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Abstract. Garbled RAM (GRAM) is a powerful technique introduced
by Lu and Ostrovsky that equips Garbled Circuit (GC) with a sublinear
cost RAM without adding rounds of interaction. While multiple GRAM
constructions are known, none are suitable for practice, due to costs that
have high constants and poor scaling.

We present the first GRAM suitable for practice. For computational
security parameter κ and for a size-n RAM that stores blocks of size
w = Ω(log2 n) bits, our GRAM incurs amortized O(w · log2 n · κ) com-
munication and computation per access. We evaluate the concrete cost
of our GRAM; our approach outperforms trivial linear-scan-based RAM
for as few as 512 128-bit elements.
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1 Introduction

Secure multiparty computation (MPC) allows mutually untrusting parties to
compute functions of their combined inputs while revealing nothing but the
outputs. MPC protocols traditionally consider functions encoded as circuits.
While this does not limit expressivity, it does limit efficiency: many interesting
computations are best expressed as RAM programs, not as circuits, and the
reduction from RAM programs to circuits is expensive.

Fortunately, we can combine MPC with oblivious RAM (ORAM). ORAM is
a technology that allows a client to outsource an encrypted database to a server;
the client can then access the database while both (1) incurring only sublin-
ear overhead and (2) hiding the access pattern from the server. By running an
ORAM client inside MPC, we can augment circuits with random access memory.
This powerful combination allows us to run RAM programs inside MPC.

Garbled Circuit (GC) is a foundational and powerful MPC technique that
allows two parties to achieve secure computation while consuming only constant
rounds of interaction. One party, the GC generator G, “encrypts” the circuit
and sends it to the other party, the GC evaluator E. E is given an encryption of
each party’s input and steps through the circuit gate-by-gate under encryption.
At each gate, E propagates encryptions of input wire values to encryptions of
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output wire values. Once E finishes, E and G can jointly decrypt the output
wire values, revealing the circuit output.

It is natural to consider adding RAM to GC while preserving GC’s constant
rounds. However, the constant round requirement means that adding RAM to
GC is seemingly more difficult than adding RAM to interactive protocols. Nev-
ertheless, it is possible to run an ORAM client inside the GC and to let E play
an ORAM server. This technique is called Garbled RAM (GRAM) [LO13].

While GRAM constructions are known [LO13,GHL+14,GLOS15,GLO15],
none are suitable for practice: existing constructions simply cost too much. All
existing GRAMs suffer from at least two of the following problems:
– Use of non-black-box cryptography. [LO13] showed that GRAM can be

achieved by evaluating a PRF inside GC in a non-black-box way. Unfortu-
nately, this non-black-box cryptography is extremely expensive, and on each
access the construction must evaluate the PRF repeatedly. [LO13] requires
a circular-security assumption on GC and PRFs. Follow-up works removed
this circularity by replacing the PRF with even more expensive non-black-box
techniques [GHL+14,GLOS15].

– Factor-κ blowup. Let κ denote the computational security parameter. In
practical GC, we generally assume that we will incur factor κ overhead due
to the need to represent each bit as a length-κ encoding (i.e. a GC label).
However, existing GRAMs suffer from yet another factor κ. This overhead
follows from the need to represent GC labels (which have length κ) inside
the GC such that we can manipulate them with Boolean operations. The GC
labels that encode a GC label together have length κ2. In practice, where we
generally use κ = 128, this overhead is intolerable.

– High factor scaling. Existing GRAMs operate as follows. First, they give an
array construction that leaks access patterns to E. This leaky array already
has high cost. Then, they compile this array access into GRAM using off-the-
shelf ORAM. This compilation is problematic: off-the-shelf ORAMs require
that, on each access, E access the leaky array a polylogarithmic (or more)
number of times. Thus, existing GRAMs incur multiplicative overhead from
the composition of the leaky array with the ORAM construction.

Prior GRAM works do not attempt to calculate their concrete or even asymp-
totic cost, other than to claim cost sublinear or polylogarithmic in n. In the
full version of this paper, we (favorably to prior work) estimate their cost: for a
GRAM that stores 128-bit blocks, the best prior GRAM breaks even with trivial
linear-scan based GRAM when the RAM size reaches ≈ 220 elements. As noted,
our analysis discounts many potentially expensive steps of prior constructions,
giving an estimate favorable to them. In particular, this conservative estimate
indicates that by the time it is worthwhile to use existing GRAM, each and every
access requires a 4GB GC.

1.1 Contribution

We present the first practical garbled RAM. Our GRAM, which we call Epi-
GRAM, uses only O(w · log2 n · κ) computation and communication per access.
EpiGRAM circumvents all three of the above problems:
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– No use of non-black-box cryptography. Our approach routes array ele-
ments using novel, yet simple, techniques. These techniques are light-weight,
and non-black-box cryptography is not required.

– No factor-κ blowup. While we, like previous GRAMs, represent GC labels
inside the GC itself, we give a novel generalization of existing GC gates that
eliminates the additional factor κ overhead.

– Low polylogarithmic scaling. Like previous GRAMs, we present a leaky
construction that reveals access patterns to E. However, we do not compile
this into GRAM using off-the-shelf ORAM. Instead, we construct a custom
ORAM designed with GC in mind. Our GRAM minimizes use of our leaky
construction. The result is a highly efficient technique.

In the remainder of this paper we:

– Informally and formally describe the first practical GRAM. For an array with
n elements each of size w such that w = Ω(log2 n), the construction incurs
amortized O(w · log2 n · κ) communication and computation per access.

– Prove our GRAM secure by incorporating it in a garbling scheme [BHR12].
Our scheme handles arbitrary computations consisting of AND gates, XOR
gates, and array accesses. Our scheme is secure under a typical GC assump-
tion: a circular correlation robust hash function [CKKZ12].

– Analyze EpiGRAM’s concrete cost. Our analysis shows that EpiGRAM
outperforms trivial linear-scan based RAM for as few as 512 128-bit elements.

2 Technical Overview

In this section, we explain our construction informally but with sufficient detail
to understand our approach. This overview covers four topics:

– First, we explain a problem central to GRAM: language translation.
– Second, we informally explain our lazy permutation network, which is a con-

struction that efficiently solves the language translation problem.
– Third, as a stepping stone to our full construction, we explain how to con-

struct leaky arrays from the lazy permutation network. This informal con-
struction securely implements an array with the caveat that we let E learn
the array access pattern.

– Fourth, we upgrade the leaky array to full-fledged GRAM: the presented
construction hides the access pattern from E.

2.1 The Language Translation Problem

For each GC wire xi the evaluator E holds one of two κ-bit strings: either Xi,
which encodes a logical zero, or Xi ⊕Δ, which encodes one. Meanwhile, G holds
each such Xi and the global secret Δ. We refer to the wire-specific value Xi as
the language of that wire, and to the pair 〈Xi,Xi⊕xiΔ〉 jointly held by G and E
as the GC encoding, or the garbling, of xi. We present this notation formally in
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Sect. 4.4. To produce a garbled gate that takes as input a particular wire value
xi, G must know the corresponding language Xi. Normally this is not a problem:
the structure of the circuit is decided statically, and G can easily track which
languages go to which gates.

