galois

Analyzing a Cross-Domain
Component: Lessons Learned
and Future Directions

John Matthews

Joint work with Levent Erkok, Paul
Graunke, Joe Hurd, Dylan McNamee, Lee
Pike, Joel Stanley, Aaron Tomb

matthews@galois.com

Tearline Wiki: Cross-domain collaboration service

/HlfGH\S;cun\t;/ II HIGH wiki H!GH ilicars §ee
\ network ‘ === High + Medium + Low
] information
¥y
ki MED wiki :
(MEDIUM secun& ’l VIEDIUM users see
' networ k . Medium + Low

/__.

(" LOW secunty
“r.\ network

‘@
4P

Wikis: editable knowledge repositories

information
I_ |
MEST N LOW wiki

@ LOW users see
_ow information only
R

| galois |

Iranian nuclear, program - Low Wiki - Microsoft Internet Explorer

File Edit VYiew Favorites Tools Help

@Back v 4\) @ @ {h pSearch *Favorites 8 8' :\f [_,,‘ ﬁ '3

Address I@ http:{fwww.galois.comfdocserver-demo/low-netfindex. phpfIranian_nuclear_program V‘ "

Google “C,v v‘Go o5 W B~ % Bookmarksv Eh34Sblocked " Check » ' Autolink v - Autoril [ep Sendtov

»

Go Links File Print FedEx Kinka's

@Settingsv @ i @

2 Login / create account

article [discussion l edit l history ‘

e .
{ . Iranian nuclear program
| \
The Iranian nuclear program was originally started in the 1950s with the help of the United States. After the Islamic Revolution in 1979, the government temporarily disbanded the
| programme. Iran soon resumed the programme, albeit with less West ist. than the p lution era. Iran's current nuclear programme consists of several research sites, a
LOWWIKI uranium mine, a nuclear reactor, and uranium processing facilities that include a i ich t plant. The lranian government asserts that the programme's only goal is to

develop the capacity for peaceful nuclear power generation, and plans to generate 6000 MW of electricity with nuclear power plants by 2010 but some nations believe it covers an
attempt to acquire nuclearweapons. As of 2006 nuclear power does not contribute to the Iranian energy grid.

navigation

= Min Page This page was last modified 22:44, & February 2007. This page has been accessed 9 times. Privacy policy Fbout Low Wik Disclaimers

" Pawered By
= Community portal MediaWiki

® Cument events
® Recent changes
® Random page

® Help

= Donations

search
L]

toolbox

What links here
Related changes
Upload file
Special pages
Printable version
Permanent link

&] Done ® Internet)

SBIR DATA RIGHTS || Contract No.: N00039-05C-0036 || Contractor Name: Galois Connections, Inc. || Contractor Address: 12725 SW Millikan Way, Ste 290, Beaverton OR 97005 || Expiration of SBIR Data Rights Period: 5 years following
April 5, 2006 or final delivery of subsequent extensions to this project. || The Government's rights to use, modify, reproduce, release, perform, display, or disclose technical data or computer software marked with this legend are restricted during the
period shown as provided in paragraph (b)(4) of the Rights in Noncommercial Technical Data and Computer Software-- Small Business Innovative Research (SBIR) Program clause contained in the above identified contract. No restrictions apply after the
expiration date shown above. Any reproduction of technical data, computer software, or portions thereof marked with this legend must also reproduce the markings.

2 Iranian nuclear program - High W Microsoft Internet Explorer.

File Edit View Favorites Tools Help

@Back v \) (ﬁ @ :h /‘3 Search \;\\‘(Favorites @ DE' :% D ‘_PI ﬁ '3

Address @ http: fjwww.galois.com/docserver-demofhigh-net/highfindex.phpjIranian_nuclear_program

Google |[Cl+ V‘Go o5 W B~ % Bookmarksy Eh346blocked " Check » ' Autolink v - Autoril (e Sendtow () settings» &~ @)

2 Llogin fcreate account o

v‘ B Go | Links > File Print Fedex Kinko's

article discussion | edit history
'o. Use this page: [ranian nuclear program
Iranian nuclear program hide
HIG HWIKI The Iranian nuclear program was originally started in the 1950s with the help of the United States. Afterthe Islamic Revolution in 1979, the government temporarily
disbanded the programme. Iran soon resumed the programme, albeit with less Western assistance than the pre-revolution era. Iran's current nuclear programme consists of

lude a i ich t plant. The Iranian government asserts that the

several research sites, a uranium mine, a nuclear reactor, and uranium processing facilities that i
programme's only goal is to develop the capacity for peaceful nuclear power generation, and plans to generate 6000 MW of electricity with nuclear power plants by 2010 but

navigation
some nations believe it covers an attempt to acquire nuclearweapons. As of 2006 nuclear power does not contribute to the Iranian energy grid.

