CMU lablet project w/
Matt Fredrikson,
Mike Reiter (UNC)

Adversarial ML (Update)

+

Understanding Privacy Valuations

Lujo Bauer

Carnegie Mellon University

Not a lablet project; w/ Michelle Mazurek (UMD)

January 11 2019

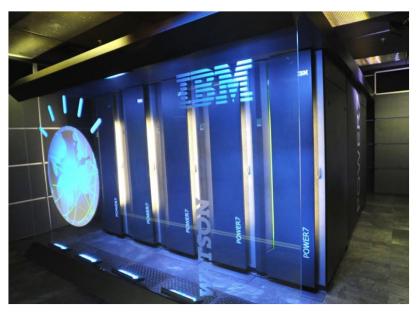
Adversarial Machine Learning: Curiosity, Benefit, or Threat?

Lujo Bauer

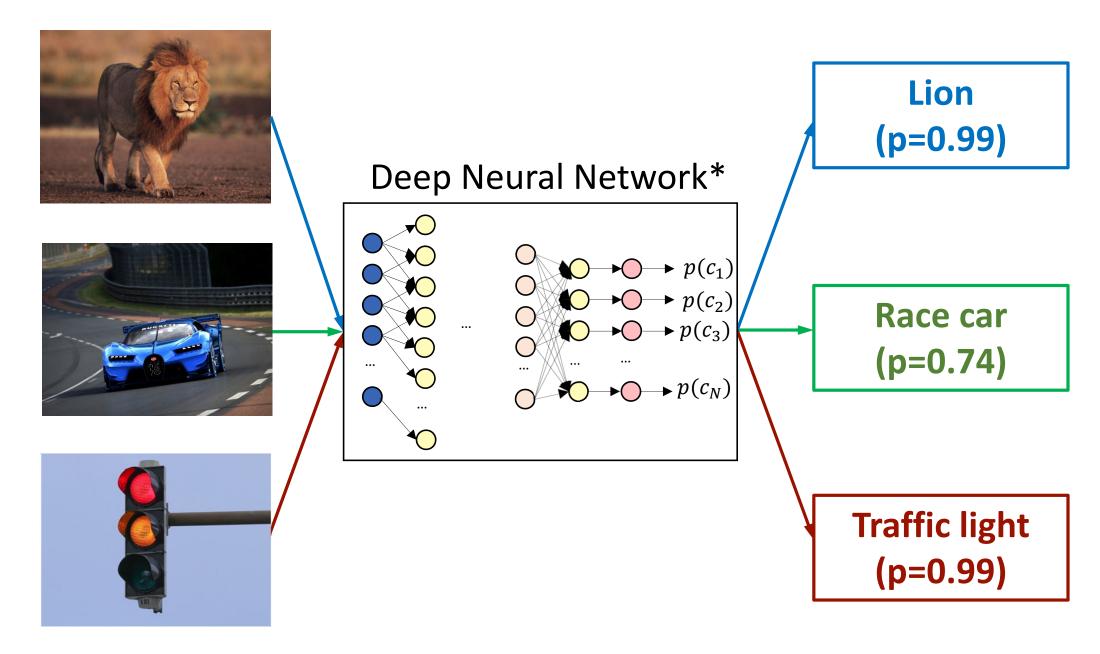
Collaborators: Mahmood Sharif, Sruti Bhagavatula, Mike Reiter (UNC)

Machine Learning Is Ubiquitous

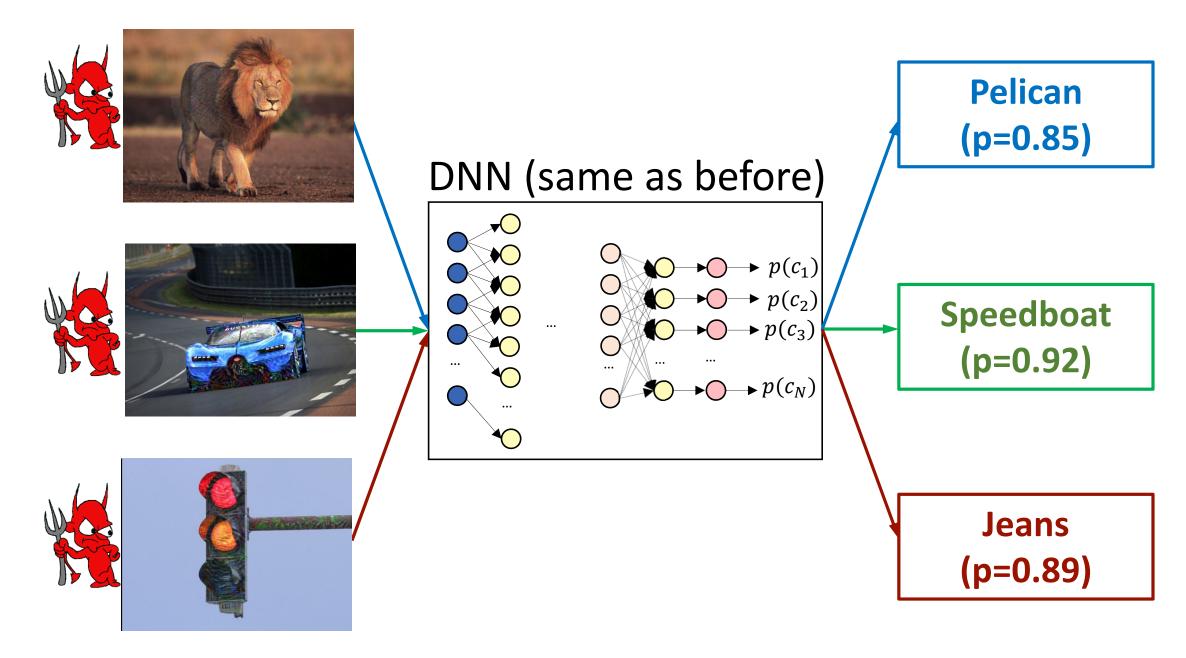
- Cancer diagnosis
- Predicting weather
- Self-driving cars
- Surveillance and access-control



