
Analyzing a Cross-DomainAnalyzing a Cross-Domain
Component: Lessons LearnedComponent: Lessons Learned
and Future Directionsand Future Directions

John Matthews
Joint work with Levent Erkök, Paul
Graunke, Joe Hurd, Dylan McNamee, Lee
Pike, Joel Stanley, Aaron Tomb

matthews@galois.com

Tearline WikiTearline Wiki: Cross-domain collaboration service: Cross-domain collaboration service

SBIR DATA RIGHTS || Contract No.: N00039-05C-0036 || Contractor Name: Galois Connections, Inc. || Contractor Address: 12725 SW Millikan Way, Ste 290, Beaverton OR 97005 || Expiration of SBIR Data Rights Period: 5 years following
April 5, 2006 or final delivery of subsequent extensions to this project. || The Government's rights to use, modify, reproduce, release, perform, display, or disclose technical data or computer software marked with this legend are restricted during the
 period shown as provided in paragraph (b)(4) of the Rights in Noncommercial Technical Data and Computer Software-- Small Business Innovative Research (SBIR) Program clause contained in the above identified contract. No restrictions apply after the
expiration date shown above. Any reproduction of technical data, computer software, or portions thereof marked with this legend must also reproduce the markings.

SBIR DATA RIGHTS || Contract No.: N00039-05C-0036 || Contractor Name: Galois Connections, Inc. || Contractor Address: 12725 SW Millikan Way, Ste 290, Beaverton OR 97005 || Expiration of SBIR Data Rights Period: 5 years following
April 5, 2006 or final delivery of subsequent extensions to this project. || The Government's rights to use, modify, reproduce, release, perform, display, or disclose technical data or computer software marked with this legend are restricted during the
 period shown as provided in paragraph (b)(4) of the Rights in Noncommercial Technical Data and Computer Software-- Small Business Innovative Research (SBIR) Program clause contained in the above identified contract. No restrictions apply after the
expiration date shown above. Any reproduction of technical data, computer software, or portions thereof marked with this legend must also reproduce the markings.

OutlineOutline
• Tearline Wiki system architecture
• Formally verifying the Block Access Controller
• Making future verifications easier

Tearline Wiki Tearline Wiki architecturearchitecture

Secure read-down

WebDAV,
HTTP

WebDAV,
HTTP

Trusted Service Engine (TSE)
Cross-domain file store

High Users
High Network

Low Network

Tearline Servers

Low Users Tearline Servers

2-4 networks

TSE architectureTSE architecture

TSE architectureTSE architecture

Block Access Controller (BAC)Block Access Controller (BAC)

• BAC’s functions
– Mediate all disk block accesses
– Connect single-level disks and partitions
– Enforce Bell-LaPadula confidentiality rules

• Reads from same or lower levels
• Writes to same level (write-up not needed)

• Approximately 800 lines of generated C code

BAC stateBAC state

internal state

UNC

TS

S

Disks

per-level externally
visible state

internal state

UNC

TS

S

BAC stateBAC state
request
buffers Disks

per-level externally
visible state

internal state

UNC

TS

S

BAC stateBAC state
request
buffers

response
buffers Disks

per-level externally
visible state

internal state

UNC

TS

S

BAC stateBAC state
request
buffers

response
buffers

DMA
buffers Disks

per-level externally
visible state

OutlineOutline
• Tearline Wiki system architecture
• Formally verifying the Block Access Controller
• Making future verifications easier

BAC verification approachBAC verification approach
• We want EAL7-strength assurance evidence, so we formally verified:

– Safety: BAC never transitions to an error state
– Data separation: BAC’s output buffer values are not dependent on any

higher-security input buffer values

S

TS

UNC

S

TS

UNC

NOP

NOP

=?