= MBin Page

® Community portal

® Cument events

" Recent changes Use this page: Iranian nuclear program

® Random page

"o Iranian nuclear program

= Donations

search

Iranian nuclear program hide

toolbox

= bhat links here Nuclear facilities (high) [edif]

m Related changes

] Uploa_d file Isfahan [edit]

m Special pages

m Printable version The Uranium Conversion Facility at Isfahan s yell ke into i h fluoride. As of late October 2004, the site is 70% operational with 21 of 24 worshops

m Permanent link completed. There is also a Zi ium Production Plant (ZPP) located nearby that prod the v ingredients and alloys for nuclear reactors. —
Lavizan [edit]
According to Reuters, claims by the US that topsoil has been removed and the site had been sanitized could not be ified by IAEA investigators who visited Lavizan:
Washingt d Iran of ing a substantial t of topsoil and rubble from the site and replacing it with a new layer of soil, in what U.S. officials said might have
been an attempt to cover clandestine nuclear activity at Lavizan. Former U.S. ambassador to the IAEA, Kenneth Brill, accused Iran in June of using "the wrecking ball and
bulldozer" to sanitize Lavizan prior to the arrival of U.N. inspectors. But another diplomat close to the IAEA told Reuters that on-site inspecti of Lavizan produced no proof ™

&] Done ® Internet @

SBIR DATA RIGHTS || Contract No.: N00039-05C-0036 || Contractor Name: Galois Connections, Inc. || Contractor Address: 12725 SW Millikan Way, Ste 290, Beaverton OR 97005 || Expiration of SBIR Data Rights Period: 5 years following
April 5, 2006 or final delivery of subsequent extensions to this project. || The Government's rights to use, modify, reproduce, release, perform, display, or disclose technical data or computer software marked with this legend are restricted during the
period shown as provided in paragraph (b)(4) of the Rights in Noncommercial Technical Data and Computer Software-- Small Business Innovative Research (SBIR) Program clause contained in the above identified contract. No restrictions apply after the
expiration date shown above. Any reproduction of technical data, computer software, or portions thereof marked with this legend must also reproduce the markings.

Outline

e Tearline Wiki system architecture

e Formally verifying the Block Access Controller
e Making future verifications easier

galois

Tearline Wiki architecture

Trusted Service Engine (TSE)

Cross-domain file store

————— - ——— — ——— — —

High Users . , , N
’ P High Network d .-

o

Tearline Servers

)
r— = i (2EE0
T, s AT EAEAR .
= e

Low Users D

i

2-4 networks

AN

Tearline Servers

K==

L o

~ -

TSE architecture

[
HTTP File

NIC J{TCP/IP WebDAV System [

HTTP File

File
System

Block
Access
Controller

MILS Separation Kernel

| galois |

TSE architecture

Block

Access
Controller

| galois |

Block Access Controller (BAC)

e« BAC’s functions
- Mediate all disk block accesses
- Connect single-level disks and partitions
- Enforce Bell-LaPadula confidentiality rules
e Reads from same or lower levels
e Writes to same level (write-up not needed)

o Approximately 800 lines of generated C code

galois

BAC state

Disks

YT Y

per-level externally internal state
visible state

' galois|

BAC state

request)
buffers Disks

5 ——

YT Y

per-level externally internal state
visible state

' galois|

BAC state

request response)
buffers buffers Disks

S5 5 ——

YT Y

per-level externally internal state
visible state

' galois|

BAC state

request response DMA Disks
buffers buffers buffers

S5 5 Y

YT Y

per-level externally internal state
visible state

' galois|

Outline

e Tearline Wiki system architecture

« Formally verifying the Block Access Controller
e Making future verifications easier

galois

BAC verification approach

« We want EAL7-strength assurance evidence, so we formally verified:

- Safety: BAC never transitions to an error state

- Data separation: BAC’s output buffer values are not dependent on any

higher-security input buffer values

<7
G—

—

/TS Ei\
S)
\UNC } @/
/NOP Ej\
NOP =
KUNC } @/

~
- Original BAC
model
/
~

> Zeroed BAC
model

galois

BAC verification approach

Originally we tried to formally verify these properties with model
checkers

- But they timed out due to state space explosion

So we switched to using Isabelle theorem prover
- Feasible, since BAC implementation is only 800 lines long