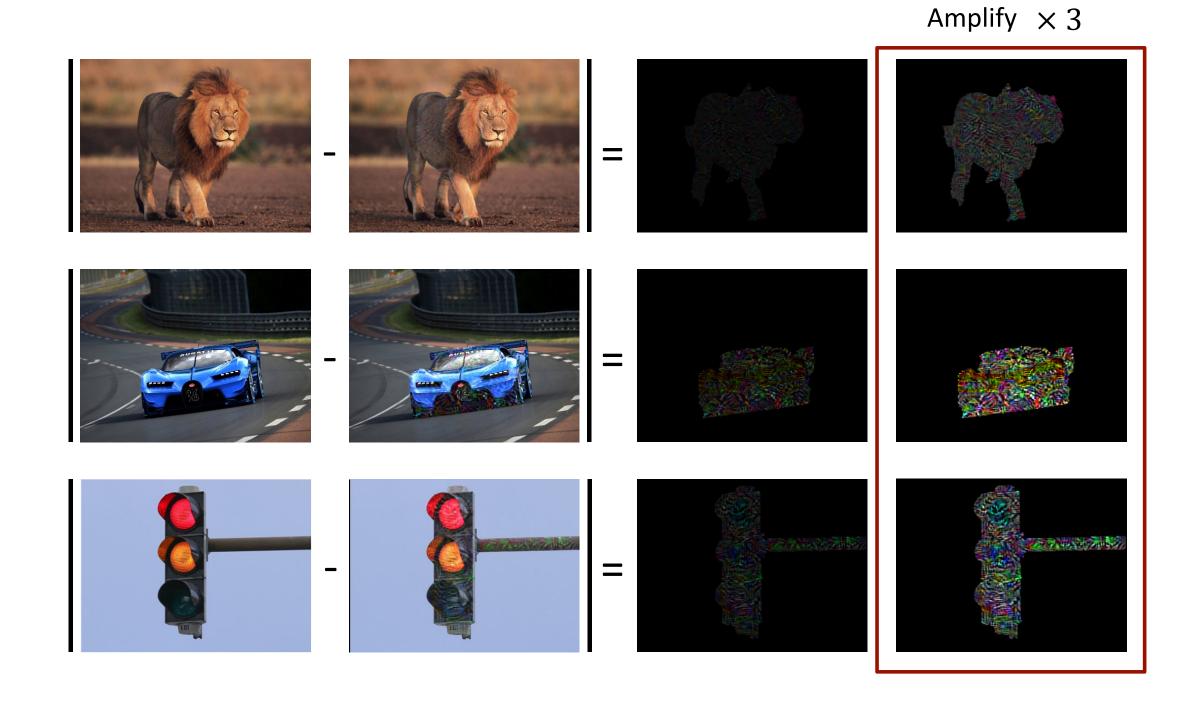
What Do You See?



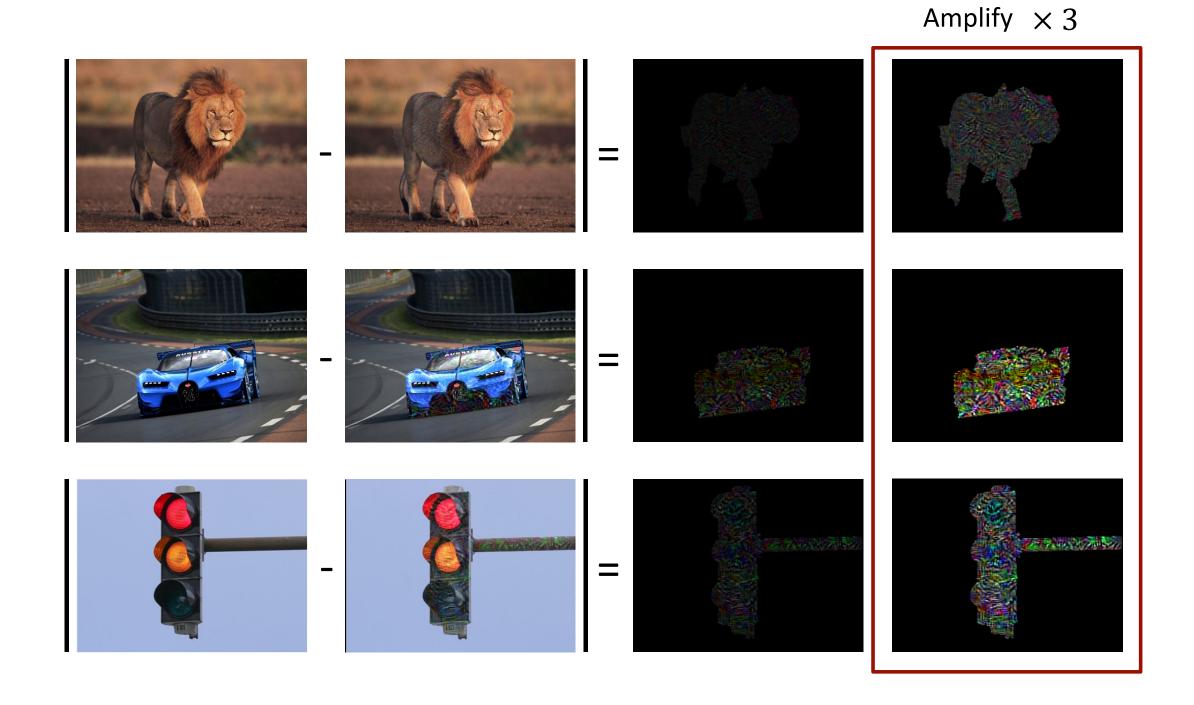
What Do You See Now?



The Difference



Is This an Attack?



Can an Attacker Fool ML Classifiers?

Fooling face recognition (e.g., for surveillance, access control)

- What is the attack scenario?
- Does scenario have constraints?
 - On how attacker can manipulate input?
 - On what the changed input can look like?

