
HCSS / DIS May 2012

Scherlis 1

HCSS
DIS

Annapolis

© 2012 W Scherlis

William L Scherlis
Professor and Director
Institute for Software Research
School of Computer Science
Carnegie Mellon University

May 2012

Designed-in Security:
Needs, successes, prospects

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

2

Technology Transition?

HCSS / DIS May 2012

Scherlis 1

HCSS
DIS

Annapolis

© 2012 W Scherlis

William L Scherlis
Professor and Director
Institute for Software Research
School of Computer Science
Carnegie Mellon University

May 2012

Designed-in Security:
Needs, successes, prospects

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

2

Technology Transition?

HCSS / DIS May 2012

Scherlis 2

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

3

Transition-driven technical challenges

• Interplay of development and evidence production
 A harmonized practice for development and evaluation teams

• Metrics
 Towards ROI models for assurance-related investment

• Recertification
 Necessary for SAAS and agile/IID

• Configurations and product families
 Evidence of need: massive #ifdef combinatorics

• Component-based systems
 Composition with a wide range of trust – attack surface is within

• Framework configurations
 More than mobile

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

4

Patterns of transition success

HCSS / DIS May 2012

Scherlis 2

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

3

Transition-driven technical challenges

• Interplay of development and evidence production
 A harmonized practice for development and evaluation teams

• Metrics
 Towards ROI models for assurance-related investment

• Recertification
 Necessary for SAAS and agile/IID

• Configurations and product families
 Evidence of need: massive #ifdef combinatorics

• Component-based systems
 Composition with a wide range of trust – attack surface is within

• Framework configurations
 More than mobile

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

4

Patterns of transition success

HCSS / DIS May 2012

Scherlis 3

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

5

Ex. 1: Microsoft

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

6

Ex. 2: Secure coding

6

HCSS / DIS May 2012

Scherlis 3

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

5

Ex. 1: Microsoft

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

6

Ex. 2: Secure coding

6

HCSS / DIS May 2012

Scherlis 4

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

7

Ex. 3: DSLs

• Cryptol

• et al.

7

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

8

Ex. 4: Sound static analysis

HCSS / DIS May 2012

Scherlis 4

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

7

Ex. 3: DSLs

• Cryptol

• et al.

7

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

8

Ex. 4: Sound static analysis

HCSS / DIS May 2012

Scherlis 5

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

9

Patterns

• Structure
 Support composability
 Use cutpoints and specifications

• Models and analysis
 Acknowledge attribute specificity
 Employ diverse analytics: MC, SwA, TP, verification, etc.

• Tooling and practice
 Integrate with widely used IDEs and team tools
 Provide ongoing traceability support
 Guide developers to errors; guide them to the fixes
 Support proof management and truth maintenance (examples)
 Deliver useful metrics of progress

• Adoptability and business case
 Hide the cool math – focus on usability for developers/evaluators
 Offer heuristic assist
 Deliver early and ongoing gratification for verification effort
 Manifest ROI models for each of developers, teams, enterprise

9

• Scale and complexity
• Value on simplicity/exposure
• Incrementality wrt change
• Incrementality wrt assurance

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

10

Patterns

• Structure
 Support composability
 Use cutpoints and specifications

• Models and analysis
 Acknowledge attribute specificity
 Employ diverse analytics: MC, SwA, TP, verification, etc.

• Tooling and practice

•

10

Interplay of development and assurance
 - Code, models, proof structures
 - Process and practice in development

Influence of success on devt infrastructure
 - Types, storage, encap, parallelism, …

• Scale and complexity
• Value on simplicity/exposure
• Incrementality wrt change
• Incrementality wrt assurance

HCSS / DIS May 2012

Scherlis 5

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

9

Patterns

• Structure
 Support composability
 Use cutpoints and specifications

• Models and analysis
 Acknowledge attribute specificity
 Employ diverse analytics: MC, SwA, TP, verification, etc.

