
HCSS / DIS May 2012

Scherlis 1

HCSS
DIS

Annapolis

© 2012 W Scherlis

William L Scherlis
Professor and Director
Institute for Software Research
School of Computer Science
Carnegie Mellon University

May 2012

Designed-in Security:
Needs, successes, prospects

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

2

Technology Transition?

HCSS / DIS May 2012

Scherlis 1

HCSS
DIS

Annapolis

© 2012 W Scherlis

William L Scherlis
Professor and Director
Institute for Software Research
School of Computer Science
Carnegie Mellon University

May 2012

Designed-in Security:
Needs, successes, prospects

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

2

Technology Transition?

HCSS / DIS May 2012

Scherlis 2

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

3

Transition-driven technical challenges

• Interplay of development and evidence production
 A harmonized practice for development and evaluation teams

• Metrics
 Towards ROI models for assurance-related investment

• Recertification
 Necessary for SAAS and agile/IID

• Configurations and product families
 Evidence of need: massive #ifdef combinatorics

• Component-based systems
 Composition with a wide range of trust – attack surface is within

• Framework configurations
 More than mobile

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

4

Patterns of transition success

HCSS / DIS May 2012

Scherlis 2

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

3

Transition-driven technical challenges

• Interplay of development and evidence production
 A harmonized practice for development and evaluation teams

• Metrics
 Towards ROI models for assurance-related investment

• Recertification
 Necessary for SAAS and agile/IID

• Configurations and product families
 Evidence of need: massive #ifdef combinatorics

• Component-based systems
 Composition with a wide range of trust – attack surface is within

• Framework configurations
 More than mobile

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

4

Patterns of transition success

HCSS / DIS May 2012

Scherlis 3

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

5

Ex. 1: Microsoft

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

6

Ex. 2: Secure coding

6

HCSS / DIS May 2012

Scherlis 3

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

5

Ex. 1: Microsoft

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

6

Ex. 2: Secure coding

6

HCSS / DIS May 2012

Scherlis 4

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

7

Ex. 3: DSLs

• Cryptol

• et al.

7

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

8

Ex. 4: Sound static analysis

HCSS / DIS May 2012

Scherlis 4

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

7

Ex. 3: DSLs

• Cryptol

• et al.

7

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

8

Ex. 4: Sound static analysis

HCSS / DIS May 2012

Scherlis 5

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

9

Patterns

• Structure
 Support composability
 Use cutpoints and specifications

• Models and analysis
 Acknowledge attribute specificity
 Employ diverse analytics: MC, SwA, TP, verification, etc.

• Tooling and practice
 Integrate with widely used IDEs and team tools
 Provide ongoing traceability support
 Guide developers to errors; guide them to the fixes
 Support proof management and truth maintenance (examples)
 Deliver useful metrics of progress

• Adoptability and business case
 Hide the cool math – focus on usability for developers/evaluators
 Offer heuristic assist
 Deliver early and ongoing gratification for verification effort
 Manifest ROI models for each of developers, teams, enterprise

9

• Scale and complexity
• Value on simplicity/exposure
• Incrementality wrt change
• Incrementality wrt assurance

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

10

Patterns

• Structure
 Support composability
 Use cutpoints and specifications

• Models and analysis
 Acknowledge attribute specificity
 Employ diverse analytics: MC, SwA, TP, verification, etc.

• Tooling and practice

•

10

Interplay of development and assurance
 - Code, models, proof structures
 - Process and practice in development

Influence of success on devt infrastructure
 - Types, storage, encap, parallelism, …

• Scale and complexity
• Value on simplicity/exposure
• Incrementality wrt change
• Incrementality wrt assurance

HCSS / DIS May 2012

Scherlis 5

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

9

Patterns

• Structure
 Support composability
 Use cutpoints and specifications

• Models and analysis
 Acknowledge attribute specificity
 Employ diverse analytics: MC, SwA, TP, verification, etc.

• Tooling and practice
 Integrate with widely used IDEs and team tools
 Provide ongoing traceability support
 Guide developers to errors; guide them to the fixes
 Support proof management and truth maintenance (examples)
 Deliver useful metrics of progress

• Adoptability and business case
 Hide the cool math – focus on usability for developers/evaluators
 Offer heuristic assist
 Deliver early and ongoing gratification for verification effort
 Manifest ROI models for each of developers, teams, enterprise

9

• Scale and complexity
• Value on simplicity/exposure
• Incrementality wrt change
• Incrementality wrt assurance

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

10

Patterns

• Structure
 Support composability
 Use cutpoints and specifications

• Models and analysis
 Acknowledge attribute specificity
 Employ diverse analytics: MC, SwA, TP, verification, etc.

