Securing SDNs with App Provenance
UIUC/R2 Monthly Group Meeting

Presented by Ben Ujcich
September 18, 2017

ECE ILLINOIS IrrriNnoTs



Project Members

Ben Ujeich (UIUC) ILLINOIS PURDUE
Sam Jero (Purdue) BN NversTY OF IUNOIS AT URBANAGHAMPAGN. U N I V E R S I T Y
Anne Edmunson (Princeton) -

Richard Skowyra (MITLL) \ BIIEIIII\\JEESTI%?{

James Landry (MITLL)

Adam Bates (UTUC) [E] s soscomerns e o Fecsmoncer
Bill Sanders (UIUC)

Cristina Nita-Rotaru (Northeastern) Northeastern
Hamed Okhravi (MITLL)

2

ECE ILLINOIS Mitrinors



Motivation

SYSTEMS ATTACKS AND DEFENSES . -
Editors: William Enck, whenck@ncsu.edu | Thorsten Holz, thorsten.holz@rub.de | Angelos Stavrou, astavrou@gmu.edu

tocols. In addition, flexibility makes

Security Challenges and Opportunities of it hard to define meanin gful SDN

Software-Defined Networking network policies, such as which

Marc C. Dacier | Qatar Computing Research Institute

Hartmut Kénig and Radoslaw Cwalinski | Brandenburg University of Technology Cottbus ﬂOWS are aﬁected by a SP eCiﬁC net_

Frank Kargl | University of Ulm

Sven Dietrich | City University of New York . . . .
work application and modified in a

specific way. The flexibility SDNs

Ogy Denelt the attacKers.
Attacks against SDN controllers
and the introduction of malicious
controller apps are probably the
most severe threats to SDN.3/7

Dynamic configurations make it
more difficult for defenders to tell
T T T T ——— . whether the current or past configu-
o Moo st vendors ] e 5 1, pe i e in o D
o g o o et o Tt ration is intended and correct. The

SDN-enabled switches. OpenFlow 1.5 supports 44 different
types of header fields against which
to match a packet in order to choose
. LS WO D RO R R

S s pR— ki SR .

Background
T mmmmmmna OTWAT 2]

ECE ILLINOIS HirriNnoOTs




Challenges

* Network applications can modify:

— OpenFlow control protocol messages
(e.g., PACKET IN)
OpenFlow

— Shared data structures (e.g., topology event
data store) handler

= Northbound API boundary between
apps and controller is complicated

= Apps bundled with controller have

risks depending on language )

ECE ILLINOIS HirriNnoOTs



Prior Solutions

* Permission-based access control (e.g., Security Mode ONOS)

— Pros: easy to implement hierarchical permissions

— Cons: does not track data once permission has been granted; not
expressive for contextual-based systems

* Taint tracking

— Pros: traces how data is used from “sources” to “sinks” for information
flow control; minimal additional storage constraints

— Cons: does not capture which system principal/agent was responsible
(i.e., no attribution)

5

ECE ILLINOIS Mitrinors



Solution: ProvSDN ProvSDN
architecture )

= Add data provenance collection to s " Gore 7| v s os |
controller activities to create a °°‘ce === %
provenance-aware control plane “\“ g ;

* Implemented as extension to Eﬁ \\
ONOS SDN controller FMng

= No modifications needed to apps ___

= Acceptable latency overheads for e as T%M/”

callback

provenance capture (~100 ms)

waslInformedBy

and Online dete Ction/ Pr evention wasAssociated used wasGtIeanerated A wasAs\z?:iated
With y _pp
(~300 ms) Provenance graph
6

example

ECE ILLINOIS Mitrinors




Components

= Cross-app poisoning attacks

" Northbound API semantics

= ProvSDN provenance model
= ProvSDN architecture design
* Implementation

= Evaluation

= Results

7

ECE ILLINOIS HirriNnoOTs



Cross-App Poisoning Attacks

SDN Apps SDN Apps
APPLICATION PLANE App 1 App 2 & App 3 APPLICATION PLANE App 1 ;gl‘ App 2 H App3
3 4

~ SDN 'Eé}ii'riiil'é'r"'"/@ """"" / @ T SDN Controller \ """""" ~ ®/

pa 7 @——~
Topology “/Kﬂ for data ol @ API for data API for data\ !
Service -« | structure n /; — structure 1 structure n ” t*
CONTROL _-| PacketIn CONTROL PacketIn
PLANE @ * "® ——== listener PLANE listener
Topology |, ___l|-Shared data Shared data Shared data
Store " | structure n structure 1 structure n_| _/
Z—— O
Switch Switch Switch Switch Switch Switch
DATA PLANE "~ DATAPLANE

Forwarding Devices Forwarding Devices

Method 1: Shared data structure access via
controller API

Method 2: PacketIn processing via
callbacks.