• Tooling and practice
 Integrate with widely used IDEs and team tools
 Provide ongoing traceability support
 Guide developers to errors; guide them to the fixes
 Support proof management and truth maintenance (examples)
 Deliver useful metrics of progress

• Adoptability and business case
 Hide the cool math – focus on usability for developers/evaluators
 Offer heuristic assist
 Deliver early and ongoing gratification for verification effort
 Manifest ROI models for each of developers, teams, enterprise

9

• Scale and complexity
• Value on simplicity/exposure
• Incrementality wrt change
• Incrementality wrt assurance

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

10

Patterns

• Structure
 Support composability
 Use cutpoints and specifications

• Models and analysis
 Acknowledge attribute specificity
 Employ diverse analytics: MC, SwA, TP, verification, etc.

• Tooling and practice

•

10

Interplay of development and assurance
 - Code, models, proof structures
 - Process and practice in development

Influence of success on devt infrastructure
 - Types, storage, encap, parallelism, …

• Scale and complexity
• Value on simplicity/exposure
• Incrementality wrt change
• Incrementality wrt assurance

HCSS / DIS May 2012

Scherlis 6

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

11

Dynamic and abductive
results can guide modeling
for verification

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

12

Traceability in current
practice: Accountability
for every line of code,
accomplished automatically
by advanced tools.

HCSS / DIS May 2012

Scherlis 6

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

11

Dynamic and abductive
results can guide modeling
for verification

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

12

Traceability in current
practice: Accountability
for every line of code,
accomplished automatically
by advanced tools.

HCSS / DIS May 2012

Scherlis 7

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

13

Tools can automatically
provide accountability
for every increment of
change

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

14

Automated infrastructure
for builds and tests … and
analytics

HCSS / DIS May 2012

Scherlis 7

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

13

Tools can automatically
provide accountability
for every increment of
change

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

14

Automated infrastructure
for builds and tests … and
analytics

HCSS / DIS May 2012

Scherlis 8

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

15

A simple example:
Automated
performance tests

Relevant material from the NRC Critical Code report

1. Practice – Enhance mission capability, agility, assurance, linking
– Enable incremental iterative development at arm’s length

 Process and measurement – rethinking the practice
– Enable architecture leadership, interlinking, flexibility

 Architecture – “architecture ≈ strategy”
– Enable mission assurance at scale, with rich supply chains

 Assurance and security – evidence-based and preventive

2. Research – Promote game-changers
– Architecture modeling and architectural analysis
– Validation, verification, and analysis of design and code
– Process support and economic models for assurance
– Requirements
– Language, modeling, code, and tools
– Cyber-physical systems
– Human-system interaction

3. Leadership – Never relinquish the innovation lead
– Recognize the unboundedness of software
– Stay ahead in assurance (cf. DSB’07)
– Sustain innovation and ecosystem lead

Challenge issues
• Technology leadership focal point
• Smart customer: inside expertise
• Accelerate the pipeline

1
6

HCSS / DIS May 2012

Scherlis 8

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

15

A simple example:
Automated
performance tests

Relevant material from the NRC Critical Code report

1. Practice – Enhance mission capability, agility, assurance, linking
– Enable incremental iterative development at arm’s length

 Process and measurement – rethinking the practice
– Enable architecture leadership, interlinking, flexibility

 Architecture – “architecture ≈ strategy”
– Enable mission assurance at scale, with rich supply chains

 Assurance and security – evidence-based and preventive

2. Research – Promote game-changers
– Architecture modeling and architectural analysis
– Validation, verification, and analysis of design and code
– Process support and economic models for assurance
– Requirements
– Language, modeling, code, and tools
– Cyber-physical systems
– Human-system interaction

3. Leadership – Never relinquish the innovation lead
– Recognize the unboundedness of software
– Stay ahead in assurance (cf. DSB’07)
– Sustain innovation and ecosystem lead

Challenge issues
• Technology leadership focal point
• Smart customer: inside expertise
• Accelerate the pipeline

1
6

HCSS / DIS May 2012

Scherlis 9

Adopt a strategic approach to software assurance

 Current technical approaches to software assurance are
inadequate.
– Assurance

 A human judgment regarding reliability, safety, security, etc.
– Current technical approaches need to be augmented

 Costs range from 30-50% for typical major projects
 Testing and inspection techniques are inadequate for modern software devt

 Assurance conclusions are difficult to draw.
– Not analogous to reliability models for physical systems
– Cannot be achieved entirely through post hoc acceptance evaluation

 Quality and security are built in, not “tested in”

