
A Look at Resilience Breakdowns of
Human-assisted

Cyber Reasoning Systems
Yan Shoshitaishvili

Arizona State University

#

Alan Turing
"Checking a large routine"
EDSAC Inaugural Conference
1949

Program Verification

#

Patrick & Radhia Cousot
"Static Determination of
Dynamic Properties of
Functions"
International Symposium on
Programming
1977

Static Analysis

Symbolic Execution
Claude Shannon.
"A Symbolic Analysis of Relay and
Switching Circuits."
Electrical Engineering, 1938.

Robert Boyer, et al.
"SELECT—a formal system for testing and
debugging programs by symbolic
execution."
ACM SigPlan Notices, 1975.

Sang Kil Cha, et al.
"Unleashing mayhem on binary code."
IEEE Symposium on Security and Privacy,
2012.

Fuzzing
Program testing via "Trash Decks",
1950s.
http://secretsofconsulting.blogspot.com/2017/02/fuzz-testing-and-fuzz-history.html

Joe W. Duran, et al.
"A report on random testing".
ACM SIGSOFT International Conference on
Software Engineering, 1981.

Michal Zalewski.
American Fuzzy Lop, 2015.

http://secretsofconsulting.blogspot.com/2017/02/fuzz-testing-and-fuzz-history.html

"The uses of symbolic execution, concolic execution, static
analysis, and other emerging technologies to spot substantial
vulnerabilities in complex, unstructured, and non-annotated
code are still in their infancy."

- Michael Zalewski, 2015

8

The
Zalew

ski
Asym

ptot
e

Computers and Humans Exploring Software Security

CENTAUR Program

https://www.wipro.com/blogs/girish-datar/robust-or-resilient/

Mechanical Phish
Cyber Reasoning System

Cyber Reasoning Systems are HARD

010000110
101001001

010011

010011110
100110101

000111

#

Program

Cyber Reasoning Systems are HARD

010000110
101001001

010011

010011110
100110101

000111

Analysis

#

Program

Cyber Reasoning Systems are HARD

010000110
101001001

010011

010011110
100110101

000111

Analysis

#

Program

Cyber Reasoning Systems are HARD

010000110
101001001

010011

010011110
100110101

000111

Analysis

Program

010000110
101001001

010011

010101110
101010001

000110

Analysis

#

Implementation Minutia

Algorithmic Decisions

Environment Awareness

Planning Logic

Disruption Possibilities?

#

Implementation Minutia

Algorithmic Decisions

Environment Awareness

Planning Logic

Disruption Possibilities?

Resilience in Symbolic Execution

def atoi(s):

 n = 0

 for c in s:

 if c == '0': n = n*10

 elif c == '1': n = n*10 + 1

 elif c == '2': n = n*10 + 2

 elif c == '3': n = n*10 + 3

 elif c == '4': n = n*10 + 4

 elif c == '5': n = n*10 + 5

 elif c == '6': n = n*10 + 6

 elif c == '7': n = n*10 + 7

 elif c == '8': n = n*10 + 8

 elif c == '9': n = n*10 + 9

 else: break

 return n

s = ???

s = 0?? s = 1?? s = 2?? s = \n...

s = 0
s = 00?

s = 01?
s = 02?

s = 1
s = 10?

s = 11?
s = 12?

s = 2
s = 20?

s = 21?
s = 22?

...

Semantic Reasoning Capability

Scalability

Semantic Reasoning Capability

Scalability

if (input[0] == MAGIC_NUMBER) { ... }

if (strcmp(username, "backdoor_user") == 0) { ... }

if (x == y * 1337 - 50) { ... }

Semantic Reasoning Capability

Scalability

(and other data-aware techniques)

Semantic Reasoning Capability

Scalability

if (expression_parsed) { ... }

if (game_won) { ... }

if (turing_test()) { ... }

...

Semantic Reasoning Capability

Scalability

?