Isabelle is attractive for EAL7 assurance evidence
e Small proof kernel
e Proof kernel can generate independently-checkable proof objects
e Records all axioms a theorem depends on

Data separation proof inspired by [von Oheimb, ESORICS’04]

galois

BAC assurance evidence

Data Separation and Safety Policies

policy
enforcement
proof

High Level BAC Model
(written in HOL)

equivalence
proof

translator
Low Level BAC Model > BAC Implementation

(written in “C-like” HOL) (automatically-generated C code)

galois

BAC runtime safety

 To prove data separation, we first had to prove no error states are reachable
- Out-of-bounds array access
- Out-of bounds disk block ID
- Access to memory undergoing DMA transfer
- Too many simultaneous DMA transfers to a single disk
- Multiple simultaneous DMA transfers to same memory region

e Each possible error state had to be turned into a loop invariant: a property
that

- Is true of the BAC’s initial state
- Remains true each time around the top-level BAC event loop

« Example
- atMostOneDMA: “There is at most one DMA transfer occurring to any given memory
page”
(15| o (15| o (15| o (15| o
S = | > | S = |)| S = | =) | S = | (=)
(UNC = UNC = (UNC = UNC =

galois

A key challenge in BAC proofs

e Finding appropriate loop invariants took too long

e |nvariants are often correct, but not inductive

- Need to perform unknown number of manual invariant strengthening
steps, until inductive invariant is found

galois

G

' galois|

atMostOneDMﬂ

G

' galois|

atMostOneDMﬂ —_— W}» .:].M

e e = galois

« When induction step proof fails, there are two possibilities:
- Case 1: before-state is reachable --> invariant is too strong (i.e. false)

atMostOneDMj —_— w}s. .@

e e = galois

« When induction step proof fails, there are two possibilities:
- Case 1: before-state is reachable --> invariant is too strong (i.e. false)
- Case 2: before-state is unreachable --> invariant is too weak

UNC = UNC = galois

inDiskBusy

L=

atMostOneDMA

L=

E

' galois|

inDiskBusy

=
atMostOneDMA | ——lpy atMostOneDMj
=
(15| o (15| o
S = | > | S =
UNC = UNC =

galois

inDiskBusy I in Sy
=
atMostOneDMA atMostOneDMA
= Vo
TS = TS =
S = | > | S =
UNC = UNC =

galois

Issue: we may have to go through many strengthening cycles before a
strong enough invariant is found

inDiskBusy I in Sy
=
atMostOneDMA atMostOneDMA
= Vo
TS = TS =
S = | > | S =
UNC = (UNC =

galois

—

goodState

=
inDiskBusy

Ve

atMostOneDMA

inDiskBusy

Vo

atMostOneDMA

Vo

galois

goodState —_—>

= / [
inDiskBusy inDiskBusy

= Vo
atMostOneDMA atMostOneDMA
= Vo

TS = TS =

S = | > | S =

UNC = (UNC =

galois

betterState | —»
good 7_> goodState
ju P 4 &~
inDiskBusy inDiskBusy

Ve Vo
atMostOneDMA atMostOneDMA
Ve Vo

(TS = (TS =

S = | > | S =

UNC| = UNC| =

galois

betterState
good
Y
s
inDiskBusy inDiskBusy

= Vo
atMostOneDMA atMostOneDMA
= Vo

TS = TS =

S = | > | S =

UNC = UNC =

galois

niftyState

\

=
goodState > goodState J
good o]
y
- — -
inDiskBusy inDiskBusy

= 7=
atMostOneDMA atMostOneDMA
= 7=

(1| o= (1| o=

S = | > | S =

UNC = (UNC =

galois

niftyState

o
goodState
good
&
inDiskBusy
7=
atMostOneDMA atMostOneDMA
= 7=
(1s| o (1s| o
S| =ln—> S| =
UNC = UNC =

galois

niftyState — y’ftyState J
7
=
go00dDMAs
g0(goodState
good ; / g0(
. &
inDiskBusy inDiskBusy
= 7=
atMostOneDMA atMostOneDMA
= 7=
(15| o (15| o
S = | > | S =
UNC = UNC =

galois

niftyState — niftyState
= 7=
goodDMAs ' goodDMAs
g0 0
good ﬁ 0 =
. A
inDiskBusy inDiskBusy
= 7=
atMostOneDMA atMostOneDMA
= 7=
(15| o (15| o
S = | > | S =
UNC = (UNC =

galois

Invariant is now strong enough

niftyState nij cvState J
=
g00dDMAs g00dDMAs
904 g0
good) g0(=
. &
inDiskBusy inDiskBusy

= 7=
atMostOneDMA atMostOneDMA
= 7=

(1| o= (1| o=

S = | > | S =

UNC = (UNC =

galois

Theorem proving limitations when invariant
strengthening

e Current theorem provers focus on machine-checking correct proofs

e Not enough support for debugging incorrect proofs

- Isabelle doesn’t provide any before-state and after-state counterexample
information

- We had to infer counterexample info by carefully examining how proof
subgoals change during each step of the failed induction proof

galois

Invariant strengthening is laborious!

