SPY VS. SPY: ANONYMOUS MESSAGING OVER NETWORKS

Giulia Fanti, Peter Kairouz, Sewoong Oh, Kannan Ramchandran, Pramod Viswanath

Some people have important, sensitive things to say.

Others have less important, sensitive things to say.

Saudi Man Gets 10 Years, 2,000 Lashes Over **Atheist Tweets**

By THE ASSOCIATED PRESS .

RIYADH, Saudi Arabia — Feb 27, 2016, 8:26 AM ET

Jason Rezaian's Year of **Imprisonment in Iran**

Wednesday marks the one-year anniversary of the Washington reporter's detention in the Islamic Republic

Politics | Fri Nov 23, 2007 4:54pm EST

HUMAN RIGHTS

China accused of 'tricking' dissidents into deportation

Wife of UN-recognised refugee deported from Thailand accuses Beijing of tricking him into signing deportation papers.

Anneliese Mcauliffe | 29 Nov 2015 12:38 GMT | Human Rights, China, Asia Pacific, Canada

Syria blocks Facebook in Internet crackdown

DAMASCUS | BY KHALED YACOUB OWEIS

Privacy can help.

Existing anonymous messaging apps

donors received Thank You all the

Existing anonymous messaging apps

Centralized networks are not truly anonymous!

Compromises in anonymity

whisper

Avoid trusting servers to "do the right thing"

OBJECTIVE

Design a distributed messaging mechanism that:

- (a) spreads content fast
- (b) gives authors anonymity

What can adversaries do?

SNAPSHOT

SPY-BASED

FULL OVERSIGHT

First-Order Solution: Distributed Messaging

Snapshot and spy-based adversaries can still infer the source!

Information flow in social networks

Disease flow in populations

Information flow in social networks

Diffusion spreading = deanonymization

Deanonymization on Social Networks

[Seo et al., 2012, SPIE]

15 / 54

First-order solution doesn't work.

Spreads fast

Bad anonymity properties 😂

LESSONS LEARNED

1) Diffusion = deanonymization

Engineer the spread to hide authorship.

Key idea:

Break the symmetry.

Direction

Time

Breaking symmetry: Adaptive diffusion

Provides provable anonymity guarantees

Initially, the author is also the "virtual source"

Break directional symmetry

Break directional symmetry

chosen neighbor = new virtual source

Break directional symmetry

Break temporal symmetry

keep the virtual source token

pass the virtual source token

pass the virtual source token

Results

	d-Regular trees	Irregular trees	Facebook graph
Snapshot	[1]	[2]	[1]
Spy-based T-6 T-6 T-7 T-6 T-7 T-7 T-7 T-7	[3]	[3]	[3]

- [1] Spy vs. Spy: Rumor Source Obfuscation, Sigmetrics 2015
- [2] Rumor Source Obfuscation on Irregular Trees, to appear in Sigmetrics 2016
- [3] Under review

Snapshot adversary

When to keep the virtual source token?

Maximum likelihood detection

THEOREM: Probability of detection = $\frac{1}{N-1}$

Want these to be equal:
$$\alpha = \frac{1}{d}$$

LESSONS LEARNED

- 1) Diffusion = deanonymization
- 2) For anonymity, break symmetry.

Irregular trees

$$d_v = \begin{cases} 3 & w. p. & 0.7 \\ 5 & w. p. & 0.3 \end{cases}$$

How do we analyze this?

$$d_v = \begin{cases} d_{min} & w.p. & p_{min} \\ d_{max} & w.p. & p_{max} \end{cases}$$

$$P(\text{detection} \mid \text{snapshot}) = \frac{1}{\min_{v \in \text{leaves}} \prod_{v \in P(v, v_T)} d_v}$$

$$Path \text{ from v to } \text{Degree of } \text{virtual source}$$

If
$$p_{min}(d_{min}-1) > 1$$

$$\min_{v \in \text{leaves}} \prod_{v \in P(v,v_T)} d_v \approx (d_{min}-1)^{T/2}$$

THEOREM: Probability of detection
$$\approx \frac{1}{(d_{min}-1)^{T/2}}$$

Irregular trees

Proof sketch for

$$\min_{v \in \text{leaves}} \prod_{v \in P(v, v_T)} d_v \approx (d_{min} - 1)^{T/2}$$

$$d_v = \begin{cases} 3 & w. p. & 0.7 \\ 5 & w. p. & 0.3 \end{cases}$$

$$d_v = \begin{cases} 3 & w. p. & 0.7 \\ 1 & w. p. & 0.3 \end{cases}$$

If $p_{min}^{0.7}(d_{min}-1)>1$ then the pruned process survives.

LESSONS LEARNED

- 1) Diffusion = deanonymization
- 2) For anonymity, break symmetry.
- 3) For *more* anonymity, hide in a crowd.

Facebook graph

Results

	d-Regular trees	Irregular trees	Facebook graph
Snapshot [
	Optimal	Near-optimal	High anonymity
Spy-based			

Spy-based adversary

Adversary sees metadata at spy nodes

Result on d-regular trees

THEOREM: Probability of detection = p + o(p)

Facebook Graph

Results

	d-Regular trees	Irregular trees	Facebook graph
Snapshot			
	Optimal	Near-optimal	High anonymity
Spy-based 7 = 3 7 = 5 7 = 4 7 = 4	Asymptotically- Optimal	ML Estimator	High anonymity

Adaptive Diffusion

Pros

- Strong anonymity
- Fast spreading
- Distributed
- Lightweight

Cons

- No guarantees for general graphs
- Sub-optimal spreading
- Passes around state

Wildfire: P2P Anonymous Microblogging

https://github.com/gfanti/Wildfire

Namespace resolution

Cyberbullying

Related Work

Ongoing Work

PHYSICAL

NETWORK

ALGORITHMS

SOCIAL SCIENCE

Vibration-based Biometrics

Anonymous P2P Networking

Cellular Location Privacy

Songbin Gong, Microwave Circuits

Pramod Viswanath, Wireless Comm.

Anonymous P2P Messaging

Cyberbullying Prevention

Suma Bhat, NLP

Dorothy Espelage, Educational Psychology

Ongoing Work

PHYSICAL

NETWORK

ALGORITHMS

SOCIAL SCIENCE

Vibration-based Biometrics

Anonymous P2P Networking

Acknowledgments

Suma Bhat

Romit Roy Choudhury

Dorothy Espelage

Hongyu Gong

Songbin Gong

Peter Kairouz

Sewoong Oh

Kannan Ramchandran

Pramod Viswanath