However, consider representing an array as a collection of such garbled labels.
That is, there are n values xi where E holds Xi ⊕xiΔ. Suppose that at runtime
the GC requests access to a particular index α. We could use a static circuit
to select xα, but this would require an expensive linear-cost circuit. A different
method is required to achieve the desired sublinear access costs.

Instead, suppose we disclose α to E in cleartext – we later add mechanisms
that hide RAM indices from E. Since she knows α, E can jump directly to the
αth wire and retrieve the value Xα ⊕ xαΔ. Recall, to use a wire as input to
a gate, G and E must agree on that wire’s language. Unfortunately, it is not
possible for G to predict the language Xα: α is computed during GC evaluation
and, due to the constant round requirement, E cannot send messages to G.

Therefore, we instead allow G to select a fresh uniform language Y . If we can
convey to E the value Y ⊕xαΔ, then G will be able to garble gates that take the
accessed RAM value as input, and we can successfully continue the computation.

Thus, our new goal is to translate the language Xα to the language Y .
Mechanically, this translation involves giving to E the value Xα ⊕ Y . Given
this, E simply XORs the translation value with her label and obtains Y ⊕ xαΔ.
Keeping the circuit metaphor, providing such translation values to E allows her
to take two wires – the wire out of the RAM and the wire into the next gate –
and to solder these wires together at runtime. However, the problem of efficiently
conveying these translation values remains.

In the full version of this paper, we discuss natural attempts at solving
the language translation problem. Translation can be achieved by a linear-
sized gadget (suggesting dynamic conversion is possible), or by a non-black box
PRF [LO13] (suggesting the ability to manipulate languages inside the GC). Our
lazy permutation network (discussed next) achieves dynamic language transla-
tion more cheaply, but its underpinnings are the same: the network carefully
manipulates languages inside the GC.

2.2 Lazy Permutations

Recall that our current goal is to translate GC languages. Suppose that the
GC issues n accesses over its runtime. Further suppose that the GC accesses
a distinct location on each access – in the end we reduce general RAM to a
memory with this restriction. To handle the n accesses, we wish to convey to E
n translation values Xi ⊕Yj where Yj is G’s selected language for the jth access.

What we need then is essentially a permutation on n elements that routes
between RAM locations (with language Xi) and accesses (with language Yj).
However, a simple permutation network will not suffice, since at the time of
RAM access j, the location of each subsequent access will, in general, not yet
be known. Therefore, we need a lazy permutation whereby we can decide and
apply the routing of the permutation one input at a time. We remind the reader
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Fig. 1. An internal node of our lazy permutation network, realizing a “garbled switch”.
We depict the fourth access to this switch. The encoded input uses language B3. The
first encoded input bit is a flag that indicates to proceed left or right. Our objective
is to forward the remaining input to either the left or right node. Each node stores
two oblivious stacks that hold encodings of the unused languages of the two children.
We conditionally pop both stacks. In this case, the left stack is unchanged whereas
the right stack yields D1, the next language for the target child. Due to the pop, the
remaining elements in the right stack move up one slot. By XORing these values with
an encoding of the input language, then opening the resulting value to E, we convert
the message to the language of the target child, allowing E to solder a wire to the child.

that we assume that E knows each value α. I.e., we need only achieve a lazy
permutation where E learns the permutation.

Given this problem, it may now be believable that algorithms and data struc-
tures exist such that the total cost is O(κ · n · polylog(n)), and hence only
amortized O(κ · polylog(n)) per access. Indeed we present such a construction.
However, our solution requires that we apply this lazy permutation to the GC
languages themselves, not to bits stored in the RAM. Thus, we need a logic
in which we can encode GC languages: E must obliviously and authentically
manipulate GC languages. GC gives us these properties, so we can encode lan-
guages bit-by-bit inside the GC. I.e., for a language of length w, we would add
w GC wires, each of which would hold a single bit of the language.

Unfortunately, this bit-by-bit encoding of the languages leads to a highly
objectionable factor κ blowup in the size of the GC: the encoding of a length-w
language has length w ·κ. We later show that the factor κ blowup is unnecessary.
Under particular conditions, existing GC gates can be generalized such that we
can represent a length-w language using an encoding of only length w. These
special and highly efficient GC gates suffice to build the gadgetry we need. We
formalize the needed gate in Sect. 5.1.

The ability to encode languages inside the GC is powerful. Notice that since
we can dynamically solder GC wires, and since wires can hold languages needed
to solder other wires, we can arrange for E to repeatedly and dynamically lay
down new wiring in nearly arbitrary ways.
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With this high level intuition, we now informally describe our lazy permu-
tation network. Let n be a power of two. Our objective is to route between the
languages of n array accesses and the languages of n array elements.

G first lays out a full binary tree with n leaves. Each node in this tree is
a GC with static structure. However, the inputs and outputs to these circuits
are loose wires, ready to be soldered at runtime by E. At runtime, seeking to
read array element xα with language Xα into a wire with language Y , E begins
at the root of the tree, which holds a GC encoding of the target language Y .
(Note, G knows the target language Y of the j-th access, and can accordingly
program the tree root.) Based on the GC encoding of the first bit of α, E is able
to dynamically decrypt a translation value to either the left or the right child
node. Now, E can solder wires to this child, allowing her to send to the child
circuit both the encoding of Y and the remaining bits of α. E repeatedly applies
this strategy until she reaches the αth leaf node. This leaf node is a special
circuit that computes C(x) = x ⊕ Xα and then reveals the output to E.1 Since
we have pushed the encoding of Y all the way to this leaf, E obtains Y ⊕ Xα,
the translation value that she needs to read xα.

In yet more detail, each internal node on level k of the tree, which we infor-
mally call a garbled switch, is a static circuit with 2log n−k loose sets of input
wires. Each node maintains two oblivious stacks [ZE13]. The first stack stores
encodings of the languages for the 2log n−k−1 loose input wires of the left child,
and the second stack similarly stores languages for the right child (see Fig. 1).
On the j-th access and seeking to compute Yj ⊕Xα, E dynamically traverses the
tree to leaf α (recall, we assume E knows α in cleartext), forwarding an encoding
of Yj all the way to the αth leaf. At each internal node, she uses a bit of the
encoding of α to conditionally pop the two stacks, yielding an encoding of the
language of the correct child. The static circuit uses this encoding to compute a
translation value to the appropriate child.

By repeatedly routing inputs over the course of n accesses, we achieve a lazy
permutation. Crucially, the routing between nodes is not decided until runtime.

This construction is affordable. Essentially the only cost comes from the
oblivious stacks. For a stack that stores languages of length w, each pop costs
only O(w · log n) communication and computation (Sect. 5.2). Thus, the full
lazy permutation costs only O(w · n · log2 n) communication, which amortizes
to sublinear cost per access. We describe our lazy permutation network in full
formal detail in Sect. 5.3.

Our lazy permutation networks route the language of each RAM slot to
the access where it is needed, albeit in a setting where E views the routing
in cleartext. Crucially, the lazy permutation network avoids factor κ additional
overhead that is common in GRAM approaches. To construct a secure GRAM,
we build on this primitive and hide the RAM access pattern.

1 Our actual leaf circuit is more detailed. See Sects. 2.4 and 5.3.
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2.3 Pattern-Leaking (Leaky) Arrays

As a stepping stone to full GRAM, we informally present an intermediate array
which leaks access patterns. For brevity, we refer to it as leaky array. This con-
struction handles arbitrary array accesses in a setting where E is allowed to
learn the access pattern. We demonstrate a reduction from this problem to our
lazy permutation network.