Aug 1, 2005 (r3187)

about to extend goodState with the relationship between pending diskrequests, idle dma
buffers, and read request continuations

Aug 11, 2005 (r3272)

I just need to handle startDma, pretty much. I looks like I need to strengthen the
goodState induction hypothesis, which may break a lot of lemmas.

Aug 25, 2005 (r3342)
- updated startDma invariant.

Sep 9, 2005 (r3406)
strengthened induction hypothesis with goodIdle

Sep 26, 2005 (r3463)
- strengthened induction hypothesis

Oct 04, 2005 (r3495)
- updated dma completion to better match dma initiation
- about to strengthen induction hypothesis for dmaCompleteOk

Dec 19, 2005 (r3857)
- changed <= to < in cont_set for proper bounds checking

galois

Invariant strengthening is laborious!

Dec 20, 2005 (r3862)
strengthened pending set to insist on block sized transfers

Dec 21, 2005 (r3873)
strengthened invariant to (%s. s : state set c Int busyInDiskOnce Int inDiskBusy)

Jan 3, 2006 (r3964)
- still need to prove one additional invariant (busyInDiskOnce) required by
ProcessDisksSafety.thy

Mar 17, 2006 (r4748)
- strengthened safety invariant to include monotonicity of disk times

Mar 17, 2006 (r4753)
I need to add and propagate a safety property that the security levelsof the
continuations match those of the pending dma requests.

Mar 20, 2006 (r4761)
propagated saftey constraint about equality of continuation and dma queue sizes

Apr 7, 2006 (r5017)
- started establishing pendSup invariant about the two traces used in

non—-interference

Apr 26, 2006 (r5197)
I still need to compute the timing oracle for the whole bacStep

galois

Outline

e Tearline Wiki system architecture

e Formally verifying the Block Access Controller
e Making future verifications easier

galois

Software model checking

« We’ve successfully verified an 800 line cross-domain component
- We need to scale this up to 10,000-line cross-domain components

« Can we leverage code analysis tools for this?
- Code analyzers automatically strengthen loop invariants!
- And generate a counterexample trace if the original invariant is false

« Example: SLAM software model checker

- Statically checks that Windows device drivers maintain kernel state
invariants

- Has successfully checked drivers containing over 100,000 lines of C

galois

Automated Security Analysis (ASA)

o ASA goal: Leverage existing code analyzers to check security
properties of large C programs

o Starting to adapt open-source Saturn analyzer for checking
information flow and buffer overrun properties

e Already finding vulnerabilities in open source security software
— Neon 0.24.4: known format string vulnerability in XML 207 code

— bftpd 1.6, smbftpd 0.96: unknown buffer underrun error in bftpd_stat
(probably benign)

— ISC DHCPD 3.0.1rc3: known format string vulnerability 1in
print_dns_status. Other unknown but probably benign vulnerability.

— cfengine 1.5.4: found two format string vulnerabilities (no false
positives)

galois

Code analysis tool limitations

o Code analyzers make simplifying assumptions. For example, SLAM
assumes

- No arithmetic overflow or underflow
- Size of arrays = 1

e ASA project makes similar simplifying assumptions:
— % XXX: 1t's really most interesting if the
% trace refers to an argument, global, or return value.

% If 1t only refers to locals, it's not as likely to be a
% problem.

e Result: Code analysis algorithms are sound, but existing tools can be
both unsound and incomplete.

- Great for finding bugs in medium assurance code,
- ...but not for providing EAL7 assurance evidence

galois

Software model checking limitations

e BAC state invariants contain many universal (V) and existential (3)
quantifiers
- Model checking quantified invariants is undecidable in general
- Required manual quantifier instantiation steps in Isabelle proofs

« Examples of quantified BAC state invariants (discovered during
invariant strengthening):

- If a DMA is occurring to any memory page, then it is to a valid DMA buffer
whose busy flag is set

- If any DMA buffer’s busy flag is set, then there is a unique disk that has a
corresponding entry in its DMA queue

- For each security level:

o The number of pending DMA requests in memory to any disk is the
same as the number of pending DMA requests on that disk.