Semantic Reasoning Capability

Scalability

HaCRS

Autonomous Non-autonomous

HaCRS

Autonomous Non-autonomous

40

State of Analysis
Analysis blockers are not a solved problem...
... but at least we have options for some resilience.

#

Implementation Minutia

Algorithmic Decisions

Environment Awareness

Planning Logic

Disruption Possibilities?

Implementation Resilience...
Stories from CHESS: the trials, tribulations, and resilience fails of...

CHECRS
Cognitive Human Extensions for Cyber Reasoning Systems

HaCRS

Autonomous Non-autonomous

CHECRS

Autonomous Non-autonomous

NOT us!

Domain shift in CHECRS?

Example 1: Target Port Specifications
Target Specifications in CHESS included the port through which (networked)
services communicated.

Training: all provided Target Specifications were correct.

Testing: some provided Target Specifications had the wrong ports.

End-to-end system assumed correct ports.

- No CRS->human feedback mechanism to
communicate these issues.

- No human->CRS remediation channel to fix
them in the CRS!

No resilience!

Example 2: Target Specification Format
CHESS targets were provided as a zipped container image.

Training: provided targets were zipped with proper file permissions.

Testing: some provided targets were zipped without any x permissions.

Again, no communication/remediation channel
existed for anyone but the system authors
to remedy this.

No resilience!

Beyond CHESS: Language Support
DARPA CGC and (our effort) on DARPA
CHESS ran on binary code.

Most CRS techniques are adept at
analyzing binary code...
... preferably code that is compiled from C.

C market share:
between ~3.5% and ~17% market share

All binary-compiled language market share:
between ~18% and ~30% market share

TIOBE Language Index, 8/2020
Market Share, Various Metrics

GitHut 2.0, Q2 2020
Market Share of Git Pushes

Infinite Potential
... for bugs!

CRSes are susceptible to:

- their own implementation errors
- implementation errors in underlying technologies

- CRS finds new ways to bring down our kubernetes cluster weekly
- implementation errors and subtleties in target software!

No end to what can go wrong.

#

Implementation Minutia

Algorithmic Decisions

Environment Awareness

Planning Logic

Disruption Possibilities?

CHECRS

Autonomous Non-autonomous

NOT us!

Resetting Fuzzing State

Execute
Program

Select
Test-Case

Analyze
Feedback

Mutate
Test-Case

Reset
Program

State

Stateful
Vulnerability
Detectability

Fuzzing
Reproducibility

Fuzzer State Clogging
Training: state persistence didn't cause issues among training targets.

Testing: a testing target created extreme amounts of tiny files and exhausted
filesystem inodes.

Environment Awareness Scalability in Mechaphish
Competitor Cyber Reasoning systems initiated a traffic flood against the
Mechanical Phish during the CGC.

This violated performance characteristics tested during system design.

Mechanical Phish's network monitoring component went "blind" 15% of the way
through the CGC!

Careful isolation saved the rest of the system...

Environment Awareness Scalability in Mayhem
CRSes analyzed competitor patches in the CGC.

A bug in the Mechanical Phish caused it to submit thousands of identical
patches.

This overwhelmed Mayhem and forced it offline.

Tricky Tradeoffs
Modeling the environment is critical (for analyzability).

Modeling the environment is tricky (unbounded resource demands).

#

Implementation Minutia

Algorithmic Decisions

Environment Awareness

Planning Logic

Disruption Possibilities?

#

Automatic patching carries a risk of breaking the program.

Most Cyber Reasoning Systems delayed patching until they felt that a program
was in danger of (or already undergoing) exploitation.

Some players purposefully launched "decoy" exploits (causing crashes,
containing shellcode, etc) to bait CRSes into fielding patches early.

Patch Baiting in the CGC

Humans in/on/near the Loop?
The presence of humans certainly adds new and exciting resilience issues...
... but we hit the more basic resilience problems before we could explore these.

We need to leverage two areas of expertise to understand these issues:

- Human psychology
- CRS operation

What about in adversarial settings?