Can change physical objects, in a limited way

Can't control camera position, lighting

Defender / beholder doesn't notice attack (to be measured by user study)

Attempt #1

- O. Start with Szegedy et al.'s attack
- 1. Restrict modification to eyeglasses
- 2. Smooth pixel transitions
- 3. Restrict to printable colors
- 4. Add robustness to pose

"Inconspicuousness"

Physical realizability

Attempt #1

Carnegie Mellon University

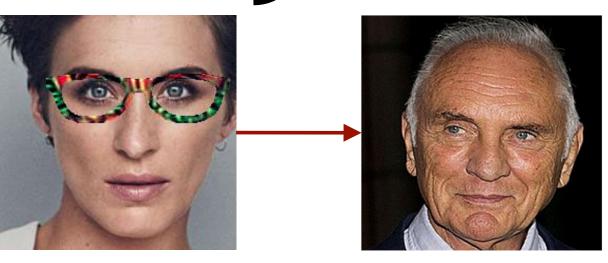
- O. Start with Szegedy et al.'s attack
- 1. Restrict modification to eyeglasses
- 2. Smooth pixel transitions
- 3. Restrict to printable colors
- 4. Add robustness to pose

"Inconspicuousness"

Physical realizability

Terence Stamp

Vicky McClure



ıre

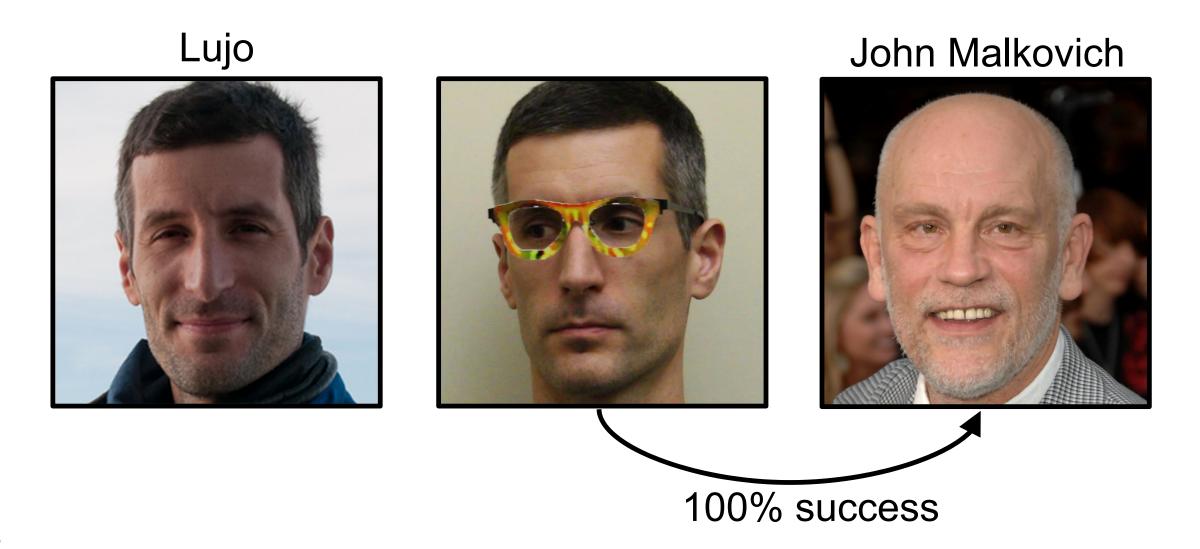
Time to Test!

Procedure:

- 1. Collect images of attacker
- 2. Choose random target
- 3. Generate and print eyeglasses
- 4. Collect images of attacker wearing eyeglasses
- 5. Classify collected images

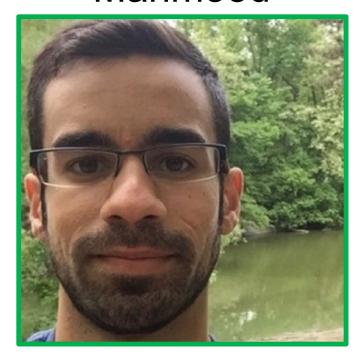
Success metric: fraction of images misclassified as target

Physically Realized Impersonation Attacks Work



Physically Realized Impersonation Attacks Work

Mahmood



Carson Daly

100% success

Can an Attacker Fool ML Classifiers? (Attempt #1)

Fooling face recognition (e.g., for surveillance, access control)

- What is the attack scenario?
- Does scenario have constraints?
 - On how attacker can manipulate input?
 - On what the changed input can look like?

Defender / beholder doesn't notice attack (to be measured by user study)