We never formally present the resulting construction. Rather, we explain the
construction now for expository reasons: we decouple our explanation of cor-
rectness from our explanation of obliviousness. I.e., this section builds a correct
GRAM that leaks the access pattern to E. The ideas for this leaky construction
carry to our secure GRAM (Sect. 2.4).

Suppose the GC wishes to read index α. Recall that our lazy permutation
network is a mechanism that can help translate GC languages: E can dynam-
ically look up an encoding of the language Xα. However, because the network
implements a permutation, it alone does not solve our problem: an array should
allow multiple accesses to the same index, but the permutation can route each
index to only one access. To complete the reduction, more machinery is needed.

To start, we simplify the problem: consider an array that handles at most
n accesses. We describe an array that works in this restricted setting and later
upgrade it to handle arbitrary numbers of accesses.

Logical Indices → One-Time Indices. The key idea is to introduce a level
of indirection. While the GC issues queries via logical indices α, our array stores
its content according to a different indexing system: the content for each logical
index α is stored at a particular one-time index p. As the name suggests, each
one-time index may be written to and read at most once. This limitation ensures
compatibility with a lazy permutation: since each one-time index is read only
once, a permutation suffices to describe the read pattern. We remark that this
reduction from general purpose RAM to a permuted read order was inspired by
prior work on efficient RAM for Zero Knowledge [HK21].

Each one-time index can be read only once, yet each logical index can be
read multiple times. Thus, over the course of n accesses, a given logical index
might correspond to multiple one-time indices.

Neither party can a priori know the mapping between logical indices and one-
time indices. However, to complete an access the GC must compute the relevant
one-time index. Thus, we implement the mapping as a recursively instantiated
index map.2 The index map is itself a leaky array where each index α holds the
corresponding one-time index p. We are careful that the index map is strictly
smaller than the array itself, so the recursion terminates; when the next needed
index map is small enough, we instantiate it via simple linear scans.

A leaky array with n elements each of size w and that handles at most n
accesses is built from three pieces:

1. A block of 2n GC encodings each of size w called the one-time array. We
index into the one-time array using one-time indices.

2 Recursive index/position maps are typical in ORAM constructions, see e.g. [SvS+13].
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2. A size-2n lazy permutation π̃ where each leaf i stores the language for one-
time array slot i.

3. The recursively instantiated index map.

Let ⦃xi⦄ denote the GC encoding of bitstring xi where G holds Xi and E holds
Xi ⊕ xiΔ (see also Sect. 4.4). Suppose the parties start with a collection of n
encodings ⦃x0⦄, ..., ⦃xn−1⦄ which they would like to use as the array content.
The parties begin by sequentially storing each value ⦃xi⦄ in the corresponding
one-time index i. The initial mapping from logical indices to one-time indices
is thus statically decided: each logical index i maps to one-time index i. The
parties recursively instantiate the index map with content ⦃0⦄, ..., ⦃n − 1⦄.

When the GC performs its j-th access to logical index ⦃α⦄, we perform the
following steps:

1. The parties recursively query the index map using input ⦃α⦄. The result is
a one-time index ⦃p⦄. The parties simultaneously write back into the index
map ⦃n + j⦄, indicating that α will next correspond to one-time index n + j.

2. The GC reveals p to E in cleartext. This allows E to use the lazy permutation
network π̃ to find a translation value for the pth slot of the one-time array.

3. E jumps to the pth slot of the array and translates its language, soldering
the value to the GC and completing the read. Note that the GC may need to
access index α again, so the parties perform the next step:

4. The parties write back to the (n + j)-th slot of the one-time array. If the
access is a read, they write back the just-read value. Otherwise, they write
the written value.

In this way, the parties can efficiently handle n accesses to a leaky array.

Handling More than n Accesses. If the parties need more than n accesses,
a reset step is needed. Notice that after n accesses, we have written to each of
the 2n one-time indices (n during initialization and one per access), but we have
only read from n one-time indices. Further notice that on an access to index α,
we write back a new one-time index for α; hence, it must be the case that the n
remaining unread one-time array slots hold the current array content.

Going beyond n accesses is simple. First, we one-by-one read the n array
values in the sequential logical order (i.e. with α = 0, 1, .., n − 1), flushing the
array content into a block ⦃x0⦄, ..., ⦃xn−1⦄. Second, we initialize a new leaky
array data structure, using the flushed block as its initial content. This new
data structure can handle n more accesses. By repeating this process every n
accesses, we can handle arbitrary numbers of accesses.

Summarizing the Leaky Array. Thus, we can construct an efficient garbled
array, which leaks access patterns. Each access to the leaky array costs amortized
O(w · log2 n · κ) bits of communication, due to the lazy permutation network.
We emphasize the key ideas that carry over to our secure GRAM:

– We store the array data according to one-time indices, not according to logical
indices. This ensures compatibility with our lazy permutation network.
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– We recursively instantiate an index map that stores the mapping from logical
indices to one-time indices.

– We store the GC languages of the underlying data structure in a lazy permu-
tation network such that E can dynamically access slots.

– Every n accesses, we flush the current array and instantiate a fresh one.

2.4 Garbled RAM

In Sect. 2.3 we demonstrated that we can reduce random access arrays to our
lazy permutation network, so long as E is allowed to learn the access pattern.
In this section we strengthen that construction by hiding the access patterns,
therefore achieving secure GRAM.

Note that this strengthening is clearly possible, because we can simply employ
off-the-shelf ORAM. In ORAM, the server learns a physical access pattern, but
the ORAM protocol ensures that these physical accesses together convey no
information about the logical access pattern. Thus, we can use our leaky array
to implement physical ORAM storage, implement the ORAM client inside the
GC, and the problem is solved.

We are not content with this solution. The problem is that our leaky array
already consumes O(log2 n) overhead, due to lazy permutations. In ORAM,
each logical access is instantiated by at least a logarithmic number of physical
reads/writes. Thus, compiling our leaky array with off-the-shelf ORAM incurs
at least an additional O(log n) multiplicative factor. In short, this off-the-shelf
composition is expensive.

We instead directly improve the leaky array construction (Sect. 2.3) and
remove its leakage. This modification incurs only additive overhead, so our
GRAM has the same asymptotic cost as the leaky array: O(w · log2 n · κ) bits
per access.

The key idea of our full GRAM is as follows: In regular ORAM, we assume
that the client is significantly weaker than the server. In our case, too, the GC –
which plays the client – is much weaker than E – who plays the server. However,
we have a distinct advantage: the GC generator G can act as a powerful advisor
to the GC, directly informing most of its decisions.

More concretely, our GRAM carefully arranges that the locations of almost
all of the physical3 reads and writes are decided statically and are independent
of the logical access pattern. Thus, G can a priori track the static schedule and
prepare for each of the static accesses. Our GRAM incurs O(log2 n) physical
reads/writes per logical access. However, only a constant number4 of these reads
cannot be predicted by G, as we will soon show.

Each physical read/write requires that G and E agree on the GC language
of the accessed element. For each statically decided read/write, this agreement
3 I.e. reads and writes to the lowest level underlying data structure, where access

patterns are visible to E.
4 To be pedantic, if we account for recursively instantiated index maps, each map

incurs this constant number of unpredictable reads, so there are total a logarithmic
number of unpredictable reads.



