ARE: A System for Automated Reverse Engineering

HCSS 2013 Robert Ross (robert.b.ross@baesystems.com)
Cyber Operations and Networking Group (CONG)
Introduction Approach

 Goal: Enable users or semi-automated
planners to iteratively negate branches and
fabricate paths to reach areas of interest,
explore unvisited blocks, and test code

units without the benefit of source code

* Applications: Program analysis (e.g., how
are sockets used?), verification (e.g., are
guality objectives still satisfied?), and
optimization (e.g., are bounds exceeded?)

of acceptable solutions, e.g., “all but the last = E
byte of an array must be in [0x20, Ox7E]”

 Dynamic Tracing
Dynamic o Instrumentation, e.g., Pin
Tracing State o Emulation, e.g., TEMU

\records . Static Analysis
o Third-party, e.qg., REIL

Static o First-party, e.qg., PREIL
Planner Analvs,
A . Program Database
o Relational, e.g., MySQL

NoSQL, e.g., HBase
‘/Simplified o NosQL, e.g
Instructions e i '
Program Constraint Analysis

Database o Third-party, e.g., Vine
o First-party, e.g., COMET

Input
values/'

Constraint

Analysis

Taint quer;\

results

Static Analysis: Representations

Constraint Analysis: Inputs

 REIL: Reverse Engineering Intermediate Language

o Arithmetic: ADD, SUB, MUL, DIV, MOD, BSH (binary shift)
o Bitwise: AND, OR, XOR (can derive “NOT” from XOR)

o Conditional: BISZ (Boolean is-zero), JCC (Jump conditional)
O
O

Data transfer: LDM (load), STM (store), STR (store to register)
Other: UNDEF (undefined), UNKN (unknown), NOP (no-op)

 PREIL: Power-REIL (more precise, faster, and clearer)

o Arithmetic: LSH (left shift) and RSH (right shift) instead of BSH
o Bitwise: Same as REIL (but allows bit ranges, resizing, etc.)
o Conditional: Adds IFM (conditional STM), IFR (conditional STR)
o Data transfer: Same as REIL (but allows multiple memories, etc.)
o Other: Same as REIL (but allows labels, macros, etc.)

* Trace: {(seq, Ip, tid)}

o seq. Seqguence number (optional; for reference to full, uncut trace)
o Ip: Instruction pointer (raw bytes and disassembly is in full trace)
o tid: Thread identifier (pid and values read/written are Iin full trace)

* Code: {(ip, size, list)}
o Size: Machine’s instruction size (for whether branches were taken)
o list: List of PREIL instructions (for a single machine instruction)

« Patch: {(seq, It, val)}
o It: Target (i.e., "<register>_<tid>" or "<memory>[<address>]")
o val: Value assigned to it before seq (for partial observability)

