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Tearline Wiki: Cross-domain collaboration service
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Outline

e Tearline Wiki system architecture

e Formally verifying the Block Access Controller
e Making future verifications easier
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Tearline Wiki architecture

Trusted Service Engine (TSE)
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TSE architecture
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Block Access Controller (BAC)

e« BAC’s functions
- Mediate all disk block accesses
- Connect single-level disks and partitions
- Enforce Bell-LaPadula confidentiality rules
e Reads from same or lower levels
e Writes to same level (write-up not needed)

o Approximately 800 lines of generated C code
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BAC state
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Outline

e Tearline Wiki system architecture

« Formally verifying the Block Access Controller
e Making future verifications easier
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BAC verification approach

« We want EAL7-strength assurance evidence, so we formally verified:

- Safety: BAC never transitions to an error state

- Data separation: BAC’s output buffer values are not dependent on any

higher-security input buffer values
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BAC verification approach

Originally we tried to formally verify these properties with model
checkers

- But they timed out due to state space explosion

So we switched to using Isabelle theorem prover
- Feasible, since BAC implementation is only 800 lines long

Isabelle is attractive for EAL7 assurance evidence
e Small proof kernel
e Proof kernel can generate independently-checkable proof objects
e Records all axioms a theorem depends on

Data separation proof inspired by [von Oheimb, ESORICS’04]
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BAC assurance evidence

Data Separation and Safety Policies

policy
enforcement
proof

High Level BAC Model
(written in HOL)

equivalence
proof

translator
Low Level BAC Model > BAC Implementation

(written in “C-like” HOL) (automatically-generated C code)
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BAC runtime safety

 To prove data separation, we first had to prove no error states are reachable
- Out-of-bounds array access
- Out-of bounds disk block ID
- Access to memory undergoing DMA transfer
- Too many simultaneous DMA transfers to a single disk
- Multiple simultaneous DMA transfers to same memory region

e Each possible error state had to be turned into a loop invariant: a property
that

- Is true of the BAC’s initial state
- Remains true each time around the top-level BAC event loop

« Example
- atMostOneDMA: “There is at most one DMA transfer occurring to any given memory
page”
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A key challenge in BAC proofs

e Finding appropriate loop invariants took too long

e |nvariants are often correct, but not inductive

- Need to perform unknown number of manual invariant strengthening
steps, until inductive invariant is found
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« When induction step proof fails, there are two possibilities:
- Case 1: before-state is reachable --> invariant is too strong (i.e. false)
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« When induction step proof fails, there are two possibilities:
- Case 1: before-state is reachable --> invariant is too strong (i.e. false)
- Case 2: before-state is unreachable --> invariant is too weak
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Issue: we may have to go through many strengthening cycles before a
strong enough invariant is found
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Invariant is now strong enough
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Theorem proving limitations when invariant
strengthening

e Current theorem provers focus on machine-checking correct proofs

e Not enough support for debugging incorrect proofs

- Isabelle doesn’t provide any before-state and after-state counterexample
information

- We had to infer counterexample info by carefully examining how proof
subgoals change during each step of the failed induction proof
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Invariant strengthening is laborious!

Aug 1, 2005 (r3187)

about to extend goodState with the relationship between pending diskrequests, idle dma
buffers, and read request continuations

Aug 11, 2005 (r3272)

I just need to handle startDma, pretty much. I looks like I need to strengthen the
goodState induction hypothesis, which may break a lot of lemmas.

Aug 25, 2005 (r3342)
- updated startDma invariant.

Sep 9, 2005 (r3406)
strengthened induction hypothesis with goodIdle

Sep 26, 2005 (r3463)
- strengthened induction hypothesis

Oct 04, 2005 (r3495)
- updated dma completion to better match dma initiation
- about to strengthen induction hypothesis for dmaCompleteOk

Dec 19, 2005 (r3857)
- changed <= to < in cont_set for proper bounds checking
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Invariant strengthening is laborious!

Dec 20, 2005 (r3862)
strengthened pending set to insist on block sized transfers

Dec 21, 2005 (r3873)
strengthened invariant to (%s. s : state set c Int busyInDiskOnce Int inDiskBusy)

Jan 3, 2006 (r3964)
- still need to prove one additional invariant (busyInDiskOnce) required by
ProcessDisksSafety.thy

Mar 17, 2006 (r4748)
- strengthened safety invariant to include monotonicity of disk times

Mar 17, 2006 (r4753)
I need to add and propagate a safety property that the security levelsof the
continuations match those of the pending dma requests.