12 D. Heath et al.

is reached trivially. Therefore, we only need our lazy permutation network for
reads that G cannot predict. There are only a constant number of these, so we
only need a constant number of calls to the lazy permutation network.

Upgrading the Leaky Array. We now informally describe our GRAM. Our
description is made by comparison to the leaky array described in Sect. 2.3.

In the leaky array, we stored all 2n one-time indices in a single block. In
our GRAM, we instead store the 2n one-time indices across O(log n) levels of
exponentially increasing size: each level i holds 2i+1 elements, though some levels
are vacant. As we will describe later, data items are written to the smallest level
and then slowly move from small levels to large levels. Each populated level of
the GRAM holds 2i one-time-indexed data items and 2i dummies. Dummies are
merely encodings of zero. Each level of the GRAM is stored shuffled. The order
of items on each level is unknown to E but, crucially, is known to G. This means
that at all times G knows which one-time index is stored where and knows which
elements are dummies.

In the leaky array, E was pointed directly to the appropriate one-time index.
In our GRAM, we need to hide the identity of the level that holds the appropriate
index. Otherwise, since elements slowly move to larger levels, E will learn an
approximation of the time at which the accessed element was written. Hence we
arrange that E will read from each level on each access. However, all except one
of these accesses will be to a dummy, and the indices of the accessed dummies
are statically scheduled by G. More precisely, G a priori chooses one dummy on
each populated level and enters their addresses as input to the GC. The GC
then conditionally replaces one dummy address by the real address, then reveals
each address to E. (Note that G does not know which dummy goes unaccessed
– we discuss this later.)

In the leaky array and when accessing logical index α, we used the index map
to find corresponding one-time index p. p was then revealed to E. In our GRAM,
it is not secure for E to learn one-time indices corresponding to accesses. Thus,
we introduce a new uniform permutation π of size 2n that is held by G and
secret from E. Our index map now maps each index ⦃α⦄ to the corresponding
permuted one-time index ⦃π(p)⦄. We can safely reveal π(p) to E – the sequence
of such revelations is indistinguishable from a uniform permutation.

In the leaky array, we used the lazy permutation network π̃ to map each
one-time index p to a corresponding GC language. Here, we need two changes:

1. Instead of routing p to the metadata corresponding to p, we instead route
π(p) to the metadata corresponding to p. G can arrange for this by simply
initializing the content of the lazy permutation in permuted order.

2. We slowly move one-time indexed array elements from small levels to large
levels (we have not yet presented how this works). Thus, each one-time index
no longer corresponds to a single GC language. Instead, each one-time index
now corresponds to a collection of physical addresses. Moreover, each time
we move a one-time index to a new physical address, it is crucial to security
that we encode the data with a different GC language. Fortunately, we ensure
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that G knows the entire history of each one-time index. Thus, he can garble
a circuit that takes as input the number of accesses so far and outputs the
current physical address and GC language.
We place these per-one-time-index circuits at the leaves of a lazy permutation
network.

Remark 1 (Indices). Our GRAM features three kinds of indices:

– Logical indices α refer to simple array indices. The purpose of the GRAM is
to map logical indices to values.

– Each time we access a logical index, we write back a corresponding value to a
fresh one-time index p. Thus, each logical index may correspond to multiple
one-time indices. The mapping from logical indices to one-time indices is
implemented by the recursively instantiated index map.

– One-time indices are not stored sequentially, but rather are stored permuted
such that we hide access patterns from E. A physical address @ refers to the
place where a one-time index p is currently held. Because we repeatedly move
and permute one-time indices, each one-time index corresponds to multiple
physical addresses. The mapping from one-time indices to physical addresses
is known to G and is stored in a lazy permutation network.

In the leaky array and on access j, we write back an element to one-time
index n + j. In our GRAM, we similarly perform this write. We initially store
this one-time index in the smallest level. Additionally, the parties store a fresh
dummy in the smallest level. After each write, the parties permute a subset
of the levels of RAM using a traditional permutation network. The schedule
of permutations – see next – is carefully chosen such that the access pattern
is hidden but cost is low. Over the course of n accesses, the n permutations
together consume only O(n · log2 n) overhead.

The Permutation Schedule. Recall that we arrange the RAM content into
O(log n) levels of exponentially increasing size. After each access, G applies a
permutation to a subset of these levels. These permutations prevent E from
learning the access pattern.

Recall that on each access, E is instructed to read from each populated level.
All except one of these reads is to a dummy. Further recall that after being
accessed once, a one-time index is never used again. Thus, it is important that
each dummy is similarly accessed at most once. Otherwise, E will notice that
doubly-accessed addresses must hold dummies.

Since we store only 2i dummies on level i, level i can only support 2i accesses:
after 2i accesses it is plausible that all dummies have been exhausted. To con-
tinue processing, G therefore re-permutes the level, mixing the dummies and real
elements such that the dummies can be safely reused. More precisely, on access
j we collect those levels i such that 2i divides j. Let k denote the largest such i.
We concatenate each level i ≤ k together into a block of size 2k+1 and permute
its contents into level k + 1 (this level is guaranteed to be vacant). This leaves
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each level i ≤ k vacant and ready for new data to flow up. Now that the data
has been permuted, it is safe to once again use the shuffled dummies, since they
are shuffled and each is given a new GC language.

As a security argument, consider E’s view of a particular level i over all 2i

accesses between permutations. Each such access could be to a dummy or to a
real element, but these elements are uniformly shuffled. Hence, E’s view can be
simulated by uniformly sampling, without replacement, a sequence of 2i indices.

Remark 2 (Permutations). Our RAM features three kinds of permutations:

– π̃ is a lazy permutation whose routing is revealed to E over the course of n
accesses. The lazy permutation allows E to efficiently look up the physical
address and language for the target one-time index.

– π is a uniform permutation chosen by G whose sole purpose is to ensure that
π̃ does not leak one-time indices to E. Let π′ denote the actual routing from
RAM accesses to one-time indices. E does not learn π′, but rather learns
π̃ = π′ ◦ π. Since π is uniform, π̃ is also uniform.

– π0, ..., πn−1 is a sequence of permutations chosen by G and applied to levels
of GRAM. These ensure that the physical access pattern leaks nothing to E.

Accounting for the Last Dummy per Access. One small detail remains.
Recall that on each access, G statically chooses a dummy on each of the O(log n)
levels. E will be pointed to each of these dummies, save one: E will not read the
dummy on the same level as the real element. The identity of the real element
is dynamically chosen, so G cannot know which dummy is not read. The parties
must somehow account for the GC language of the unread dummy to allow E
to proceed with evaluation. (We expand on this need in a moment.)

This accounting is easily handled by a simple circuit Chide . Chide takes as
input an encoding of the real physical address and outputs an encoding of the
language of the unaccessed dummy.

We now provide more detail (which can be skipped at the first reading)
explaining why E must recover an encoding of the language of the unaccessed
dummy. Suppose the real element is on level j. G selects O(log n) dummy lan-
guages Di for this access, and E reads one label in each language Di�=j , and
reads the real value. To proceed, G and E must obtain the real value in some
agreed language, and this language must depend on all languages Di (since G
cannot know which dummy was not read). Therefore, Dj must be obtained and
used by E as well. In even more detail, in the mind of G, the “output” lan-
guage includes the languages Di XORed together; to match this, in addition to
XORing all labels she already obtained, E XORs in the encoding of the missing
dummy language. The validity of this step relies heavily on Free XOR [KS08].