ECE ILLINOIS

ILLINOIS




Northbound APl Semantics

= Unlike traditional operating systems, SDNs do not (yet) have
well-defined semantics

" Prerequisite for defining provenance model

= Approach: static analysis of controller functions/methods

— Class with high number of references in other classes (3 or more) is
considered public-facing and thus part of the northbound API

— ONOS “Public”: 63 classes, 721 methods
— ONOS “Internal”: 194 classes, 1,405 methods

9

ECE ILLINOIS Mitrinors



ProvSDN Provenance Model (W3C PROV-DM)

W3C PROV type

SDN objects of interest

Additional attributes

Entity e Switches e RUUID
e Hosts e DUUID
e Network Links e Creation time
e Flow Rules e C(Class name
e OpenFlow messages
Activity e OpenFlow message pro- e UUID
cessing e Creation time
e Flow rule management e Method name
e Host tracking e (lass name
e Link and topology man-
agement
e Storage management
Agent e Apps e UUID
e Controller e App name
e Switches

ECE ILLINOIS

wasDerivedFrom

wasAttributedTo

actedOnBehalfOf wasAssociatedWith

wasGenerated By

startedAtTime endedAtTime

Source: “A Walk Through PROV-O”, Tim Lebo,
https://www.w3.0rg/2011/prov/wiki/ISWCProvTu
torial

10

ILLINOIS




ProvSDN Architecture Design

External Apps

= Security goals

External External
app app
ﬁ/// — Non-bypassable
:_P:o;e;a;c; _____ Core [ E\t;rr_mal_a;p_m_od_ul_es_: — Complete
n
L colegtor [ [Le I wemaae | 18w Threat model
- e N 18
' Feme | T 12w Northbound API
: Data stores I | :§ or oun
| E nternal app )
e || | — 12 enforcement
\\ = Optimizations
| _Controlplane f | Control plane
Data plane Data plane
Forwarding Devices 11

ECE ILLINOIS Mitrinors



Implementation

= Controller: ONOS (Java-based)
— ProvSDN provenance collector: 1,100 LOC

.

oMo

Open Network Operating System

= Provenance graph database: Neo4;j

— Separate Neo4j server instance

‘ .
= Provenance query language: Neo4j Cypher *’ f eOLU

12

ECE ILLINOIS HirriNnoOTs



Eva I uatlon Neo4j Cypher query for policy

= l. 1 11 MATCH p=(b:AGENT)<-- (a:ACTIVITY),
PO lcy: Oon Y allOw appS tO g=(a:ACTIVITY)<-[*]— (£:ENTITY)<-[:USED] - () <—[*]- (c:
ACTIVITY)--> (d:AGENT),
r=(c:ACTIVITY)<- [ :WAS_GENERATED_BY] - (e:ENTITY)
use data that WaS WHERE e.time_create > currentTime() - 2 seconds

AND b.name <> d.name AND e.name <> f.name
1 AND b.name <> "openflow" AND d.name <> "openflow"
1‘ generated from preV1OU—S AND b.name <> "controller" AND d.name <> "controller"
o« e RETURN p,q,r LIMIT 1;
activity by app,

Subgraph pattern represented by quer
2. genereted by controller, or grapap P yaey

: : App 1 App 2 ,
3. generated by switches [Eb:Agenti| ([ d:Agent |

AN _

= Enforcing application azActivity used | cactivity |
o o ‘ ..'
isolation . ‘: GeneratedBy

13

ECE ILLINOIS Mitrinors



Evaluation: Host Location Change Attack

wasGenerated OpenFlowCore
OpenFlowCore By PacketContext:
PacketContext send
PacketOut

wasAssociated
With

ReactiveForwarding:
callback

OpenFlowCore
l waslInformedBy Pa(gket‘((;ci:\t;ext
acketin
used

waslnformedBy

fwd:getHosts

wasAssociated

With

wasGenerated
used By mal:MalApp
HostLocation

/| wasAssociated
With

= Prevent forwarding app from using HostLocation data that
was previously tampered with by malicious app mal

14

ECE ILLINOIS

ILLINOIS



Evaluation: ARP Spoofing Attack

ﬂ ) wasAssociated wasAssociated
wasAsspmated With With
With wasGenerated SoanFlows waslInformed OpenFlowCo

B penFlowCore used . . B enFlowCore

mal:MalApp [« y PacketContext Reacﬂ::ll:;)angkardmg. < y PacketContext:
(Packetln) send

used wasGenerated

OpenFlowCore
PacketContext
PacketOut

OpenFlowCore
PacketContext
(Packetln)

* Prevent forwarding app from using an OpenFlow PacketIn

message that was tampered with by malicious app mal
15

ECE ILLINOIS HirriNnoOTs



Results: End Host Latency

" Provenance generation T
-~ « Provenance Generation onl
addS Olle Ol‘del‘ Of «+++  Provenance Collection ’ : :
. 0.75 H = Provenance with Policy Checks |------ S RRERES AERIEE -

magnitude to latency RS
" Average 140 ms without osof /o S

checks and 330 ms with S

Checks 0.25 o " .......................... ....................... ]
» (Future work: other } .;'

0.00 N S
graph databases) 10° 10* 102

Latency [ms]

ECE ILLINOIS HirriNnoOTs



Results: Microbenchmarking

Element Average Number of  Total time

time operations spent
Internal check 0.027 ms 3,514,962 95.391 s
Provenance collection  0.072 ms 39,299 2.548 s
Provenance recording 1.26 ms 89,757 113.505 s
Online querying 19.26 ms 4,043 77.888 s

* Online querying was most expensive

= API boundary check was most frequent (and least expensive) .

ECE ILLINOIS Mitrinors



Results: Storage

= Spikes correspond to flow >
modifications; depends a0}
on topology % N
* (Future work: pruning 4
provenance graph) 27
- 10|
ol—=_

0 50 100 150 200 250 300 350 400 450
Time elapsed [s]

18

ECE ILLINOIS HirriNnoOTs



Summary

* Provenance-based solution to information flow control for
securing SDN controllers and network applications

= Real-time checking for online enforcement of information flow
control policies

* Implemented in production-quality ONOS SDN controller

= Future work: exploring other ways we can use provenance (e.g.,
compliance, forensics)

= Paper submitted to NDSS 18

19

ECE ILLINOIS Mitrinors



Questions?

* Thanks for listening!

20

ECE ILLINOIS HirriNnoOTs