Can change physical objects, in a limited way

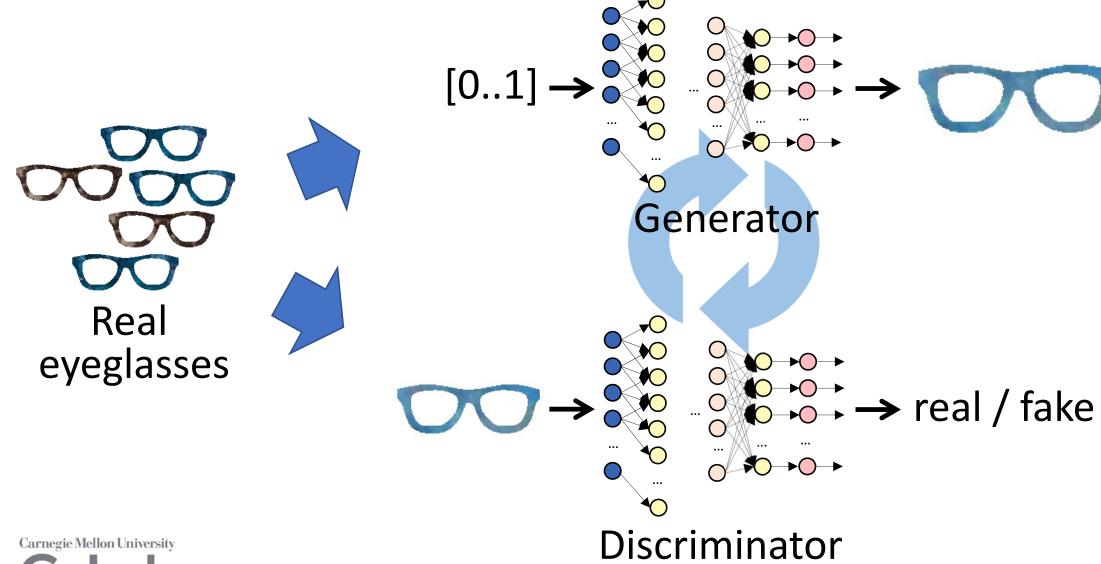
Can't control camera position, lighting

Attempt #2

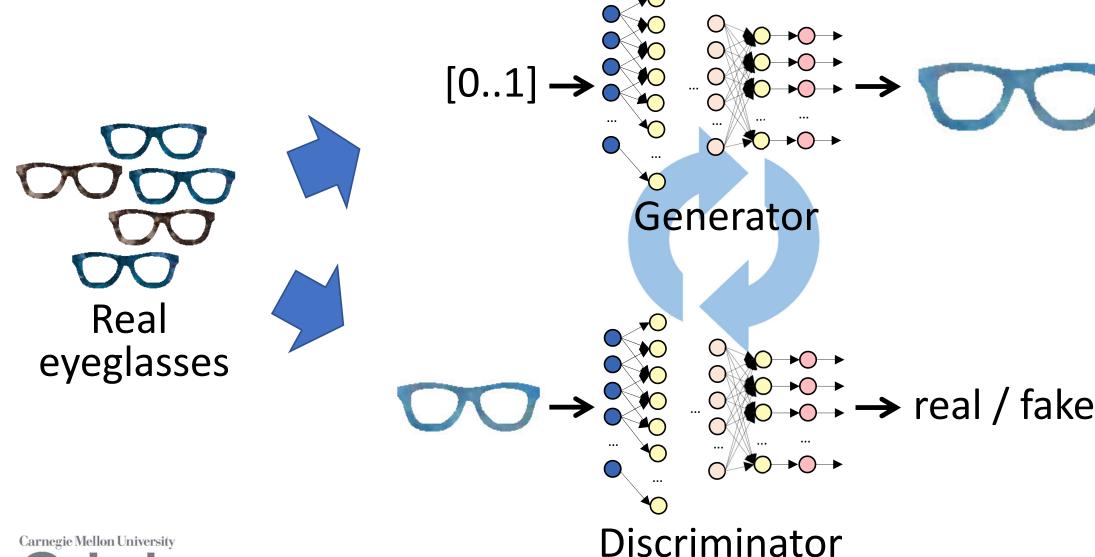
Goal: Capture hard-to-formalize constraints, i.e., "inconspicuousness"