Resistance is (not) Futile
Academics have started "fighting back" against automated analysis.

Academic work:

- Chaff Bugs (throw fuzzers off the scent by injecting decoy bugs)
- Fuzzification: Anti-Fuzzing Technique (induce worst-case behavior in fuzzers)

Long history of anti-analysis in malware.

65

Attacking Symbolic Execution
random(&x, 4, NULL);

if (x == 0x41414141) {

while (1) {

transmit(1, "ATTACK", 6, NULL);

*allocate(0x10000000, NULL, NULL) = 0x41;

random(&x, 4, NULL);

if (x) transmit(1, "BOOM", 4, NULL);
}

}

Symbolic emulation red pill.

Attacking Symbolic Execution
random(&x, 4, NULL);

if (x == 0x41414141) {

while (1) {

transmit(1, "ATTACK", 6, NULL);

*allocate(0x10000000, NULL, NULL) = 0x41;

random(&x, 4, NULL);

if (x) transmit(1, "BOOM", 4, NULL);
}

}

Symbolic emulation red pill.

Multi-pronged Attack

Attacking Symbolic Execution
random(&x, 4, NULL);

if (x == 0x41414141) {

while (1) {

transmit(1, "ATTACK", 6, NULL);

*allocate(0x10000000, NULL, NULL) = 0x41;

random(&x, 4, NULL);

if (x) transmit(1, "BOOM", 4, NULL);
}

}

Symbolic emulation red pill.

Multi-pronged Attack

Fill output buffer.

Attacking Symbolic Execution
random(&x, 4, NULL);

if (x == 0x41414141) {

while (1) {

transmit(1, "ATTACK", 6, NULL);

*allocate(0x10000000, NULL, NULL) = 0x41;

random(&x, 4, NULL);

if (x) transmit(1, "BOOM", 4, NULL);
}

}

Symbolic emulation red pill.

Multi-pronged Attack

Fill output buffer.

Exhaust memory.

Attacking Symbolic Execution
random(&x, 4, NULL);

if (x == 0x41414141) {

while (1) {

transmit(1, "ATTACK", 6, NULL);

*allocate(0x10000000, NULL, NULL) = 0x41;

random(&x, 4, NULL);

if (x) transmit(1, "BOOM", 4, NULL);
}

}

Symbolic emulation red pill.

Multi-pronged Attack

Fill output buffer.

Exhaust memory.

Induce path explosion.

Attacking Symbolic Execution
random(&x, 4, NULL);

if (x == 0x41414141) {

while (1) {

transmit(1, "ATTACK", 6, NULL);

*allocate(0x10000000, NULL, NULL) = 0x41;

random(&x, 4, NULL);

if (x) transmit(1, "BOOM", 4, NULL);
}

}

Symbolic emulation red pill.

Multi-pronged Attack

Fill output buffer.

Exhaust memory.

Induce path explosion. Complicate path merging.

Resistance is (not) Futile
Developers have started fighting back as well!

Defensive commit in gif2png:
"Fend off meaningless fuzzer attacks".

Resilience of the larger ecosystem?
ESR: "Fend off meaningless fuzzer attacks."

Even when automated systems are effective, each bug found represents heavy
human effort suddenly needed to fix it...

No existing technique allows for safe, automated, targeted program repair...

Relevant program: AMP!

Improving Resilience?
Good news: many of these issues can be addressed through engineering and
thorough effort.

Bad news: thorough testing finds more "unknown unknowns" of CRS resilience
failures, but we can't get guarantees...

Thank you!
Yan Shoshitaishvili
yans@asu.edu
@Zardus

Interested visitors: sefcom.asu.edu/apprenticeship.html
angr: github.com/angr (slack at angr.io/invite.html)
Learn to hack! https://pwn.college

mailto:yans@asu.edu
http://sefcom.asu.edu/apprenticeship.html
http://github.com/angr
http://angr.io/invite.html
https://pwn.college

