size increases. From Table 1 and Figures 5 and 6, we
can see points of diminishing returns for vulnerability
coverage in terms of the tradeoff of additional files on the
RASA. From a 70% random sample to a complete set of
crashes, we only cover an additional 2 vulnerabilities while
adding about 200 files to the RASA, at the cost of the storage
and analysis of 30% more data. This result suggests that
randomly sampling stack traces could be an effective
technique for reducing the cost of running RASA. In a timing
test done on the Firefox sample, parsing the complete set of
stack traces on a 2013 MacBook Pro using Python scripts took
23 minutes, while the 10% sample took 87 seconds. These
results will vary greatly depending on the number of stack
traces in a given sample, the clock speed of the system the task
is running on, the available memory in the system, and the
code for parsing the stack traces.

VII. 'WHY DOES SAMPLING WORK?

Our data shows that random sampling of crashes from a
large dataset does not cause appreciably different results for
RASA compared to RASA run over a complete set of
available stack traces. Our intuition told us that random
sampling would cause an equivalent drop in coverage of
security vulnerabilities: why is this not the case?

To explore this idea, we present Table 3, which is a subset
of'the list of files in Mozilla Firefox. We sorted the list of files
by those that had a security vulnerability fix associated with
them, and then by the number of times the file was seen in a
crash. We then found the point where files had a vulnerability
fix, but never appeared in a crash dump stack trace.

From the table, only 6 files associated with a security
vulnerability fix appeared in only one stack trace. Returning

TABLE III. SNAPSHOT OF FILES WHERE VULNERABILITY COVERAGE
STOPS, WHEN SORTY BY THE NUMBER OF TIMES A FILE WAS SEEN IN A
CRASH.
File Name Cra Vulnerabili
shes ty?

js/src/liveconnect/jsj 6 1
JavaClass.c

js/src/liveconnect/jsj_ 6 1
JavaArray.c

docshell/base/nsDocShel 6 1
lEnumerator.h

js/src/jsdbgapi.h 3 1

modules/libprOn/decoder 2 1
s/nsIconDecoder.cpp

layout/generic/nsPageCo 1 1
ntentFrame.h

layout/xul/base/src/tre 1 1
e/src/nsTreeContentView.h

content /base/src/nsNode 1 1
Iterator.h

modules/oji/src/nsCSecu 1 1
rityContext.h

layout/xul/base/src/tre 1 1
e/src/nsTreeSelection

js/src/jslock.h 1 1

security/nss/cmd/strsci 0 1
nt/strscint.c

280

to Table 1, we see that the difference in total vulnerability
coverage from a 10% sample to the complete set of crashes is
11 files.

This observation could explain why random sampling had
a minimal effect on vulnerable file coverage. For a vulnerable
file to no longer be covered by RASA, it cannot appear in any
stack trace from a crash in the target system. When taking
random samples of crashes, you remove a set percentage of
stack trace lines for potential analysis, but your sample must
not catch any occurrence of a file to not include it on the
RASA. For example, a 30% sampling of crashes is likely to
include at least one occurrence of foo.cpp if it occurs 8 times
in the complete dataset.

While this result indicates that RASA can make effective
use of sampling for large projects like Firefox, it also has
implications for smaller projects that may not have data on the
same scale. For a smaller project that collects 10% of the
crashes that Firefox does, RASA may still be a valuable
technique for prioritizing security efforts. Additional studies
on smaller projects are needed to confirm our result, as smaller
project crashes may not follow a random distribution.

VIIL

One of the limitations of our previous work was that the
RASA approach was only tested on Microsoft Windows and
that the approach may not have been generalizable. In this
study, we have demonstrated the value of RASA on Mozilla
Firefox, but smaller software systems with fewer stack traces
may not work as well with the approach. Both RASA studies
have been done on industry leading codebases. Future studies
could determine how RASA performs on smaller codebases.

In the absence of an oracle for the complete attack surface,
we cannot assess the completeness of our approximation. Our
determination of accuracy currently is based only on known
vulnerabilities, which may introduce a bias towards code

LIMITATIONS



previously seen to be vulnerable. While basing our
effectiveness on historical vulnerabilities may be a good
assumption, further exploration is needed. RASA outputs, as
expected, an approximation, and it cannot identify latent
vulnerabilities directly.

IX. CONCLUSION

In this paper, we have evaluated the effectiveness of
RASA for Mozilla Firefox, and confirmed our previous result
that crash dump stack traces can help practitioners prioritize
code with vulnerabilities. We have analyzed the effect of
random sampling of crash dump stack traces on the final result
of RASA, and concluded that random sampling is an effective
technique for reducing the amount of data required to use
RASA. Finally, by moving granularity to file level in this
study, we have made the approximation more actionable for
developers. Files are a more efficient unit of measure for
locating vulnerabilities as compared to binaries.

In the previous study [1], we explored graph
representations of stack traces using the order of appearance
of code in the trace. For future work, we would like to
construct similar graph representations of the trace. A
standalone tool or plugin integrated with a modern IDE such
as Eclipse is one method for making this representation useful
to practitioners.

Mock examples of the types of graph representations we
could create are in Figure 1. By showing known failing data
paths to the developer, they can focus their triaging efforts on
these paths, excluding any paths that crashes were not seen on.
By following the visualization, the developer focuses their
effort on code that has a higher probability of containing
security defects.

In addition to the visualization of the graph representation
of the stack traces, graph shape analysis is another
methodology we plan to explore to further narrow our scope
of code that could contain security vulnerabilities. Do certain
shapes of incoming and outgoing nodes result in more
frequent sightings of vulnerabilities? We hypothesize that
certain shapes, such as many files calling into one file but that
file only calling out to few files, may exhibit more
vulnerabilities than other areas.

Where code appears on graph representations of software
systems may also be important for prioritization of security
efforts. For example, if security bugs are more likely to appear
on the “edge” of a software system, or closer to API entry
points, then prioritization of those code artifacts may be useful
for finding security vulnerabilities faster.

RASA currently looks at the code entities themselves as
possible locations for security vulnerabilities. The code
entities themselves may not the interesting metric from a
security perspective. The relationships between code entities
may do a better job of pointing out potential vulnerabilities.
Many common vulnerability types are the result of bad data
handling, including SQL injection attacks and buffer overflow
attacks. Future work may be prudent to examine the
relationships between files (or other code entities at various
levels of granularity) and determine which relationships
appear in crashes most frequently. These bad handoffs may
point us towards where vulnerable code lives.
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In this paper and in previous work, RASA was generated
based on an on/off approach. If a code artifact appeared in at
least one crash dump stack trace, then RASA considers that
code entity as part of the attack surface of the system.
However, further prioritization within the generated attack
surface approximation may be possible. The frequency in
which code appears in stack traces from crash dumps may be
an additional metric to explore for further prioritization of
security reviews beyond the attack surface. The more a code
artifact is involved in crashes, the more likely it might be that
that code artifact has a related security vulnerability.
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