Approach: Encode constraints using a neural network

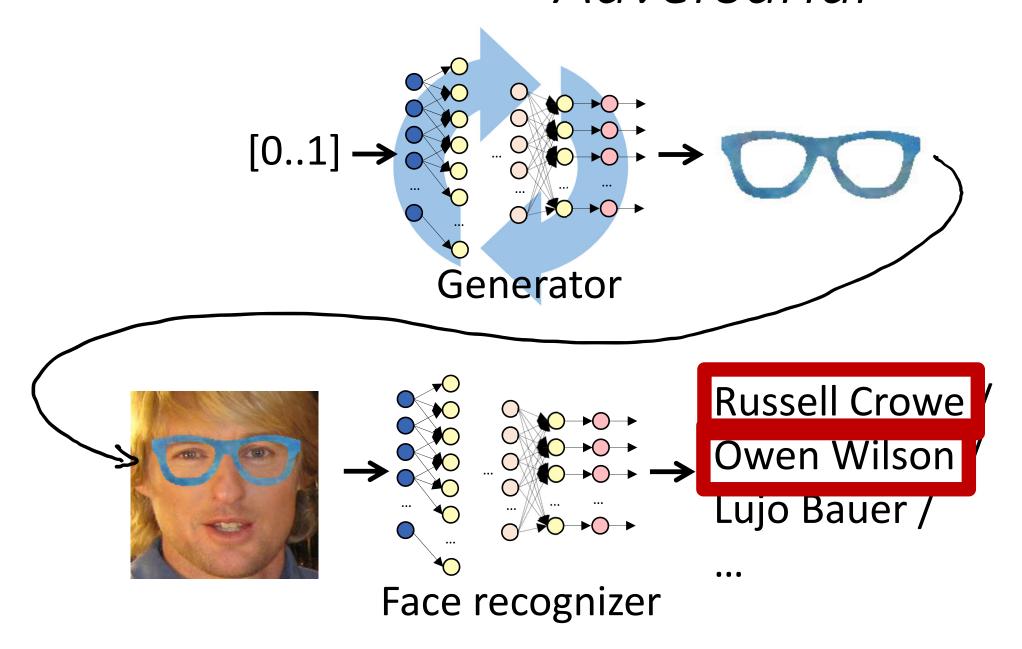
Step #1: Generate Realistic Eyeglasses

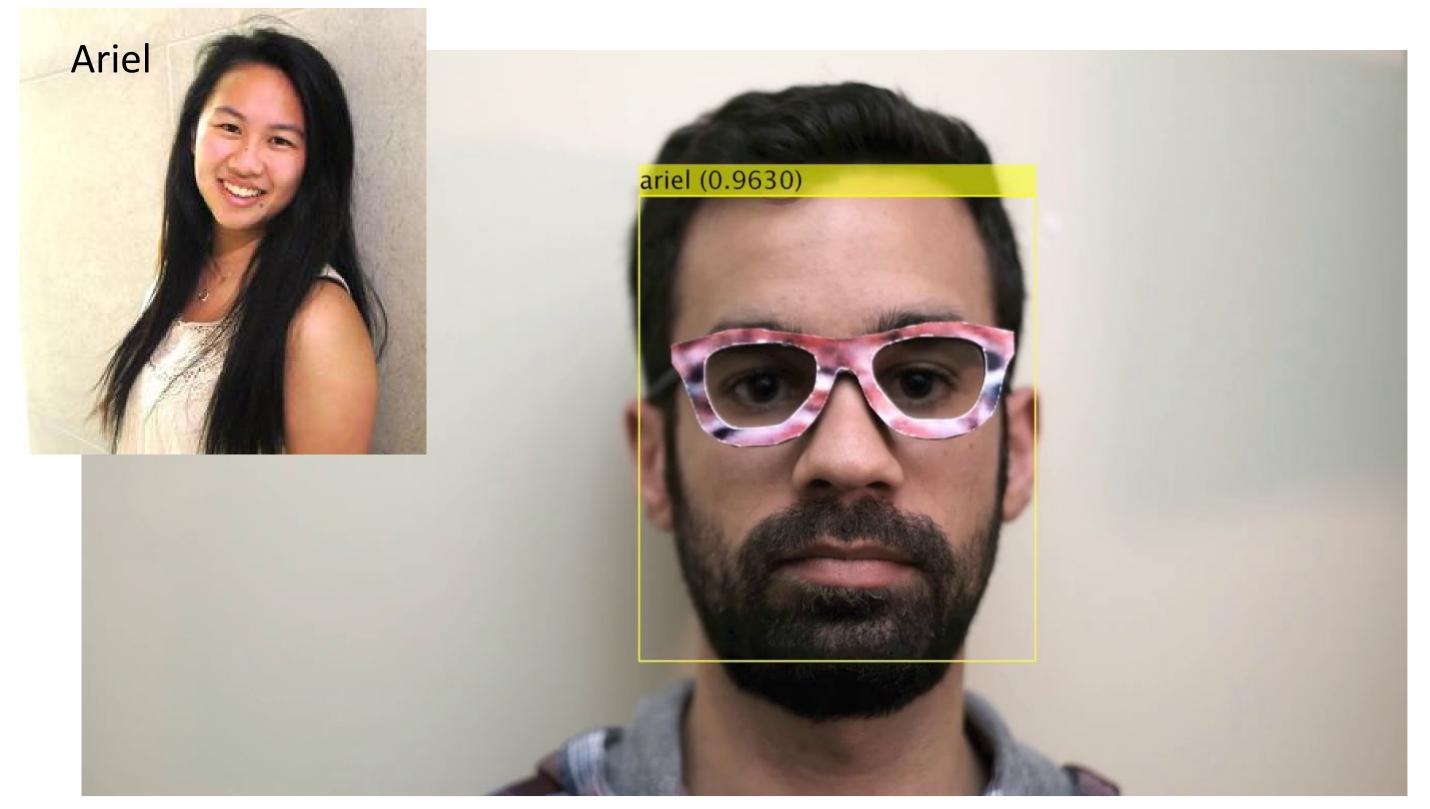


Step #2: Generate Realistic, Eyeglasses **Adversarial**

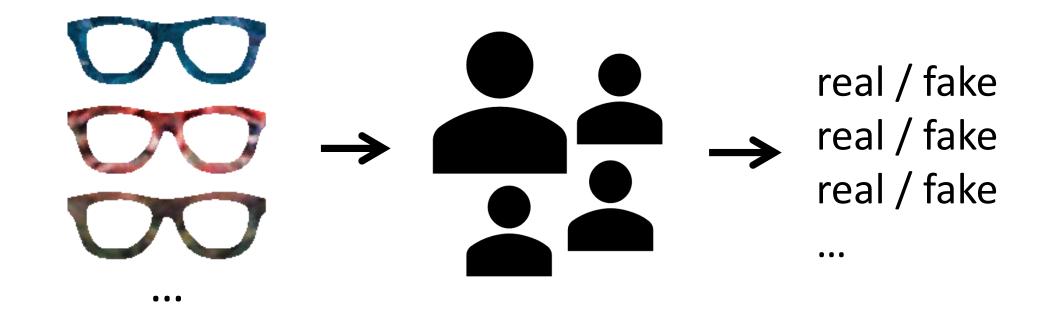


Step #2: Generate Realistic, Eyeglasses Adversarial

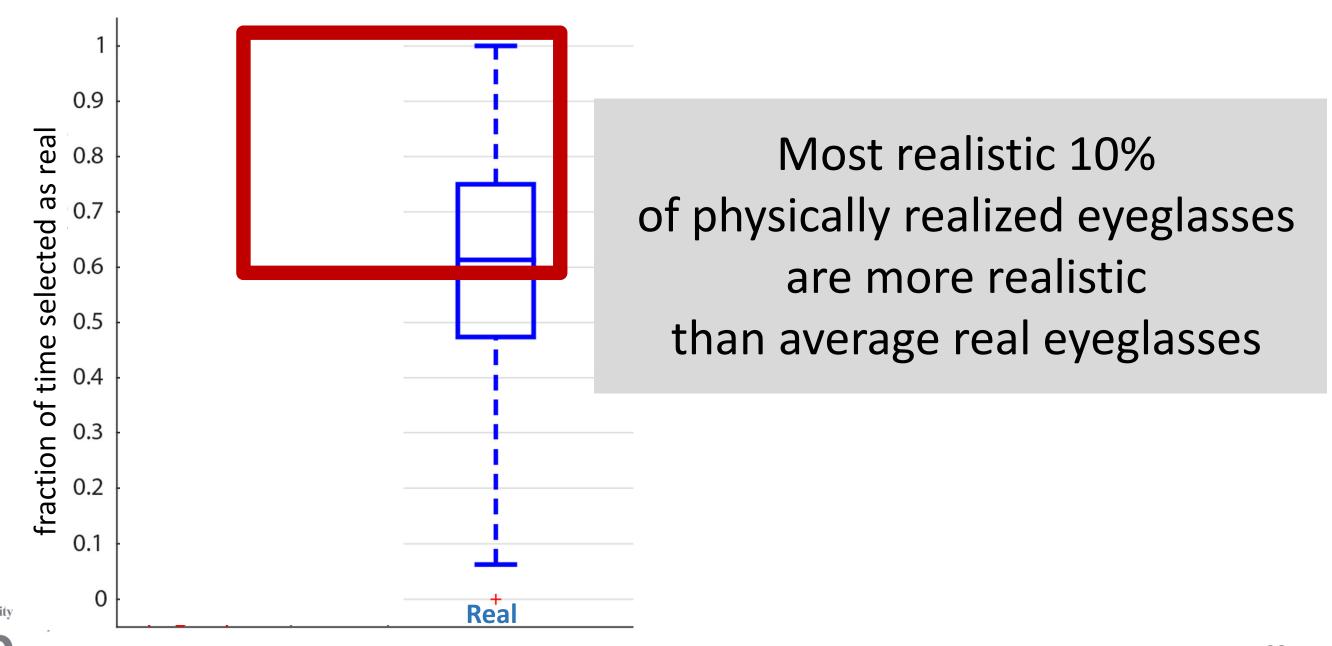




Are Adversarial Eyeglasses Inconspicuous?



Are Adversarial Eyeglasses Inconspicuous?