The High Level Procedure. To conclude our overview, we enumerate the
steps of the RAM. Consider an arbitrary access to logical index α.
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1. E first looks up α’s current one-time index p by consulting the index map.
The index map returns an encoding of π(p) where π is a uniform permutation
that hides one-time indices from E.

2. The GC reveals π(p) to E in cleartext such that she can route the lazy
permutation π̃. E uses π̃ to route the current RAM time to a leaf circuit that
computes encodings of the appropriate physical address @ and GC language.
Let � denote the RAM level that holds address @.

3. A per-access circuit Chide is used to compute (1) encodings of physical
addresses of dummies on each populated level i 	= � and (2) the GC lan-
guage of the dummy that would have been accessed on level �, had the real
element been on some other level.

4. The GC reveals addresses to E and E reads each address. E XORs the results
together. (Recall, dummies are garblings of zero.) Each read value is a GC
label with a distinct language. To continue, G and E must agree on the lan-
guage of the resulting GC label. G can trivially account for the GC language
of each dummy except for the unaccessed dummy. E XORs on the encoded
language for the accessed element and the encoded language for the unac-
cessed dummy. This allows E to solder the RAM output to the GC such that
computation can continue.

5. Parties write back an encoding either of the just-accessed-element (for a read)
or of the written element (for a write). This element is written to the smallest
level. Parties also write a fresh dummy to the smallest level.

6. G applies a permutation to appropriate RAM levels.
7. After the nth access, E flushes the RAM by reading each index without

writing anything back, then initializes a new RAM with the flushed values.

We formalize our GRAM in Sect. 5.4.

3 Related Work

Garbled RAM. [LO13] were the first to achieve sublinear random access in
GC. As already mentioned, their GRAM evaluates a PRF inside the GC and
also requires a circular-security assumption.

This circularity opened the door to further improvements. [GHL+14] gave
two constructions, one that assumes identity-based-encryption and a second that
assumes only one-way functions, but that incurs super-polylogarithmic over-
head. [GLOS15] improved on this by constructing a GRAM that simultaneously
assumes only one-way functions and that achieves polylog overhead. Both of
these works avoid the [LO13] circularity assumption, but are expensive because
they repeatedly evaluate cryptographic primitives inside the GC.

[GLO15] were the first to achieve a GRAM that makes only black-box use
of crypto-primitives. Our lazy permutation network is inspired by [GLO15]: the
authors describe a network of GCs, each of which can pass the program control
flow to one of several other circuits. In this way they translate between GC
languages. Our approach improves over the [GLO15] approach in several ways:
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– The [GLO15] GRAM incurs factor κ blowup when passing messages through
their network of GCs. Our lazy permutation network avoids this blowup.

– [GLO15] uses a costly probabilistic argument. Each node of their network
is connected to a number of other nodes; this number scales with the sta-
tistical security parameter. The authors show that the necessary routing can
be achieved at runtime with overwhelming probability.5 This approach uses
a network that is significantly larger than is needed for any particular rout-
ing, and most nodes are ultimately wasted. In contrast, our lazy permutation
network is direct. Each node connects to exactly two other nodes, and all
connections are fully utilized over n accesses.

– [GLO15] compile their GRAM using off-the-shelf ORAM, incurring multi-
plicative overhead between their network of GCs and the ORAM. We build
a custom RAM that makes minimal use of our lazy permutation network.

In this work, we focus on RAM access in the standard GC setting. A number
of other works have explored other dimensions of GRAM, such as parallel RAM
access, adaptivity, and succinctness [CCHR16,CH16,LO17,GOS18].

Practical GC and ORAM. Due to space, we defer discussion of works in the
areas of practical GC and ORAM to the full version of this paper.

4 Preliminaries, Notation, and Assumptions

4.1 Common Notation

– G is the circuit generator. We refer to G as he/him.
– E is the circuit evaluator. We refer to E as she/her.
– We denote by 〈x, y〉 a pair of values where G holds x and E holds y.
– κ is the computational security parameter (e.g. 128).
– We write x � y to denote that x is defined to be y.
– c= is the computational indistinguishability relation.
– x ← y denotes that variable x is assigned to value y; x can later be reassigned.
– We generally use n to denote the number of elements and w to denote the

bit-width of those elements.
– [x] denotes the natural numbers 0, ..., x − 1.

Our construction is a garbling scheme [BHR12], not a protocol. I.e., our con-
struction is merely a tuple of procedures that can be plugged into GC protocols.
However, it is often easier to think of G and E as participating in a semi-honest
protocol. Thus, we often write that the parties “send messages”. We make two
notes about this phrasing:

– We will never write that E sends a message to G: all information flows from
G to E. In this way, we preserve the constant round nature of GC.

– ‘G sends x to E’ formally means that (1) our garbling procedure appends x
to the GC and (2) our evaluation procedure extracts x from the GC.

5 The [GLO15] probabilistic argument requires that indices be accessed randomly. I.e.,
the [GLO15] leaky array cannot be used except by plugging it into ORAM.
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4.2 Cryptographic Assumptions

We use the Free XOR technique [KS08], so we assume a circular correlation
robust hash function H [CKKZ12,ZRE15]. In practice, we instantiate H using
fixed-key AES [GKWY20].

4.3 Garbling Schemes

A garbling scheme [BHR12] is a method for securely computing a class of circuits
in constant rounds. A garbling scheme is not a protocol; rather, it is a tuple of
procedures that can be plugged into a variety of protocols.

Definition 1 (Garbling Scheme). A garbling scheme for a class of circuits
C is a tuple of procedures:

(Gb,En,Ev ,De)

where (1) Gb maps a circuit C ∈ C to a garbled circuit C̃, an input encoding
string e, and an output decoding string d; (2) En maps an input encoding string
e and a cleartext bitstring x to an encoded input; (3) Ev maps a circuit C, a
garbled circuit C̃, and an encoded input to an encoded output; and (4) De maps
an output decoding string d and encoded output to a cleartext output string.

A garbling scheme must be correct and may satisfy any combination of obliv-
iousness, privacy, and authenticity [BHR12]. We include formal definitions of
these properties in the full version of this paper. Our scheme satisfies each defi-
nition and hence can be plugged into GC protocols.

4.4 Garblings and Sharings

We work with two kinds of encodings of logical values: ‘garblings’ and simple
XOR shares. Garblings correspond to the traditional notion of garbled labels;
i.e., a garbling is a length-κ value held by each party.

Recall from Sect. 2 that we manipulate languages inside the GC. This is why
we work also with simple XOR sharings: we use XOR sharings to encode and
move languages inside the GC. We define notation for both types of shares, and
we emphasize the compatibility of garblings and sharings.

Garblings are Free XOR-style garbled circuit labels [KS08]. G samples a
uniform value Δ ∈ {0, 1}κ−11. I.e., Δ is uniform except that the least significant
bit is one. Δ is global to the entire computation. A garbling of x ∈ {0, 1} is
a tuple 〈X,X ⊕ xΔ〉, where the first element (here, X) is held by G, and the
second by E.