• Tooling and practice

•

10

Interplay of development and assurance
 - Code, models, proof structures
 - Process and practice in development

Influence of success on devt infrastructure
 - Types, storage, encap, parallelism, …

• Scale and complexity
• Value on simplicity/exposure
• Incrementality wrt change
• Incrementality wrt assurance

HCSS / DIS May 2012

Scherlis 6

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

11

Dynamic and abductive
results can guide modeling
for verification

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

12

Traceability in current
practice: Accountability
for every line of code,
accomplished automatically
by advanced tools.

HCSS / DIS May 2012

Scherlis 6

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

11

Dynamic and abductive
results can guide modeling
for verification

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

12

Traceability in current
practice: Accountability
for every line of code,
accomplished automatically
by advanced tools.

HCSS / DIS May 2012

Scherlis 7

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

13

Tools can automatically
provide accountability
for every increment of
change

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

14

Automated infrastructure
for builds and tests … and
analytics

HCSS / DIS May 2012

Scherlis 7

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

13

Tools can automatically
provide accountability
for every increment of
change

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

14

Automated infrastructure
for builds and tests … and
analytics

HCSS / DIS May 2012

Scherlis 8

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

15

A simple example:
Automated
performance tests

Relevant material from the NRC Critical Code report

1. Practice – Enhance mission capability, agility, assurance, linking
– Enable incremental iterative development at arm’s length

 Process and measurement – rethinking the practice
– Enable architecture leadership, interlinking, flexibility

 Architecture – “architecture ≈ strategy”
– Enable mission assurance at scale, with rich supply chains

 Assurance and security – evidence-based and preventive

2. Research – Promote game-changers
– Architecture modeling and architectural analysis
– Validation, verification, and analysis of design and code
– Process support and economic models for assurance
– Requirements
– Language, modeling, code, and tools
– Cyber-physical systems
– Human-system interaction

3. Leadership – Never relinquish the innovation lead
– Recognize the unboundedness of software
– Stay ahead in assurance (cf. DSB’07)
– Sustain innovation and ecosystem lead

Challenge issues
• Technology leadership focal point
• Smart customer: inside expertise
• Accelerate the pipeline

1
6

HCSS / DIS May 2012

Scherlis 8

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

15

A simple example:
Automated
performance tests

Relevant material from the NRC Critical Code report

1. Practice – Enhance mission capability, agility, assurance, linking
– Enable incremental iterative development at arm’s length

 Process and measurement – rethinking the practice
– Enable architecture leadership, interlinking, flexibility

 Architecture – “architecture ≈ strategy”
– Enable mission assurance at scale, with rich supply chains

 Assurance and security – evidence-based and preventive

2. Research – Promote game-changers
– Architecture modeling and architectural analysis
– Validation, verification, and analysis of design and code
– Process support and economic models for assurance
– Requirements
– Language, modeling, code, and tools
– Cyber-physical systems
– Human-system interaction

3. Leadership – Never relinquish the innovation lead
– Recognize the unboundedness of software
– Stay ahead in assurance (cf. DSB’07)
– Sustain innovation and ecosystem lead

Challenge issues
• Technology leadership focal point
• Smart customer: inside expertise
• Accelerate the pipeline

1
6

HCSS / DIS May 2012

Scherlis 9

Adopt a strategic approach to software assurance

 Current technical approaches to software assurance are
inadequate.
– Assurance

 A human judgment regarding reliability, safety, security, etc.
– Current technical approaches need to be augmented

 Costs range from 30-50% for typical major projects
 Testing and inspection techniques are inadequate for modern software devt

 Assurance conclusions are difficult to draw.
– Not analogous to reliability models for physical systems
– Cannot be achieved entirely through post hoc acceptance evaluation

 Quality and security are built in, not “tested in”