Original BAC
model

Zeroed BAC
model

BAC verification approachBAC verification approach
• Originally we tried to formally verify these properties with model

checkers
– But they timed out due to state space explosion

• So we switched to using Isabelle theorem prover
– Feasible, since BAC implementation is only 800 lines long

• Isabelle is attractive for EAL7 assurance evidence
• Small proof kernel
• Proof kernel can generate independently-checkable proof objects
• Records all axioms a theorem depends on

• Data separation proof inspired by [von Oheimb, ESORICS’04]

BAC assurance evidenceBAC assurance evidence

Data Separation and Safety Policies

High Level BAC Model
(written in HOL)

Low Level BAC Model
(written in “C-like” HOL)

Low Level BAC Model
(written in HOL)
BAC Implementation

(automatically-generated C code)

policy
enforcement

proof

equivalence
proof

translator

BAC runtime safetyBAC runtime safety
• To prove data separation, we first had to prove no error states are reachable

– Out-of-bounds array access
– Out-of bounds disk block ID
– Access to memory undergoing DMA transfer
– Too many simultaneous DMA transfers to a single disk
– Multiple simultaneous DMA transfers to same memory region

• Each possible error state had to be turned into a loop invariant: a property
that
– Is true of the BAC’s initial state
– Remains true each time around the top-level BAC event loop

• Example
– atMostOneDMA: “There is at most one DMA transfer occurring to any given memory

page”

S
TS

UNC
S
TS

UNC
S
TS

UNC
S
TS

UNC

A key challenge in BAC proofsA key challenge in BAC proofs
• Finding appropriate loop invariants took too long
• Invariants are often correct, but not inductive

– Need to perform unknown number of manual invariant strengthening
steps, until inductive invariant is found

S
TS

UNC
S
TS

UNC

S
TS

UNC
S
TS

UNC

atMostOneDMA

S
TS

UNC
S
TS

UNC

atMostOneDMA atMostOneDMA

S
TS

UNC
S
TS

UNC

atMostOneDMA atMostOneDMA

• When induction step proof fails, there are two possibilities:
– Case 1: before-state is reachable --> invariant is too strong (i.e. false)

S
TS

UNC
S
TS

UNC

atMostOneDMA atMostOneDMA

• When induction step proof fails, there are two possibilities:
– Case 1: before-state is reachable --> invariant is too strong (i.e. false)
– Case 2: before-state is unreachable --> invariant is too weak

S
TS

UNC
S
TS

UNC

atMostOneDMA

inDiskBusy

S
TS

UNC
S
TS

UNC

atMostOneDMA atMostOneDMA

inDiskBusy

S
TS

UNC
S
TS

UNC

atMostOneDMA atMostOneDMA

inDiskBusy inDiskBusy

S
TS

UNC
S
TS

UNC

atMostOneDMA atMostOneDMA

inDiskBusy inDiskBusy

• Issue: we may have to go through many strengthening cycles before a
strong enough invariant is found

S
TS

UNC
S
TS

UNC

atMostOneDMA atMostOneDMA

inDiskBusy inDiskBusy

goodState

S
TS

UNC
S
TS

UNC

atMostOneDMA atMostOneDMA

inDiskBusy inDiskBusy

goodState goodState

S
TS

UNC
S
TS

UNC

atMostOneDMA atMostOneDMA

inDiskBusy inDiskBusy

goodState goodState
betterState

S
TS

UNC
S
TS

UNC

atMostOneDMA atMostOneDMA

inDiskBusy inDiskBusy

goodState goodState
betterState betterState

S
TS

UNC
S
TS

UNC

atMostOneDMA atMostOneDMA

inDiskBusy inDiskBusy

goodState goodState
goodState goodState

niftyState

S
TS

UNC
S
TS

UNC

atMostOneDMA atMostOneDMA

inDiskBusy inDiskBusy

goodState goodState
goodState goodState

niftyState niftyState

S
TS

UNC
S
TS

UNC

atMostOneDMA atMostOneDMA

inDiskBusy inDiskBusy

goodState goodState
goodState goodState

niftyState niftyState

goodDMAs

S
TS

UNC
S
TS

UNC

atMostOneDMA atMostOneDMA

inDiskBusy inDiskBusy

goodState goodState
goodState goodState

niftyState niftyState

goodDMAs goodDMAs

S
TS

UNC
S
TS

UNC

atMostOneDMA atMostOneDMA

inDiskBusy inDiskBusy

goodState goodState
goodState goodState

niftyState niftyState

goodDMAs goodDMAs

• Invariant is now strong enough

Theorem proving limitations when invariantTheorem proving limitations when invariant
strengtheningstrengthening
• Current theorem provers focus on machine-checking correct proofs

• Not enough support for debugging incorrect proofs
– Isabelle doesn’t provide any before-state and after-state counterexample

information
– We had to infer counterexample info by carefully examining how proof

subgoals change during each step of the failed induction proof

Invariant strengthening is laborious!Invariant strengthening is laborious!
Aug 1, 2005 (r3187)

about to extend goodState with the relationship between pending diskrequests, idle dma
buffers, and read request continuations

Aug 11, 2005 (r3272)
I just need to handle startDma, pretty much. I looks like I need to strengthen the
goodState induction hypothesis, which may break a lot of lemmas.