Definition 2 (Garbling). Let x ∈ {0, 1} be a bit. Let X ∈ {0, 1}κ be a bit-
string held by G. We say that the pair 〈X,X ⊕ xΔ〉 is a garbling of x over
(usually implicit) Δ ∈ {0, 1}κ−11. We denote a garbling of x by writing ⦃x⦄:

⦃x⦄ � 〈X,X ⊕ xΔ〉
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Definition 3 (Sharing). Let x,X ∈ {0, 1} be two bits. We say that the pair
〈X,X ⊕ x〉 is a sharing of x. We denote a sharing of x by writing �x�:

�x� � 〈X,X ⊕ x〉
We refer to G’s share X as the language of the garbling (resp. sharing).

Except in specific circumstances, we use uniformly random languages both for
garblings and for sharings.

Note, XOR is homomorphic over garblings [KS08] and sharings:

⦃a⦄ ⊕ ⦃b⦄ = ⦃a ⊕ b⦄ �a� ⊕ �b� = �a ⊕ b�

We extend our garbling and sharing notation to vectors of values. That is, a
garbling (resp. sharing) of a vector is a vector of garblings (resp. sharings):

⦃a0, ..., an−1⦄ � (⦃a0⦄, ..., ⦃an−1⦄) �a0, ..., an−1� � (�a0�, ..., �an−1�)

Remark 3 (Length of garblings/sharings). Garblings are longer than sharings.
I.e., let x ∈ {0, 1} be a bit. Then ⦃x⦄ is a pair of length-κ strings held by G and
E. Meanwhile, �x� is a pair of bits held by G and E.

Remark 4 (Sharings contain garblings). Notice that the space of sharings con-
tains the space of garblings. Indeed, this will be important later: we will in
certain instances reinterpret a garbling ⦃x⦄ as a sharing �xΔ�. This will allow
us to operate on the garbling as if it is a sharing.

We frequently deal with values that are known to a particular party. We write
xG (resp. xE) to denote that x is a value known to G (resp. to E) in cleartext.
E.g., ⦃xE ⦄ indicates a garbling of x where E knows x.

Operations on Sharings/Garblings.

– ⦃x⦄ �→ �x�. Recall that G ensures that the least significant bit of Δ is one.
Suppose each party takes the least significant bit of his/her part of ⦃x⦄:

lsb(⦃x⦄) = lsb(〈X,X ⊕ xΔ〉) � 〈lsb(X), lsb(X ⊕ xΔ)〉
= 〈lsb(X), lsb(X) ⊕ x · lsb(Δ)〉 = 〈lsb(X), lsb(X) ⊕ x〉 = �x�

That is, if both parties compute lsb on their parts of a garbling, the result
is a valid sharing of the garbled value. This idea was first used to implement
the classic point and permute technique.

– �x� �→ xE and ⦃x⦄ �→ xE . G can open the cleartext value of a sharing by
sending his share to E. Similarly, we can open a garbling by first computing
lsb (see above) and then opening the resulting share.

– xG �→ �x� and xG �→ ⦃x⦄. G can easily introduce fresh inputs. Specifically,
let x be a bit chosen by G and unknown to E. The parties can construct
〈x, 0〉 = �x�. Similarly, the parties can construct 〈xΔ, 0〉 = ⦃x⦄.

– ⦃x⦄ · ⦃y⦄ �→ ⦃x · y⦄. Garblings support AND gates. This operation can be
implemented using two ciphertexts [ZRE15] (or 1.5 ciphertexts [RR21]).
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Fig. 2. Interface to the procedure G-permute which permutes n values using a permu-
tation π chosen by G. For power of two n, permuting n garbled values each of length w
costs w · (n log n−n+1) ·κ bits of communication via a permutation network [Wak68].

– xG · ⦃y⦄ �→ ⦃x · y⦄. It is possible to instantiate a cheaper AND gate if G
knows in cleartext one of the arguments. This operation can be implemented
using one ciphertext [ZRE15].

– ⦃xE ⦄ · �y� �→ �x · y�. This novel operation scales a vector of sharings by a
garbling whose cleartext value is known to E. Section 5.1 gives the procedure.

– ⦃x⦄ · yG �→ �x · y�. This operation follows simply from the above scaling
procedure. See Sect. 5.1.

4.5 Oblivious Permutation

We permute garbled arrays using permutations chosen by G. A permutation on
n = 2k width-w elements can be implemented using w(n log n − n + 1) AND
gates via a classic construction [Wak68]. Since G chooses the permutation, we
can use single ciphertext AND gates and implement the permutation for only
w · (n log n − n + 1) · κ bits. Figure 2 lists the interface to this procedure.

5 Approach

In this section we formalize the approach described in Sect. 2. Our formalism
covers four topics:

– Section 5.1 formalizes our generalized GC gates. These gates allow us to avoid
the factor-κ blowup that is common to prior GRAMs.

– Section 5.2 uses these new gates to modify an existing pop-only stack con-
struction [ZE13]. Our modified pop-only stacks leak their access pattern to
E but can efficiently store GC languages.

– Section 5.3 uses pop-only stacks to formalize our lazy permutation network.
– Section 5.4 builds on the lazy permutation network to formalize our GRAM.

We package the algorithms and definitions in this section into a garbling
scheme [BHR12] that we call EpiGRAM. EpiGRAM handles arbitrary circuits
with AND gates, XOR gates, and array accesses, and is defined as follows:

Construction 1. (EpiGRAM). EpiGRAM is a garbling scheme (Definition
1) that handles circuits with four kinds of gates:
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– XOR gates take as input two bits and output the XOR of the two inputs.
– AND gates take as input two bits and output the AND of the two inputs.
– ARRAY gates are parameterized over power of two n and positive integer w.

The gate outputs a zero-initialized array of n elements each of width w.
– ACCESS gates take as input (1) an array A, (2) a (log n)-bit index α, (3) a

w-bit value y to store in the case of a write, and (4) a bit r that indicates if
this is a read or write. The gate outputs A[α]. As a side effect, A is mutated:

A[α] ←
{

y if r = 0
A[α] otherwise

The garbling scheme procedures are defined as follows:

– En and De are standard; formally, our scheme is projective [BHR12], which
allows us to implement En and De as simple maps between cleartext and
encoded values. We formalize En and De in the full version of this paper.

– Ev and Gb each proceed gate-by-gate through the circuit. For each XOR gate,
each procedure XORs the inputs [KS08]. For each AND gate, the procedures
compute the half-gates approach [ZRE15]. For each ARRAY gate, Gb (resp.
Ev) invokes G’s (resp. E’s) part of the array initialization procedure (Fig. 9).
For each ACCESS gate, Gb (resp. Ev) invokes G’s (resp. E’s) part of the
array access procedure (Fig. 10).

In the full version of this paper, we prove lemmas and theorems that together
imply the following result:

Theorem 1 (Main Theorem). If H is a circular correlation robust hash func-
tion, then EpiGRAM is a correct, oblivious, private, and authentic garbling
scheme. For each ACCESS gate applied to an array of n elements each of size
w = Ω(log2 n), Gb outputs a GC of amortized size O(w · log2 n · κ) and both Gb
and Ev consume amortized O(w · log2 n · κ) computation.

5.1 Avoiding Factor κ Blowup

Recall from Sect. 2 that we avoid the factor-κ overhead that is typical in GRAMs.
We now give the crucial operation that enables this improvement.