Can an Attacker Fool ML Classifiers? (Attempt #2)

Fooling face recognition (e.g., for surveillance, access control)

- What is the attack scenario?
- Does scenario have constraints?
 - On how attacker can manipulate input?
 - On what the changed input can look like?

Defender / beholder doesn't notice attack (to be measured by user study)

Can change physical objects in a limited way

Can't control camera position, lighting

Considering Camera Position, Lighting

- Used algorithm to measure pose (pitch, roll, yaw)
- Mixed-effects logistic regression
 - Each 1° of pitch = 0.94x (VGG) or 1.12x (OpenFace) attack success rate
 - Each 1° of yaw = 0.94x attack success rate
- Varied luminance (add 150W incandescent light at 45°, 5 luminance levels)
 - Not included in training \rightarrow 50% degradation in attack success
 - Included in training → no degradation in attack success

What if Defenses Are in Place?

- Already:
 - Augmentation to make face recognition more robust to eyeglasses
- New:
 - Train attack detector (Metzen et al. 2017)
 - 100% recall and 100% precision
 - Attack must fool original DNN and detector
- Result (digital environment): attack success unchanged

Can an Attacker Fool ML Classifiers? (Attempt #2)

Fooling face recognition (e.g., for surveillance, access control)

- What is the attack scenario?
- Does scenario have constraints?
 - On how attacker can manipulate input?
 - On what the changed input can look like?

Defender / beholder doesn't notice attack (to be measured by user study)

Can change physical objects in a limited way

Can't control camera position, lighting

Other Attack Scenarios?

Dodging: One pair of eyeglasses, many attackers?

Change to training process:

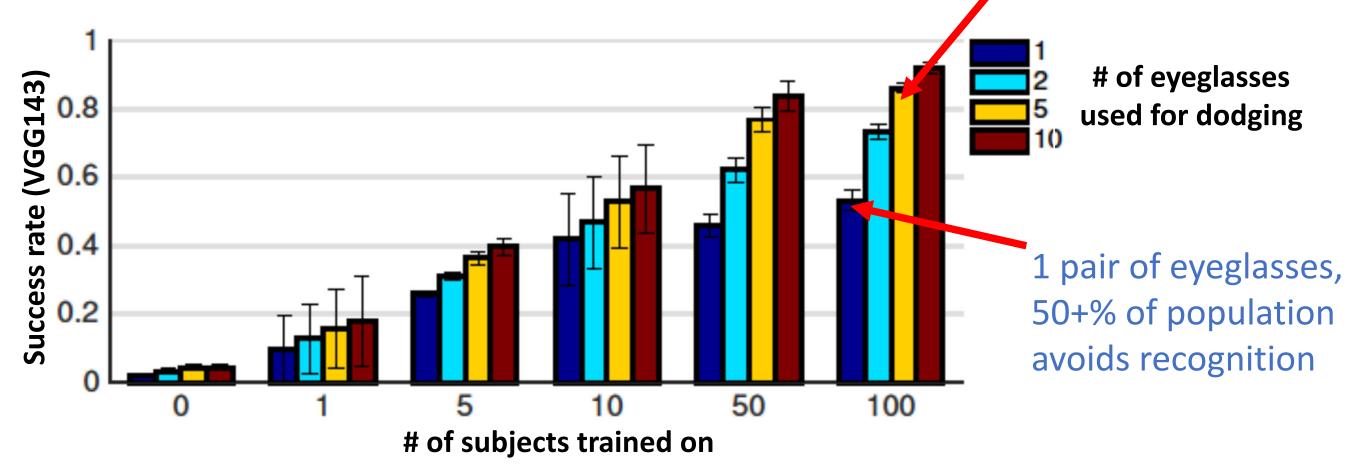
Train with multiple images of one user

→ train with multiple images of *many* users

Create multiple eyeglasses, test with large population

Other Attack Scenarios?

Dodging: One pair of eyeglasses, many attackers?



5 pairs of eyeglasses,

85+% of population

avoids recognition

Other Attack Scenarios? or Defense

Privacy protection?

• E.g., against mass surveillance at a political protest

Unhappy speculation: probably not

- 90% of video frames successfully misclassified
 - → 100% success at defeating laptop face logon
 - → 0% at avoiding being recognized at a political protest

Exception: "privacy" through denial of service

To preserve privacy, be "identified" in many locations at once

Fooling ML Classifiers: Summary and Takeaways

- "Attacks" may not be meaningful until we fix context
 - E.g., for face recognition:
 - Attacker: physically realized (i.e., constrained) attack
 - Defender / observer: attack isn't noticed as such
- Even in a practical (constrained) context, real attacks exist
 - Relatively robust, inconspicuous; high success rates
- Hard-to-formalize constraints can be captured by a DNN
- Similar principles about constrained context apply to other domains: e.g., malware, spam detection

For more: www.ece.cmu.edu/~lbauer/proj/advml.php

Comparing Hypothetical and Realistic Privacy Valuations

Joshua Tan, Mahmood Sharif, Sruti Bhagavatula, Matthias Beckerle, Michelle L. Mazurek*, Lujo Bauer

Why measure privacy preferences?

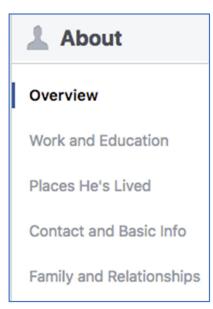
- Privacy preferences = willingness/comfort sharing personal info
- Who benefits from understanding privacy preferences?
 - System designers
 - What data are users okay sharing?
 - How much value should users receive for sharing?
 - Policy makers
 - How much "loss" do consumers incur through data breaches?
 - What kind of data sharing (if any) should be disincentivized?

Measuring privacy preferences is challenging

- Contextual factors influence users' privacy preferences and behaviors
 - E.g., willingness to share PII depends on how it will be used
- Valuations of goods (estimations of worth) influenced by framing effects and cognitive biases
 - Endowment effect = value more if own / value less if shared
 - Hypothetical bias = overestimate value in hypothetical scenario
- Stated privacy attitudes often do not align with actual behavior (privacy paradox)
- In this talk, privacy preferences are measured in \$ valuations

This talk: Can we predict privacy valuations?