Aug 25, 2005 (r3342)
- updated startDma invariant.

Sep 9, 2005 (r3406)
strengthened induction hypothesis with goodIdle

Sep 26, 2005 (r3463)
- strengthened induction hypothesis

Oct 04, 2005 (r3495)
- updated dma completion to better match dma initiation
- about to strengthen induction hypothesis for dmaCompleteOk

Dec 19, 2005 (r3857)
- changed <= to < in cont_set for proper bounds checking

Invariant strengthening is laborious!Invariant strengthening is laborious!
Dec 20, 2005 (r3862)

strengthened pending_set to insist on block sized transfers

Dec 21, 2005 (r3873)
strengthened invariant to (%s. s : state_set c Int busyInDiskOnce Int inDiskBusy)

Jan 3, 2006 (r3964)
- still need to prove one additional invariant (busyInDiskOnce) required by
ProcessDisksSafety.thy

Mar 17, 2006 (r4748)
- strengthened safety invariant to include monotonicity of disk times

Mar 17, 2006 (r4753)
I need to add and propagate a safety property that the security levelsof the
continuations match those of the pending dma requests.

Mar 20, 2006 (r4761)
propagated saftey constraint about equality of continuation and dma queue sizes

Apr 7, 2006 (r5017)
- started establishing pendSup invariant about the two traces used in
 non-interference

Apr 26, 2006 (r5197)
I still need to compute the timing oracle for the whole bacStep

…

OutlineOutline
• Tearline Wiki system architecture
• Formally verifying the Block Access Controller
• Making future verifications easier

Software model checkingSoftware model checking

• We’ve successfully verified an 800 line cross-domain component
– We need to scale this up to 10,000-line cross-domain components

• Can we leverage code analysis tools for this?
– Code analyzers automatically strengthen loop invariants!
– And generate a counterexample trace if the original invariant is false

• Example: SLAM software model checker
– Statically checks that Windows device drivers maintain kernel state

invariants
– Has successfully checked drivers containing over 100,000 lines of C

Automated Security Analysis (ASA)Automated Security Analysis (ASA)

• ASA goal: Leverage existing code analyzers to check security
properties of large C programs

• Starting to adapt open-source Saturn analyzer for checking
information flow and buffer overrun properties

• Already finding vulnerabilities in open source security software
– Neon 0.24.4: known format string vulnerability in XML 207 code

– bftpd 1.6, smbftpd 0.96: unknown buffer underrun error in bftpd_stat
(probably benign)

– ISC DHCPD 3.0.1rc3: known format string vulnerability in
print_dns_status. Other unknown but probably benign vulnerability.

– cfengine 1.5.4: found two format string vulnerabilities (no false
positives)

Code analysis tool limitationsCode analysis tool limitations
• Code analyzers make simplifying assumptions. For example, SLAM

assumes
– No arithmetic overflow or underflow
– Size of arrays = 1

• ASA project makes similar simplifying assumptions:
– % XXX: it's really most interesting if the

% trace refers to an argument, global, or return value.
% If it only refers to locals, it's not as likely to be a
% problem.

• Result: Code analysis algorithms are sound, but existing tools can be
both unsound and incomplete.
– Great for finding bugs in medium assurance code,
– …but not for providing EAL7 assurance evidence

Software model checking limitationsSoftware model checking limitations

• BAC state invariants contain many universal (∀) and existential (∃)
quantifiers
– Model checking quantified invariants is undecidable in general
– Required manual quantifier instantiation steps in Isabelle proofs

• Examples of quantified BAC state invariants (discovered during
invariant strengthening):
– If a DMA is occurring to any memory page, then it is to a valid DMA buffer

whose busy flag is set
– If any DMA buffer’s busy flag is set, then there is a unique disk that has a

corresponding entry in its DMA queue
– For each security level:

• The number of pending DMA requests in memory to any disk is the
same as the number of pending DMA requests on that disk.