Our operation scales a vector of κ sharings by a garbled bit whose value is
known to E. The scaled vector remains hidden from E. The operation computes
⦃xE ⦄ · �y� �→ �x · y� for y ∈ {0, 1}κ (see Fig. 3). Crucially, the operation only
requires that G send to E κ total bits. While this presentation is novel, the
procedure in Fig. 3 is a simple generalization of techniques given in [ZRE15].
This generalization allows us to scale an encoded GC language of length w (when
w = c · κ for some c) for only w bits. This is how we avoid factor-κ blowup.

Formally, we have a vector space where the vectors are sharings and the
scalars are garblings whose value is known to E. Vector space operations cannot
compute arbitrary functions of sharings, but they can arbitrarily move sharings
around. These data movements suffice to build our lazy permutation network.

Given Fig. 3, we can also compute ⦃x⦄ · yG �→ �x · y� for y ∈ {0, 1}κ:
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Fig. 3. Scaling a shared κ-bit vector by a garbling where E knows in cleartext the
scalar. Scaling a κ-bit sharing requires that G send to E κ bits. We prove the construc-
tion secure when G’s share of the vector �y� is either (1) a uniform bitstring Y or (2) a
bitstring zΔ for z ∈ {0, 1}. The latter case arises when G introduces a garbled input.

– Procedure ⦃x⦄ · yG:
• Parties compute �x� = lsb(⦃x⦄). Let 〈X,X ⊕ x〉 = �x�.
• G introduces inputs ⦃X⦄, �y� and �X · y�.
• Parties compute ⦃X⦄ ⊕ ⦃x⦄ = ⦃X ⊕ x⦄. Note that E knows X ⊕ x.
• Parties compute (using Fig. 3) and output:

⦃X ⊕ x⦄ · �y� ⊕ �X · y� = �(X ⊕ x) · y� ⊕ �X · y� = �x · y�

This procedure is useful in our lazy permutation network and in the Chide circuit.

5.2 Pop-only Oblivious Stacks

Our lazy permutation network uses pop-only oblivious stacks [ZE13], a data
structure with a single pop operation controlled by a garbled bit. If the bit is
one, then the stack indeed pops. Otherwise, the stack returns an encoded zero
and is left unchanged. Typically, both the data stored in the stack and the access
pattern are hidden. For our purposes, we only need a stack where the stored data
is hidden from E, but where E learns the access pattern.

[ZE13] gave an efficient circuit-based stack construction that incurs only
O(log n) overhead per pop. This construction stores the data across O(log n)
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Fig. 4. Interface to stack procedures stack -init (top) and pop (bottom). For a stack of
size n with width-w entries, parties locally initialize using O(w · n) computation; each
pop costs amortized O(w · log n) communication and computation.

levels of exponentially increasing size; larger levels are touched exponentially
less often than smaller levels, yielding low logarithmic overhead.

If E is allowed to learn the access pattern, we can implement the [ZE13]
construction where the stack holds arbitrary sharings, not just garblings. This
is done by replacing AND gates – which move data towards the top of the stack
– with our scaling gate (Fig. 3). Since we simply replace AND gates by scaling
gates, we do not further specify. A modified stack with n elements each of width
w costs amortized O(w · log n) bits of communication per pop.

Construction 2 (Pop-only Stack). Let x0, ..., xn−1 be a n elements such that
xi ∈ {0, 1}w. Stack(x0, ..., xn−1) is a pop-only stack of elements x0, ..., xn−1.
Pop-only stacks support the procedures stack- ¯init and pop (Fig. 4).

5.3 Lazy Permutations

Recall from Sect. 2 that our lazy permutation network allows E to look up an
encoded physical address and an encoded language for the needed RAM slot.
The network is a binary tree where each inner node holds two pop-only oblivi-
ous stacks. Each inner node forwards messages to its children. Once a message
is forwarded all the way to a leaf, the leaf node interprets the message as (1)
an encoding of the current RAM time and (2) an encoding of an output lan-
guage. This leaf node accordingly computes encodings of the appropriate physical
address and language, then translates these to the output language. The encoded
address and language are later used to allow E to read from RAM.

Inner Nodes and Implementation of Garbled Switches. For simplicity of
notation, let level 0 denote the tree level that holds the leaves; level log n holds
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Fig. 5. Procedure for inner nodes of a lazy permutation network, implementing garbled
switches.

the root. Consider an arbitrary inner node i on level k. This node can 2k times
receive a message �m� of a fixed, arbitrary length. On each message, the node
strips the first κ bits from the message and interprets them as the garbling of a
bit ⦃d⦄. d is a direction indicator: if d = 0, then the node forwards the remaining
message to its left child; otherwise it forwards to its right child. Over its lifetime,
the inner node forwards 2k−1 messages to its left child and 2k−1 messages to its
right child. Crucially, the order in which a node distributes its 2k messages to
its children is not decided until runtime.

Each of the 2k messages are sharings with a particular language. I.e., the jth
message �mj� has form 〈Lj , Lj ⊕ mj〉 where each language Lj is distinct. The
node must convert each message to a language next expected by the target child.

Assume that a particular node has so far forwarded � messages to its left
child and r messages to its right child. Let Lb

a denote the bth input language for
node a. Note that the current language is thus L�+r

i and the language expected
by the left (resp. right) child is L�

2i (resp. Lr
2i+1).

To forward mj based on d, the node computes the following translation value:

�
d̄ · L�

2i ⊕ d · Lr
2i+1

�
= �L

(d̄�+dr)
2i+d � (1)
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Fig. 6. Procedure for leaf nodes of a lazy permutation network.

To compute the above, node i maintains two oblivious pop-only stacks (see
Sect. 5.2) of size 2k−1. The first stack stores, in order, sharings of the 2k−1

languages for the left child. The second stack similarly stores languages for the
right child. By popping both stacks based on ⦃d⦄, the node computes Eq. (1).
Figure 5 specifies the formal procedure for inner nodes.

Leaf Nodes. Once a message has propagated from the root node to a leaf, we
are ready to complete a lookup. Each leaf node of the lazy permutation network
is a static circuit that outputs the encoding of a physical address and a language.

As the parties access RAM, G repeatedly permutes the physical storage to
hide the access pattern from E. Each one-time index p has O(log n) different
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Fig. 7. Lazy permutation network initialization. When initializing with leaves that
store languages of length w, G sends to E a GC of size O(w · n · log2 n) bits.

physical addresses and languages; the needed address and language depends
on how many accesses have occurred. Thus, each leaf node must conditionally
output one of O(log n) values depending on how many accesses have occurred.

G chooses all permutations and storage languages before the first RAM
access. Hence, G can precompute metadata indicating which one-time index
will be stored where and with what language at which point in time:

Definition 4 (Storage Metadata). Consider a one-time index p. The stor-
age metadata Mp for one-time index p is a sequence of log n three-tuples:

Mp � (tpi ,@
p
i , L

p
i )[i∈log n]

where each tpi is a natural number that indicates a point in time, @p
i is a physical

address, and Lp
i is a uniform language. Each time ti ≤ ti+1.

In our construction, each one-time index p may have fewer than log n correspond-
ing physical addresses. G pads storage metadata by repeating the last entry until
all log n slots are filled. G uses the storage metadata for each one-time index to
configure each leaf. Figure 6 specifies the procedure for leaf nodes.
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Fig. 8. Procedure to route one value through a lazy permutation network.