18

“Foreign influence” on software – DSB 2007

 Provenance is a poor surrogate
for direct evaluation

 We need to be better at
understanding our own code

1
8

HCSS / DIS May 2012

Scherlis 9

Adopt a strategic approach to software assurance

 Current technical approaches to software assurance are
inadequate.
– Assurance

 A human judgment regarding reliability, safety, security, etc.
– Current technical approaches need to be augmented

 Costs range from 30-50% for typical major projects
 Testing and inspection techniques are inadequate for modern software devt

 Assurance conclusions are difficult to draw.
– Not analogous to reliability models for physical systems
– Cannot be achieved entirely through post hoc acceptance evaluation

 Quality and security are built in, not “tested in”

18

“Foreign influence” on software – DSB 2007

 Provenance is a poor surrogate
for direct evaluation

 We need to be better at
understanding our own code

1
8

HCSS / DIS May 2012

Scherlis 10

Adopt a strategic approach to software assurance

 DoD faces particular challenges to assurance.
1. The arms-length relationship between a contractor development team and

government stakeholders
2. Modern systems of all kinds draw on components from diverse sources

 This implies that supply-chain attacks must be contemplated, along with attack
surfaces within the software application

– There will necessarily be differences in the levels of trust conferred on components.
– There may also be opacity in the supply chain for vendor and sub components

 Evaluative and preventive approaches can be integrated to enhance assurance in
complex supply chains with diverse sourcing.

3. High consequences due to roles in war-fighting and protection of human lives
and national assets

4. Failure to maintain a lead in the ability to prevent and evaluate confers
advantage to adversaries (DSB2007, paraphrased)

 Finding from DSB2007
It is an essential requirement that the United States maintain advanced
capability for “test and evaluation” of IT products. Reputation-based or trust-
based credentialing of software (“provenance”) needs to be augmented by
direct, artifact-focused means to support acceptance evaluation.

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

20

Conclusions – patterns for progress in the mainstream

• Languages are improving
 L + M + A L’

• Enrich API focus
 Enrich models at APIs

• Enhance architecture focus
 Structure for trust localization/isolation

• Push further development of abstractions and modeling formalisms
 With CPS and beyond CPS

• Tools are essential to support modeling and analysis
 Already true for development: individuals, teams, enterprise
 Proof management is a first-class activity
 Heuristic assist (abductive, correlative, etc) pays off
 Replace missionary work with metrics

• Adapt evaluation practices and policies
 Support incrementality and continuous evolution – constant ROI
 Don’t require full-scope verification – tests and inspection results
 Incent the interplay of development, evidence-building, assurance
 Integrate with SDL-like processes

HCSS / DIS May 2012

Scherlis 10

Adopt a strategic approach to software assurance

 DoD faces particular challenges to assurance.
1. The arms-length relationship between a contractor development team and

government stakeholders
2. Modern systems of all kinds draw on components from diverse sources

 This implies that supply-chain attacks must be contemplated, along with attack
surfaces within the software application

– There will necessarily be differences in the levels of trust conferred on components.
– There may also be opacity in the supply chain for vendor and sub components

 Evaluative and preventive approaches can be integrated to enhance assurance in
complex supply chains with diverse sourcing.

3. High consequences due to roles in war-fighting and protection of human lives
and national assets

4. Failure to maintain a lead in the ability to prevent and evaluate confers
advantage to adversaries (DSB2007, paraphrased)

 Finding from DSB2007
It is an essential requirement that the United States maintain advanced
capability for “test and evaluation” of IT products. Reputation-based or trust-
based credentialing of software (“provenance”) needs to be augmented by
direct, artifact-focused means to support acceptance evaluation.

Scherlis © 2012

©
 2

0
1

2
 W

 S
ch

e
rl

is

20

Conclusions – patterns for progress in the mainstream

• Languages are improving
 L + M + A L’

• Enrich API focus
 Enrich models at APIs

• Enhance architecture focus
 Structure for trust localization/isolation

• Push further development of abstractions and modeling formalisms
 With CPS and beyond CPS

• Tools are essential to support modeling and analysis
 Already true for development: individuals, teams, enterprise
 Proof management is a first-class activity
 Heuristic assist (abductive, correlative, etc) pays off
 Replace missionary work with metrics

• Adapt evaluation practices and policies
 Support incrementality and continuous evolution – constant ROI
 Don’t require full-scope verification – tests and inspection results
 Incent the interplay of development, evidence-building, assurance
 Integrate with SDL-like processes