Mar 20, 2006 (r4761)
propagated saftey constraint about equality of continuation and dma queue sizes

Apr 7, 2006 (r5017)
- started establishing pendSup invariant about the two traces used in

non—-interference

Apr 26, 2006 (r5197)
I still need to compute the timing oracle for the whole bacStep
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e Tearline Wiki system architecture

e Formally verifying the Block Access Controller
e Making future verifications easier
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Software model checking

« We’ve successfully verified an 800 line cross-domain component
- We need to scale this up to 10,000-line cross-domain components

« Can we leverage code analysis tools for this?
- Code analyzers automatically strengthen loop invariants!
- And generate a counterexample trace if the original invariant is false

« Example: SLAM software model checker

- Statically checks that Windows device drivers maintain kernel state
invariants

- Has successfully checked drivers containing over 100,000 lines of C
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Automated Security Analysis (ASA)

o ASA goal: Leverage existing code analyzers to check security
properties of large C programs

o Starting to adapt open-source Saturn analyzer for checking
information flow and buffer overrun properties

e Already finding vulnerabilities in open source security software
— Neon 0.24.4: known format string vulnerability in XML 207 code

— bftpd 1.6, smbftpd 0.96: unknown buffer underrun error in bftpd_stat
(probably benign)

— ISC DHCPD 3.0.1rc3: known format string vulnerability 1in
print_dns_status. Other unknown but probably benign vulnerability.

— cfengine 1.5.4: found two format string vulnerabilities (no false
positives)
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Code analysis tool limitations

o Code analyzers make simplifying assumptions. For example, SLAM
assumes

- No arithmetic overflow or underflow
- Size of arrays = 1

e ASA project makes similar simplifying assumptions:
— % XXX: 1t's really most interesting if the
% trace refers to an argument, global, or return value.

% If 1t only refers to locals, it's not as likely to be a
% problem.

e Result: Code analysis algorithms are sound, but existing tools can be
both unsound and incomplete.

- Great for finding bugs in medium assurance code,
- ...but not for providing EAL7 assurance evidence
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Software model checking limitations

e BAC state invariants contain many universal (V) and existential (3)
quantifiers
- Model checking quantified invariants is undecidable in general
- Required manual quantifier instantiation steps in Isabelle proofs

« Examples of quantified BAC state invariants (discovered during
invariant strengthening):

- If a DMA is occurring to any memory page, then it is to a valid DMA buffer
whose busy flag is set

- If any DMA buffer’s busy flag is set, then there is a unique disk that has a
corresponding entry in its DMA queue

- For each security level:

o The number of pending DMA requests in memory to any disk is the
same as the number of pending DMA requests on that disk.

« Each DMA request in memory is to some disk at the same or lower
security level
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Key research question

 How can we use decision procedures and code analysis algorithms in
Isabelle to speed up invariant strengthening cycles?

- While still allowing user to manually instantiate quantifiers when
necessary

« Key benefit: provide EAL7 assurance evidence for much larger cross-
domain components
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First step: Isabelle SMT solver tactics

e Using an SMT solver to check invariants in Isabelle could really
shorten invariant strengthening loops

- SMT solvers are “push-button” decision procedures for a subset of first
order logic

- Can return before-state/after-state counter-example information when
they can’t prove the invariant

o Can still use “pure” Isabelle tactics to prove final strengthened
invariant
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ismt tactic

i1smt is an Isabelle external oracle we’ve developed for Yices
- Yices: SMT solver developed at SRI

Given a proof subgoal, 1smt
- Negates it,
- Translates it to Yices’ input language,
- Calls Yices subprocess
e UNSAT: Conclude theoremhood
e SAT: Convert the model to a HOL counter-example

Note: Isabelle automatically tracks all “Yices axioms” used in
subsequent proofs

We performed a preliminary experiment to see if 1smt is helpful in
proving invariants
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Experiment: array copy