- Privacy valuation = willingness to sell and selling price for personal info
- How do privacy valuations depend on combinations of factors?



Scenario realism

• Does hypothetical bias explain the privacy paradox?

Methodology

- Online study with 434 Prolific participants
- Participants asked to assign selling prices to personal attributes
 - Could also choose to not sell
 - Selling scenario was information marketplace operated by CMU
 - Attributes in market are sold to buyers via an auction
 - Buyers have limited budgets and purchase lowest-priced offers first
- Collected demographics and IUIPC scores

Prices assigned to 7 attributes and 6 parties

For how much do you agree to sell your [attribute] to each one of the following parties?

Choice
Sell Do not sell \$
O O

\$ amount

Attributes:

- Age
- Email address
- Gender
- Relationship status
- Home address
- Occupation
- Phone number

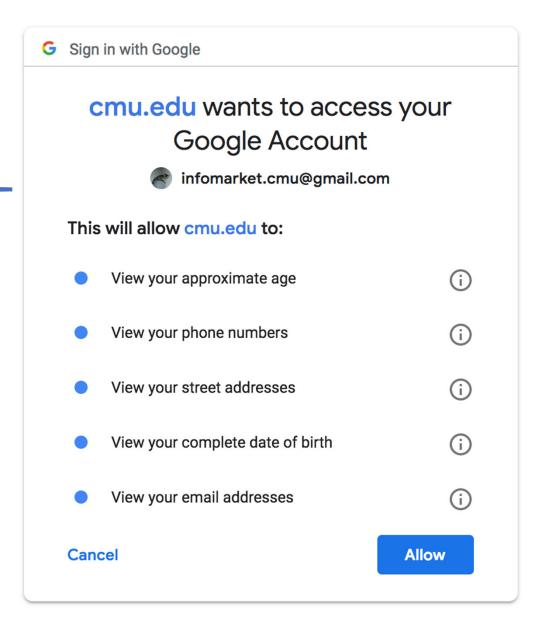
Receiving parties:

- Ad networks
- Federal agencies
- Insurance companies
- Market research companies
- Political parties
- Research pools

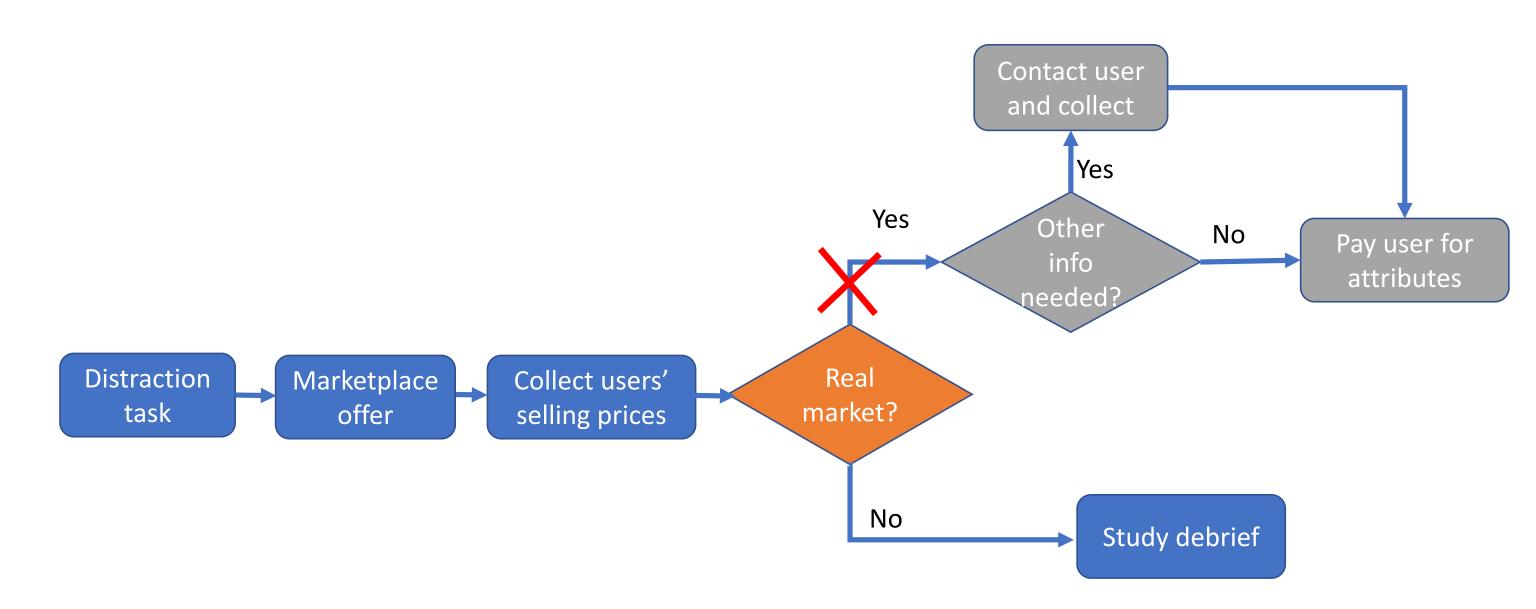
We varied the realism of the scenario

More realistic Realistic with endowment (Real_{End}) Google SSO before valuations (functional market) Realistic without endowment (Real_{NoEnd}) Google SSO after valuations Less realistic (Hyp_{Low}) Evaluate near-operational market Even less realistic (Hyp_{Medium}) Evaluate market concept Least realistic (Hyp_{High}) Participate in research on buying/selling preferences