• Each DMA request in memory is to some disk at the same or lower
security level

Key research questionKey research question

• How can we use decision procedures and code analysis algorithms in
Isabelle to speed up invariant strengthening cycles?
– While still allowing user to manually instantiate quantifiers when

necessary

• Key benefit: provide EAL7 assurance evidence for much larger cross-
domain components

First step: Isabelle SMT solver tacticsFirst step: Isabelle SMT solver tactics

• Using an SMT solver to check invariants in Isabelle could really
shorten invariant strengthening loops
– SMT solvers are “push-button” decision procedures for a subset of first

order logic
– Can return before-state/after-state counter-example information when

they can’t prove the invariant

• Can still use “pure” Isabelle tactics to prove final strengthened
invariant

ismtismt tactictactic

• ismt is an Isabelle external oracle we’ve developed for Yices
– Yices: SMT solver developed at SRI

• Given a proof subgoal, ismt
– Negates it,
– Translates it to Yices’ input language,
– Calls Yices subprocess

• UNSAT: Conclude theoremhood
• SAT: Convert the model to a HOL counter-example

• Note: Isabelle automatically tracks all “Yices axioms” used in
subsequent proofs

• We performed a preliminary experiment to see if ismt is helpful in
proving invariants

Experiment: array copyExperiment: array copy
#define buf_size 32

int copy(int *src)
{

int dst[buf_size];
int *s = src, *d = dst;
while(*s)

*d++ = *s++;
*d = 0;
return 0;

}

Expanded/disambiguated programExpanded/disambiguated program
#define buf_size 32

int copy(int *src)
{

int dst[buf_size];
int *s;
int *d;
s = src;
d = dst;
while(1)
 if(*s == 0)
 break;
 else
 {
 *d = *s;
 s++;
 d++;
 continue;
 }
*d = 0;
return 0;

}

Translation to monadic HOLTranslation to monadic HOL

{
int dst[buf_size];
int *s;
int *d;
s = src;
d = dst;
while(1)
 if(*s == 0)
 break;
 else
 {
 *d = *s;
 s++;
 d++;
 continue;
 }
*d = 0;
return 0;

}

Verifying the loop invariantVerifying the loop invariant

• Formalized a monadic Hoare logic and wrote a verification
condition generator (VCG) tactic in Isabelle

• Isabelle simplifier and ismt tactic called on each
verification condition in copy procedure
– We first fixed the size of each array

– ismt returned counterexample info each time invariant (or
precondition) was too weak

– ismt calls succeeded once invariant was strong enough

Final strengthened loop invariantFinal strengthened loop invariant

Current statusCurrent status

• Fully automatic copy memory safety proof for fixed array size

• Currently proving copy memory safety for arbitrary array sizes
– Requires quantified loop invariant

• Finding out how helpful “abstract” counterexample information is in
finding quantifier instantiations
– Adding instantiated formulas interactively when calling ismt

• Preliminary results:
– Abstract counterexamples do help in finding quantifier instantiations
– But dozens of instantiations are needed
– Most instantiations are actually rewrite rules for functions that Yices

doesn’t know about

Next stepsNext steps

• Incorporate rewriting directly into SMT solver
– Solver could then interpret domain-specific functions

• Isabelle theory solver tactics
– Called repeatedly as SMT solver explores partial models
– Each call returns either

• Theorem saying partial model is inconsistent -- SMT solver prunes that
part of search space.

• Concrete witness that model is satisfiable.
• Zero or more new derived facts.

• These require custom SMT solver extensions
– So we’re also starting to use Intel’s Decision Procedure Toolkit (DPT), an

open source SMT solver

ConclusionsConclusions

• Code analyzers unlikely to provide EAL7 assurance
– Most analyzers make unsound simplifying assumptions
– Cross-domain components have quantified state invariants

• Theorem provers can provide EAL7 assurance for small cross domain
components
– Took one engineer-year to verify 800-line BAC

• Reducing cost of formal verification is essential to scale up EAL7
assurance
– Greatest TSE project risk was BAC verification
– Integrating code analysis algorithms into Isabelle could help a lot

• We’re pursuing an open source strategy
– Galois is too small to fund this “infrastructure” project through IR&D

QuestionsQuestions