18

“Foreign influence” on software – DSB 2007

 Provenance is a poor surrogate
for direct evaluation

 We need to be better at
understanding our own code

1
8

HCSS / DIS May 2012

Scherlis 9

Adopt a strategic approach to software assurance

 Current technical approaches to software assurance are
inadequate.
– Assurance

 A human judgment regarding reliability, safety, security, etc.
– Current technical approaches need to be augmented

 Costs range from 30-50% for typical major projects
 Testing and inspection techniques are inadequate for modern software devt

 Assurance conclusions are difficult to draw.
– Not analogous to reliability models for physical systems
– Cannot be achieved entirely through post hoc acceptance evaluation

 Quality and security are built in, not “tested in”

18

“Foreign influence” on software – DSB 2007

 Provenance is a poor surrogate
for direct evaluation

 We need to be better at
understanding our own code

1
8

HCSS / DIS May 2012

Scherlis 10

Adopt a strategic approach to software assurance

 DoD faces particular challenges to assurance.
1. The arms-length relationship between a contractor development team and

government stakeholders
2. Modern systems of all kinds draw on components from diverse sources

 This implies that supply-chain attacks must be contemplated, along with attack
surfaces within the software application

– There will necessarily be differences in the levels of trust conferred on components.
– There may also be opacity in the supply chain for vendor and sub components

 Evaluative and preventive approaches can be integrated to enhance assurance in
complex supply chains with diverse sourcing.

3. High consequences due to roles in war-fighting and protection of human lives
and national assets

4. Failure to maintain a lead in the ability to prevent and evaluate confers
advantage to adversaries (DSB2007, paraphrased)

 Finding from DSB2007
It is an essential requirement that the United States maintain advanced
capability for “test and evaluation” of IT products. Reputation-based or trust-
based credentialing of software (“provenance”) needs to be augmented by
direct, artifact-focused means to support acceptance evaluation.

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

20

Conclusions – patterns for progress in the mainstream

• Languages are improving
 L + M + A  L’

• Enrich API focus
 Enrich models at APIs

• Enhance architecture focus
 Structure for trust localization/isolation

• Push further development of abstractions and modeling formalisms
 With CPS and beyond CPS

• Tools are essential to support modeling and analysis
 Already true for development: individuals, teams, enterprise
 Proof management is a first-class activity
 Heuristic assist (abductive, correlative, etc) pays off
 Replace missionary work with metrics

• Adapt evaluation practices and policies
 Support incrementality and continuous evolution – constant ROI
 Don’t require full-scope verification – tests and inspection results
 Incent the interplay of development, evidence-building, assurance
 Integrate with SDL-like processes

HCSS / DIS May 2012

Scherlis 10

Adopt a strategic approach to software assurance

 DoD faces particular challenges to assurance.
1. The arms-length relationship between a contractor development team and

government stakeholders
2. Modern systems of all kinds draw on components from diverse sources

 This implies that supply-chain attacks must be contemplated, along with attack
surfaces within the software application

– There will necessarily be differences in the levels of trust conferred on components.
– There may also be opacity in the supply chain for vendor and sub components

 Evaluative and preventive approaches can be integrated to enhance assurance in
complex supply chains with diverse sourcing.

3. High consequences due to roles in war-fighting and protection of human lives
and national assets

4. Failure to maintain a lead in the ability to prevent and evaluate confers
advantage to adversaries (DSB2007, paraphrased)

 Finding from DSB2007
It is an essential requirement that the United States maintain advanced
capability for “test and evaluation” of IT products. Reputation-based or trust-
based credentialing of software (“provenance”) needs to be augmented by
direct, artifact-focused means to support acceptance evaluation.

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

20

Conclusions – patterns for progress in the mainstream

• Languages are improving
 L + M + A  L’

• Enrich API focus
 Enrich models at APIs

• Enhance architecture focus
 Structure for trust localization/isolation

• Push further development of abstractions and modeling formalisms
 With CPS and beyond CPS

• Tools are essential to support modeling and analysis
 Already true for development: individuals, teams, enterprise
 Proof management is a first-class activity
 Heuristic assist (abductive, correlative, etc) pays off
 Replace missionary work with metrics

• Adapt evaluation practices and policies
 Support incrementality and continuous evolution – constant ROI
 Don’t require full-scope verification – tests and inspection results
 Incent the interplay of development, evidence-building, assurance
 Integrate with SDL-like processes

