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Some people have important,
sensitive things to say.
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Others have less important,
sensitive things to say.
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Saudi Man Gets 10 Years, 2,000 Lashes Over
Atheist Tweets
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Privacy can help.



Existing anonymous messaging apps
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Existing anonymous messaging apps

Alice

Centralized networks are not truly anonymous!
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Compromises in anonymity

ASHLEY MADIS&N com

Life is Short. Have an Affair.®

5.5t Experian

TARGET

whisper

Avoid trusting servers to “do the right thing”

8 /54



OBJECTIVE

Design a distributed messaging mechanism
that:

(a) spreads content fast

(b) gives authors anonymity
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What can adversaries do?

SNAPSHOT

<%, You have a friend request.

You have no friends in common.

SPY-BASED

X1 Add 1o afriend list... Ll optiona

FULL OVERSIGHT
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First-Order Solution: Distributed Messaging

Alice

Snapshot and spy-based adversaries
can still infer the source!
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Information flow in social networks

Diffusion has statistical symmetry



Disease flow in populations

patient zero

[Shah and Zaman 2011, Pinto et al. 2012, Zhu et al. 2013] 13 / 54



Information flow in social networks

High likelihood

Low likelihood
Diffusion spreading = deanonymization

[Shah, Zaman 2011] ** /**



Deanonymization on Social Networks

10 =
ol
C |
O
=
)
(D 1
© 10
)
G
O .
>
=
=
O .
0 10
O
|
o ‘
- —e— Diffusion
- — Lower bound, 1/N
10‘-31 . — : — :
10° 10" 10° 10°

Number of nodes with message (N)
[Seo et al., 2012, SPIE] 15 / 54



First-order solution doesn’t work.

Spreads fast Bad anonymity

© properties ®
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LESSONS LEARNED

1) Diffusion = deanonymization



Engineer the spread to hide authorship.
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Key idea:

Break the symmetry.




Breaking symmetry: Adaptive diffusion

High likelihood

Low likelihood

Provides provable anonymity guarantees

[Spy vs. Spy: Rumor Source Obfuscation, ACM Sigmetrics 2015] o



d-reqular trees: adaptive diffusion

Initially, the author is also the “virtual source”
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d-reqular trees: adaptive diffusion

Break
directional
symmetry
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d-reqular trees: adaptive diffusion

Break
directional
symmetry

chosen neighbor = new virtual source
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d-reqular trees: adaptive diffusion

Break
directional
symmetry
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d-reqular trees: adaptive diffusion

Break
temporal
symmetry

keep the virtual source token

pass the virtual source token S



keep the virtual source token
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pass the virtual source token

Oor new virtual source
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pass the virtual source token

28 / 54



Results

d-Reqgular trees Irregular trees Facebook graph
Snapshot
[1] [2] [1]
Sp—basd
b [3] [3] [3]

(1] Spy vs. Spy: Rumor Source Obfuscation, Sigmetrics 2015
2] Rumor Source Obfuscation on Irreqular Trees, to appear in Sigmetrics 2016

(3] Under review 29 / 54



Snapshot adversary
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When to keep the virtual source token?
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Virtual source token is kept with probability @ = (d — 1)™"



Maximum likelihood detection

High likelihood

Low likelihood

THEOREM: Probability of detection = —
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hop distance
from source

/

h=1 2

O

Pr(keep token)
1
Likelihood = - a
7

Tree degree

SPPNE 1-a
Likelihnood = —

Q|-

Want these to be equal: a = %
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LESSONS LEARNED

1) Diffusion = deanonymization

2) For anonymity, break symmetry.



[rreqular trees
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dmax w. p pmax

How do we analyze this? ) ={dmm wp po

Q O O p - hot) — 1
(detection | snapshot) —— 7
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Path from v to Degree of
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THEOREM: Probability of detection =
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[rreqular trees
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Proof sketch for i, || ¢~ @u-0

vEP(V,vT)
d. = 3 w.p. 0.7 . 3 w.p. 0.7
7|5 w.p. 0.3 11 w.p. 03
pruned
pruned
0.7 3
} }

If Dmin(dmin — 1) > 1 then the pruned process survives.
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LESSONS LEARNED

1) Diffusion = deanonymization
2) For anonymity, break symmetry.

3) For more anonymity, hide in a crowd.



Facebook graph
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Results

d-Reqular trees

Irregular trees

Facebook graph

Snapshot

Optimal

Near-optimal

High anonymity

Spy-based
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Spy-based adversary

Bob With probability p

ra|g

-message
-T =09/10/2015
@ 8:40 pm

David

-message
-T =09/10/2015

Alice @ 9:10 pm

Adversary sees metadata at spy nodes
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Result on d-regular trees
1 . . .

Lower bound
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THEOREM: Probability of detection = p + o(p)
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Facebook Graph
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Results

d-Reqular trees

Irregular trees

Facebook graph

Snapshot

Optimal

Near-optimal

High anonymity

Spy-based

| Asymptotically-

Optimal

ML Estimator

High anonymity
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Adaptive Diffusion

Pros cons
* Strong anonymity * No guarantees for
« Fast spreading general graphs

e Distributed * Sub-optimal spreading

. Lightweight e Passes around state



Wildfire: P2P Anonymous Microblogging

ﬁ TDX Namespace resolution

https://github.com/gfanti/Wildfire

Thia is haha, color and Mmesaagelat 26oma o
work well
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Ongoing Work

(%)) @

Cellular Location Anonymous Cyberbullying

Privacy Messaging Prevention
Vibration-based Anonymous
Biometrics P2P Networking
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Cellular Location Privacy «Ao

" \ (1)
Songbin Gong,  Pramod Viswanath,

Microwave Circuits  Wireless Comm. 50 / 54



Anonymous P2P Messaging




Cyberbullying Prevention

Y

STTND UP
rather than

STAND BY

Project Cornerstone

Suma Bhat, Dorothy Espelage,
NLP Educational Psychology
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Ongoing Work
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