Carnegil Melosnice Olistic



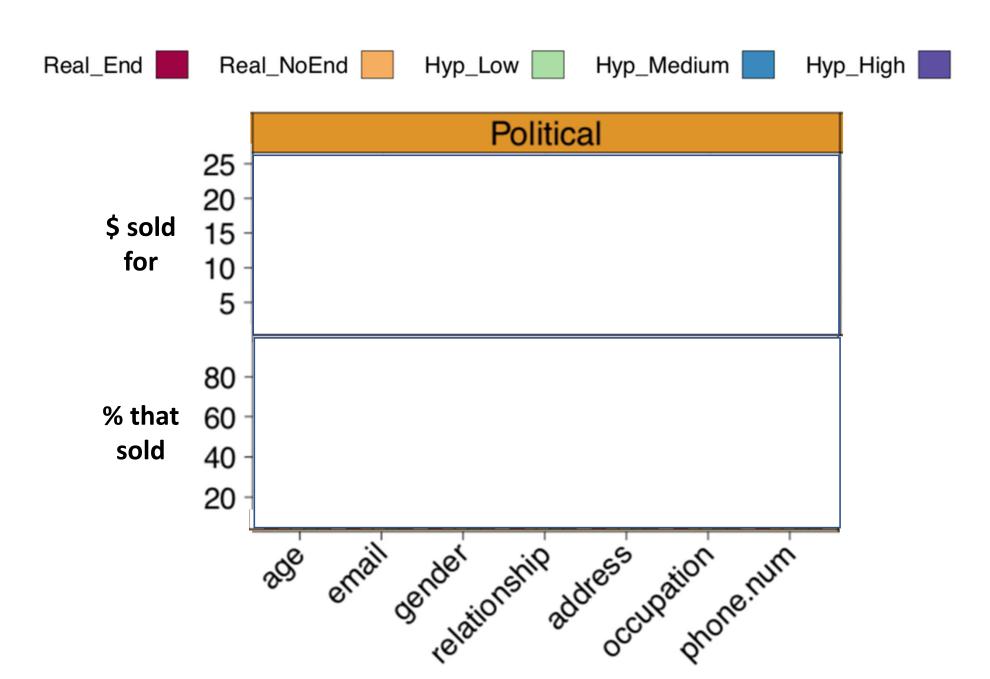
Marketplace realistic except for payment



Valuations analyzed using regressions and ML

- Likelihood of selling
 - Mixed-effect logistic regression
- Dollar values
 - Mixed-effect linear regression
- Modeled two-way interactions between scenario realism, attribute type, and receiving party
 - Applied Holm-Bonferonni correction to significance tests
- Predictions of attribute rankings
 - Machine learning classifier

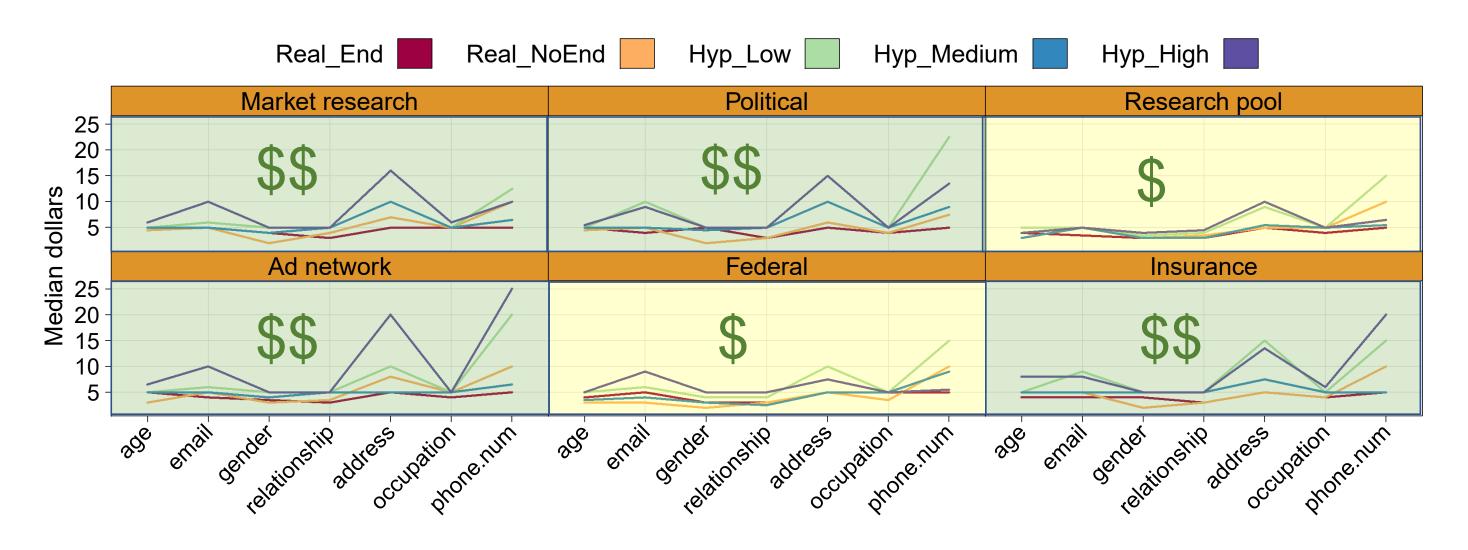
Comparing privacy valuations: Results



Contact info sold for more \$ and less often



Selling price depends on who is buying



Can we predict valuations?

- Dollar values? Not yet.
- Scenario realism, attribute type, and receiving party insufficient for accurate prediction of absolute valuations
 - Conditional $R^2 = 74.8\%$
 - Marginal $R^2 = 13.3\%$
- Individual users have very different baselines in terms of \$
 - Given baseline, accurate \$ prediction possible

Can we predict valuations?

- Attribute rankings? Yes.
 - Same average rankings regardless of scenario realism or buyer
- Subset of attribute rankings for hypothetical scenario further improves prediction of full rankings in realistic scenario
 - E.g., by asking a user to rank three attributes, can predict full rankings more accurately than if used average rankings

Privacy paradox often doesn't hold

- Surprisingly, Hypothetical values not generally different than Realistic values
 - Exceptions:
 - Phone number (Real_{End}: ~\$9, Real_{NoEndow}: ~\$14)
 - Home address (Real_{End}: ~\$8, Real_{NoEndow}: ~\$11)
- Calibration factor = Hypothetical / Real
 - Largest calibration factor predicted by our model was 1.61
 - List and Gallet (2001): 4.44 for public goods, 8.41 for private goods
- No significant differences in likelihood of selling by scenario realism

Comparing privacy valuations: Takeaways

- Attribute rankings stable regardless of scenario realism and receiving party
- Selling prices can be accurately predicted based on attribute type and receiving party, given baseline price for individual person
- In contrast to other types of goods, privacy valuations not generally affected by hypothetical bias
 - Some attribute types (e.g., contact info) may not be exempt
- Privacy paradox not attributable to hypothetical bias