Putting the Network Together. We now formalize the top level lazy per-
mutation network. To instantiate a new network, G and E agree on a size n and
a width w and G provides storage metadata, conveying the information that
should be stored at the leaves of the network. From here, G proceeds node-by-
node through the binary tree, fully garbling each node. E receives all such GCs
from G, but crucially she does not yet begin to evaluate. Instead, she stores the
GCs for later use, remembering which GCs belong to each individual node.

Recall that G selects a uniform permutation π that prevents E from viewing
the one-time index access pattern: when the GC requests access to one-time
index p, E is shown π(p). Now, let us consider the ith access to the network. At
the time of this access, a garbled index ⦃π(p)⦄ is given as input by the parties.
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G selects a uniform language Y to use as the output language, and the parties
trivially construct the sharing �Y �. The parties then concatenate the message
�mi� � ⦃π(p)⦄, ⦃T ⦄, �Y � where T is the number of RAM writes performed so far.
Let Li

0 denote the ith input language for the root node 0. The parties compute
�Li

0� ⊕ �mi� and G sends his resulting share, giving to E a valid share of mi

with language configured for the root node. E now feeds this value into the tree,
starting from the root node and traversing the path to leaf π(p). Note that G
does not perform this traversal, since he already garbled all circuits.

Each inner node strips off one garbled bit of π(p). This propagates the
message to leaf π(p). Finally, the leaf node computes the appropriate physi-
cal address and language for one-time index p and translates them to language
Y . Let Y ⊕(@p ·Δ,Lp) denote E’s output from the leaf node. The parties output:

〈Y, Y ⊕ (@p · Δ,Lp)〉 = �@p · Δ,Lp� = ⦃@p⦄, �Lp�

Thus, the parties successfully read an address and a language from the network.

Construction 3. (Lazy Permutation Network). Let n be a power of two. A
size-n lazy permutation network π̃ is a two-tuple consisting of:

1. Sharings of the input languages to the root node �L
j∈[n]
0 �.

2. 2n − 2 stacks belonging to the n − 1 inner nodes, s�
i∈[n−1] and sr

i∈[n−1].

Here, each input language L
j∈[n]
0 and each language stored in each stack is an

independently sampled uniform string. Lazy permutation networks support ini-
tialization (Fig. 7) and routing of a single input (Fig. 8).

5.4 Our GRAM

We formalize our GRAM on top of our lazy permutation network:

Construction 4. (GRAM). Let n – the RAM size – be a power of two and let
w – the word size – be a positive integer. Let x0, ..., xn−1 be n values such that
xi ∈ {0, 1}w. Then Array(xi∈[n]) denotes a size-n GRAM holding the content
xi∈[n]. Concretely, a GRAM is a tuple consisting of:

1. A timer T denoting the number of writes performed so far.
2. A sequence of languages X held by G and used as the languages for the per-

muted RAM content. Each language has length w · κ, sufficient to encode a
single garbled word.

3. A size-2n uniform permutation π held by G.
4. A sequence of n + 1 uniform permutations π0, ..., πn held by G and used to

permute the physical storage. These hide the RAM access pattern from E.
5. A size-2n lazy permutation π̃.
6. A recursively instantiated RAM called the index map that maps each logical

index α to π(p): the (permuted) one-time index where α is currently saved.
For each recursive RAM of size n, we instantiate the index map with word
size w = 2(log n + 1). To bound the recursion, we use a linear-scan based
RAM when instantiating a index map that stores only O(w · log2 n) bits.
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Fig. 9. RAM initialize.

7. log n + 2 levels of physical storage where level i is a garbling of size w · 2i+1.
Each level i is either vacant or stores 2i real elements and 2i dummies. The
physical storage is permuted according to permutations π0, ..., πn.

8. A garbling of size 2w called the stash. Parties write back to the stash; on each
access, items are immediately moved from the stash into a level of storage.

GRAMs support initialization (Fig. 9) and access (Fig. 10).

Our top level garbling scheme is defined with respect to this data structure;
EpiGRAM makes explicit calls to array-init (Fig. 9) and access (Fig. 10).

We call attention to G-schedule, shuffle, flush, and hide:

– G-schedule is a local procedure run by G where he plans ahead for the next
n accesses. Specifically, G selects uniform permutations on storage, chooses
uniform languages with which to store the RAM content, and computes the
storage metadata Mp for each one-time index p ∈ [2n]. The full version of
this paper gives the explicit interface to G-schedule.

– shuffle describes how G permutes levels of storage. By doing so, we ensure
that the revealed physical addresses give no information to E. shuffle is a
straightforward formalization of the permutation schedule given in Sect. 2.4
and is formalized in the full version of this paper.
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Fig. 10. RAM access.
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Fig. 11. flush is a helper procedure used to reset the array after n accesses. flush
recovers the n array elements and places them into a contiguous block.

– After each n-th access, we invoke flush (Fig. 11) to reinitialize GRAM. We
also mention that our proof of correctness defines correctness of the GRAM
data structure with respect to flush: a GRAM is valid if we can flush and
recover its content.

– On each access, hide picks a dummy on each storage level, the conveys to
E (1) a physical address on each level of storage and (2) a sharing of the
language of the unaccessed dummy. The precise procedure is formalized in
the full version of this paper.

With these four helper procedures defined, we formalize GRAM initialization
(Fig. 9) and GRAM access (Fig. 10). Initialization is straightforward, and GRAM
access is a formalization of the high level procedure given in Sect. 2.4.

6 Evaluation

In this section, we analyze EpiGRAM’s performance. We leave implementa-
tion and low-level optimization as important future work.

To estimate cost, we implemented a program that modularly computes the
communication cost of each of EpiGRAM’s subcomponents. E.g., a permutation
network on n width-w elements uses w · (n log n − n + 1) ciphertexts [Wak68].

Figure 12 fixes the word size w to 128. That is, each RAM slot stores 128
garbled bits. We plot the estimated communication cost as a function of n. For
comparison, we also plot the cost of a linear scan; a linear scan on n elements of
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Fig. 12. Estimated concrete communication cost of our GRAM. We fix the word
size w = 128 and plot per-access amortized communication as a function of n. For
comparison we include an estimate of [LO13]’s performance (our estimate is favorable
to [LO13], see the full version for our analysis).

width w and while using [ZRE15] AND gates can be achieved for (slightly more
than) 2 ·w · (n−1) ciphertexts. We also plot the function 215 log2 n bytes, a close
approximation of EpiGRAM’s cost for w = 128.

Figure 12 clearly demonstrates EpiGRAM’s low polylogarithmic scaling.
Note that our communication grows slightly faster than the function 215 log2 n.
This can be explained by the fact that we fixed a relatively low and constant
word size w = 128; recall that to achieve O(log2 n) scaling, we must choose
w = Ω(log2 n). Still, our cost is closely modeled by O(log2 n).

EpiGRAM is practical even for small n. The breakeven point with trivial
GRAM (i.e., GRAM implemented by linear scans) is only n = 512 elements.
Even non-garbled ORAMs have similar breakeven points. For example, Circuit
ORAM [WCS15] gives the breakeven point w = 128, n = 128. At n = 220,
EpiGRAM consumes ≈ 200× less communication than trivial GRAM.
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