#define buf size 32

int copy(int *src)
{
int dst[buf size];
int *s = src, *d = dst;
while (*s)
*d++ = *s++;
*d = 0;

return 0O;
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Expanded/disambiguated program

int copy(int *src)
{
int dst[buf size];
int *s;
int *d;
s = src;
d = dst;
while (1)
if(*s == 0)
break;
else
{
*d = *s;
s++;
d++;
continue;
}
*d = 0;
return O;
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Translation to monadic HOL

{
int dst[buf size]; (doSeqC { with_array buf_size (A(pdst :: int Ptr).
int *s: - with_var (A(pps :: int Ptr Ptr).
] ! with_var (A(ppd :: int Ptr Ptr). doSeqC {
int *d; assign_ptr pps psrc;
S = src; assign_ptr ppd pdst;
d = dst; JoopAsrt
while (1) (loopInv False psrc pdst pps ppd buf_size)
] (loopInv True psrc pdst pps ppd buf_size)
if(*s == 0) (A r s. False)
break; (doSeqC {ps +« deref_ptr pps;
else ct «— deref_ptr ps;
{ if (ct = 0)
xd = *s: then break
- ! else doSeqC {pd « deref_ptr ppd;
s++; assign_ptr pd ct;
d++; assign_ptr pps (ps +p 1);
continue: assign_ptr ppd (pd +p 1);
continuel}});
} pd <« deref_ptr ppd;
*d = 0; assign_ptr pd 0;
return O; c_return 0
} +)))

}) n
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Verifying the loop invariant

 Formalized a monadic Hoare logic and wrote a verification
condition generator (VCG) tactic in Isabelle

 Isabelle simplifier and 1smt tactic called on each
verification condition in copy procedure
- We first fixed the size of each array

— 1smt returned counterexample info each time invariant (or
precondition) was too weak

— 1smt calls succeeded once invariant was strong enough

galois



Final strengthened loop invariant

definition
loopInv :: "bool = int Ptr = int Ptr =
int Ptr Ptr = int Ptr Ptr —
C_size — C_heap =
bool" where
"loopInv aboutToBreak psrc pdst pps ppd sz s =
(let h heap s;
st = gstatus s;
vpsrc = to_void_ptr psrc;
vpdst = to_void_ptr pdst;
vpps = to_void_ptr pps;
vps = fromByte (h vpps);
vppd = to_void_ptr ppd;
vpd fromByte (h vppd);
bytes_copied = vps - vpsrc
in (if aboutToBreak
then ( mem_inited vppd 1 st
A mem_alloced vpd 1 st)
else ( distinct ( [vpps, vppd]
@ null_byte_span vps sz h
@ int_span vpdst sz)
mem_inited vppd 1 st
mem_inited vpps 1 st
mem_alloced vpdst sz st

vpsrc < vps A vps < vpsrc + sz

vpd = vpdst + bytes_copied

null_terminated_block_lim vps
(sz - bytes_copied) sz s)))"

>>> > > >
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Current status

e Fully automatic copy memory safety proof for fixed array size

« Currently proving copy memory safety for arbitrary array sizes
- Requires quantified loop invariant

e Finding out how helpful “abstract” counterexample information is in
finding quantifier instantiations

- Adding instantiated formulas interactively when calling ismt

e Preliminary results:

- Abstract counterexamples do help in finding quantifier instantiations
- But dozens of instantiations are needed

- Most instantiations are actually rewrite rules for functions that Yices
doesn’t know about
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Next steps

e Incorporate rewriting directly into SMT solver
- Solver could then interpret domain-specific functions

e Isabelle theory solver tactics
- Called repeatedly as SMT solver explores partial models
- Each call returns either

« Theorem saying partial model is inconsistent -- SMT solver prunes that
part of search space.

o Concrete witness that model is satisfiable.
e Zero or more new derived facts.

e These require custom SMT solver extensions

- So we’re also starting to use Intel’s Decision Procedure Toolkit (DPT), an
open source SMT solver
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Conclusions

Code analyzers unlikely to provide EAL7 assurance
- Most analyzers make unsound simplifying assumptions
- Cross-domain components have quantified state invariants

Theorem provers can provide EAL7 assurance for small cross domain
components

- Took one engineer-year to verify 800-line BAC

Reducing cost of formal verification is essential to scale up EAL7
assurance

- Greatest TSE project risk was BAC verification
- Integrating code analysis algorithms into Isabelle could help a lot

We’re pursuing an open source strategy
- Galois is too small to fund this “infrastructure” project through IR&D
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Questions
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