» Others: Input constraints, output constraints, and settings

Constraint AnaIyS|s Queries

Constraint Analysis: Components

ion: [settings ../Set/show_solver.se | o= ooyl T g=ge et o ——
cax_1 = 0x00000077 ('w') | . OF_1: BV(1) = t6_5590[31:31];
fn eax_1:0,7 in ['a’, ‘z' | % Code at 5591 for 1371026
| t6_5591: BV(1) = BVXOR(SF_1, OF 1); .
N t [t ebp_1 = 0x38Ta78 | t175591: BV(1) = (IF t0_5591 = 8b@ THEN Obl ELSE 0bO ENDIF); — STP |nput
ega e lcode 4867 _5591.csv | ASSERT(t1 3591 = 0b0);
trace 4867 5591.trace 3
é§ - | QUERY FALSE;
the |aSt Iy | COUNTEREXAMPLE; —
|do negate [Output:
h | ASSERT(eax_1 = 0x00000061);
branC | ASSERT(ebp_1 = 0x0038FA78); | }STP OUtpUt
: | Invalid.
I : [Solution:
(V' SO Ve) | eax_1 = 0x00000061 ('a"') - }COMET OUtpUt
5? i i D
 ise*tings ../Set/show_solver.se | % Code at 5605 for 137104f = =
el Lo | t0_5605: BV(1) = BVXOR(SF_1_1, OF_1_1);
[in eax_1:0, | t1.5605: BV(1) = t0_5605 | ZF_1; .
| ASSERT(t1 5605 = 0b0); —
in ebp_1 = 0x38fa78 B STP InpUt
lin main[0x38fa6c] X | QUERY FALSE;
|in main[0x38fa6d] = Ox | COUNTEREXAMPLE ; —
Negate 1 [a 38fabe] = Ox loutput: T
t n[0x38fa6f] = | ASSERT(eax_l = 0x00000074);
he new | ASSERT(ebp_1 = 0x0038FA78);
[code 4867_5605.c | ASSERT(main[0x0038FA6C] = 0x : S— p
;étrace 486?_5605-trace | ASSERT(main[0x0038FA6D] = 0x ; STP OUt Ut
|aSt | ASSERT(main[0x0038FA6E] = 0x03);
do negate | ASSERT(main[0x0038FA6F] = 0x]
: | Invalid.
branch lotution: =
| eax_1 = 0x00000074 ('t') . COMET OUtpUt
i K »

« COMET: Constraint Optimization, Management,
Extensions, and Translations

o Constraint: Weakest preconditions for a given path

o Optimization: Reduce complexity of the constraint program

o Management: Services, e.g., for joining subproblems

o Extensions: Additional constraints, e.g., around interesting code
o Translations: Various SMT solvers, e.g., STP and Boolector

* Optimization: Cutting out unnecessary constraints

o SLICE: Statically Limited Irrelevant Constraint Elimination
» Example: Remove PREIL for unused flags during preprocessing

o DICE: Dynamic Irrelevant Constraint Elimination (path specific)
o TMF: Taint Modeling Function (for Input-Output Relationships)

TMF Options and Results

Summary and Conclusions

1. Temporary variable for each operation
o Advantage: State of the art DICE yet easy to read and understand

2. Single expression for each branch variable

o Example: b1 = (! (l((oxffffffde + eax 1) -., 0x9))) &
(' ((((oxffffffdo + eax 1) -., 0x9) & 0x100000000) >> 0Ox20)) = 0

o Advantage: Maximal flexibility for constraint solvers’ optimizers

3. Temporaries from common subexpression elimination

o Example: t1 = (exffffffde + eax 1) -, Ox9;
= (1(1t1)) & (!((tl & ©x100000000) >> 0x20)) =

o Advantage: Reduces execution time for solvers with weak optimizers

* Result: Order of magnitude size reduction for each problem
o Advantage: Enables each constraint problem to cover a longer path

» Target: Programs without source Data Flow

o Initial state: A known execution path Subpmb|em Selection (Planner) }

approaches yet avoids a dangerous block [..
o Static analysis: Helps determine that the { Slmpllfled } { Collapsed }
block is a relatively nearby area of interest | TMF Formu|as Taint Graphs
o Dynamic analysis: Suggests paths . 4
through the area that may be feasible [Constralnt Solver Interface (CSI)]
o Constraint analysis: Provides inputs for / - ~ . 2 N
feasible paths or recognizes impossibilities State Reduced PREIL
: : : Con- Trace and Instruc-
 Benefit: Directed search avoids | straints | | Patches | | tions |
reevaluation of known paths and the @ . B J L
high cost of tempting yet futile tracks [COMET « Solver (SMT) }
» Conclusion: Combined analysis can &

[Input Assignments (solutions)]

effectively handle binary code paths

This material is based upon work supported by DARPA and AFRL under contract FA8750-12-C-0097
Approved for public release; distribution unlimited. Cleared for open publication on 4/23/2013
ARE was developed jointly, e.g., with Vu Le and Greg Sadosuk of BAE Systems CONG

