
A FRAMEWORK FOR THE DENOTATIONAL SEMANTICS OF
MULTI-COMPOSITION

ZACHARY FLORES, ANGELO TARANTO, ERIC BOND TWO SIX TECHNOLOGIES

A QUESTION
Given a language L that can meaningfully com-
pose high-level abstractions of domain-specific
languages (DSLs), what is a possible framework
for the denotational semantics of L?

Such denotational semantics provide a means for
formalization of L that offers high levels of assur-
ance that compositions in L are correct.

COMBINING DSLS
We begin with the case of two DSLs, D′ and D′′.
We want to combine D′ and D′′ with respect to a
DSL Z , to create another DSL, D.

Mathematically, this means is if we specify our
high-level abstractions of DSLs as objects in a cat-
egory O, then with respect to Z means there are
maps:

D′ f← Z g→ D′′;

and D is constructed by computing the categorical
pushout along Z in O. That is, there are maps i′ :
D′ → D and i′′ : D′′ → D, such that the diagram,

D �i′ D′

D′′

i′′
6

�
f
Z,

g
6

commutes, and (D, i′, i′′) is universal with respect
to this diagram.

To construct such a D for our definition of a DSL,
if we let D• be either DT or DF , then,

D• := (D′
• ⊔ D′′

•) / ∼,

where ∼ is the finest equivalence relation such
that f(z) ∼ g(z) for all z ∈ Z . That is, we identify
points in D with common preimage. This con-
struction is in the category of sets, as any object
involved is a set.

We ask: (1) What mathematical object can we
identify our definition of a DSL with? (2) Given
an identification, can we form a category of these
objects in which categorical pushouts exist? (3) Is
our definition of a DSL sufficient?

OPERADS
We identify our definition of a DSL with the following.

Definition 1. An operad O consists of a collection of types, which we will denote by T , such that for each n ≥ 1,
d ∈ T , sequence of types in T , c := c0, . . . , cn−1, a collection of terms O

(
d
c

)
for which:

• for each c ∈ T , an element 1c ∈ O
(
c
c

)
called the c-colored unit;

• for each 0 ≤ i ≤ n− 1, a function,

◦i : O
(
d

c

)
×O

(
ci
b

)
→ O

(
d

c •i b

)
,

where c •i b is the sequence c0, . . . , ci−1, b, ci+1, . . . , cn−1; O also comes with axiomatic constraints for
associativity of the ◦i, unitary, and symmetry conditions.

A morphism of operads, F : O → O′ consists of a map between types and on terms that commutes with
colored units, the ◦i, and all axiomatic constraints. This turns operads into a category that we denote by O.

Pushouts can be formed in the category O, and we discuss next how to clearly identify a DSL D as an
operad. With this identification, we are also providing formal structure to what we allow in function
composition by imposing constraints using the associativity axioms for an operad.

MOTIVATION AND AN EXAMPLE
Our interest in composing high-level abstractions
of DSLs stems from wanting to create a lan-
guage L that can serve as a backbone for a meta-
language for DSLs abstracted from legacy code
that can have several dependencies.

Our main goal is to ensure that any DSL compo-
sition taking place in L is provably correct. To ac-
complish this, we construct an algebraic frame-
work for the denotational semantics of L, so this
framework will provide a mathematical under-
pinning for our meta-language.

What is the mathematical definition of our high-
level abstractions of DSLs?

Definition 2. A DSL D is a collection of types, DT

and a collection of finite-arity functions, DF , on those
types that can be composed to form new functions in
D.

Example 3. Let DT := {nat, str}, and DF :=
{print, hash}. The code printnm takes in numbers
n,m and returns the first n digits of m; hash str com-
putes a hash of a given string.
In D, we can create the function firstn that prints
the first n digits of a hash with the composition
printn (hash str) (where n is fixed).

The language L needs to be able to compose
finitely many high-level abstractions of DSLs, and
we first discuss a feasible way to do that for two
DSLs.

EMAIL
zachay.flores@twosixtech.com,
angelo.taranto@twosixtech.com,
eric.bond@twosixtech.com

SUPPLEMENTARY
Distribution Statement A: Approved for Public
Release, Distribution Unlimited

Disclaimer: The views, opinions and/or findings
expressed are those of the author and should not
be interpreted as representing the official views or
policies of the Department of Defense or the U.S.
Government.

A MATHEMATICAL DEFINITION OF L
Example 4. Let T be a collection of types, and let d ∈ T and c := c0, c1, . . . , cn−1 be a sequence in T . Let T

(
d
c

)
denote the function type:

c0 → c1 → · · · → cn−1 → d.

Then T
(
d
c

)
is the type of all n-ary functions with return type d. Moreover, T is an operad with ◦i defined as

follows: f ∈ T
(
d
c

)
, g ∈ T

(
ci
b

)
, then f ◦i g ∈ T

(
d

c•ib

)
is the function:

(x0, . . . , xi−1, y, xi+1, . . . , xn−1) 7→ f(x0, . . . , xi−1, g(y), xi+1, . . . , xn−1).

We give a concrete example to see how this works by re-examining Example 3 in this context.

Example 5. If T = {nat, str}, then, print ∈ T
(

nat
nat,nat

)
, hash ∈ T

(
nat
str

)
, and firstn = print ◦1 hash ∈

T
(nat

nat, str

)
To give a mathematical basis for DSL composition in L, we first make some definitions. A diagram of
shape J in a category C is a covariant functor D : J→ C, in which Ob(J) is a finite set.

Example 6. Let J be the category with objects −1,0,1 whose non-identity morphisms are given by the diagram
−1← 0→ 1. We define the image of the diagram D : J→ O to be O′ ← Z → O′′ in O.

If we let Diag(O) denote the category of all diagrams of any shape in O, then the colimit, a natural trans-
formation between Diag(O) and O, provides the desired mathematical definition for DSL composition
in L.

A concrete example of a colimit is a pushout. In Example 6, we have colim(D) = O, where O is the
pushout of O′,O′′ along Z .