« Each DMA request in memory is to some disk at the same or lower
security level

galois

Key research question

 How can we use decision procedures and code analysis algorithms in
Isabelle to speed up invariant strengthening cycles?

- While still allowing user to manually instantiate quantifiers when
necessary

« Key benefit: provide EAL7 assurance evidence for much larger cross-
domain components

galois

First step: Isabelle SMT solver tactics

e Using an SMT solver to check invariants in Isabelle could really
shorten invariant strengthening loops

- SMT solvers are “push-button” decision procedures for a subset of first
order logic

- Can return before-state/after-state counter-example information when
they can’t prove the invariant

o Can still use “pure” Isabelle tactics to prove final strengthened
invariant

galois

ismt tactic

i1smt is an Isabelle external oracle we’ve developed for Yices
- Yices: SMT solver developed at SRI

Given a proof subgoal, 1smt
- Negates it,
- Translates it to Yices’ input language,
- Calls Yices subprocess
e UNSAT: Conclude theoremhood
e SAT: Convert the model to a HOL counter-example

Note: Isabelle automatically tracks all “Yices axioms” used in
subsequent proofs

We performed a preliminary experiment to see if 1smt is helpful in
proving invariants

galois

Experiment: array copy

#define buf size 32

int copy(int *src)
{
int dst[buf size];
int *s = src, *d = dst;
while (*s)
*d++ = *s++;
*d = 0;

return 0O;

galois

Expanded/disambiguated program

int copy(int *src)
{
int dst[buf size];
int *s;
int *d;
s = src;
d = dst;
while (1)
if(*s == 0)
break;
else
{
*d = *s;
s++;
d++;
continue;
}
*d = 0;
return O;

galois

Translation to monadic HOL

{
int dst[buf size]; (doSeqC { with_array buf_size (A(pdst :: int Ptr).
int *s: - with_var (A(pps :: int Ptr Ptr).
] ! with_var (A(ppd :: int Ptr Ptr). doSeqC {
int *d; assign_ptr pps psrc;
S = src; assign_ptr ppd pdst;
d = dst; JoopAsrt
while (1) (loopInv False psrc pdst pps ppd buf_size)
] (loopInv True psrc pdst pps ppd buf_size)
if(*s == 0) (A r s. False)
break; (doSeqC {ps +« deref_ptr pps;
else ct «— deref_ptr ps;
{ if (ct = 0)
xd = *s: then break
- ! else doSeqC {pd « deref_ptr ppd;
s++; assign_ptr pd ct;
d++; assign_ptr pps (ps +p 1);
continue: assign_ptr ppd (pd +p 1);
continuel}});
} pd <« deref_ptr ppd;
*d = 0; assign_ptr pd 0;
return O; c_return 0
} +)))

}) n

galois

Verifying the loop invariant

 Formalized a monadic Hoare logic and wrote a verification
condition generator (VCG) tactic in Isabelle

 Isabelle simplifier and 1smt tactic called on each
verification condition in copy procedure
- We first fixed the size of each array

— 1smt returned counterexample info each time invariant (or
precondition) was too weak

— 1smt calls succeeded once invariant was strong enough

galois

Final strengthened loop invariant

definition
loopInv :: "bool = int Ptr = int Ptr =
int Ptr Ptr = int Ptr Ptr —
C_size — C_heap =
bool" where
"loopInv aboutToBreak psrc pdst pps ppd sz s =
(let h heap s;
st = gstatus s;
vpsrc = to_void_ptr psrc;
vpdst = to_void_ptr pdst;
vpps = to_void_ptr pps;
vps = fromByte (h vpps);
vppd = to_void_ptr ppd;
vpd fromByte (h vppd);
bytes_copied = vps - vpsrc
in (if aboutToBreak
then (mem_inited vppd 1 st
A mem_alloced vpd 1 st)
else (distinct ([vpps, vppd]
@ null_byte_span vps sz h
@ int_span vpdst sz)
mem_inited vppd 1 st
mem_inited vpps 1 st
mem_alloced vpdst sz st

vpsrc < vps A vps < vpsrc + sz

vpd = vpdst + bytes_copied

null_terminated_block_lim vps
(sz - bytes_copied) sz s)))"

>>> > > >

galois

Current status

e Fully automatic copy memory safety proof for fixed array size

« Currently proving copy memory safety for arbitrary array sizes
- Requires quantified loop invariant

e Finding out how helpful “abstract” counterexample information is in
finding quantifier instantiations

- Adding instantiated formulas interactively when calling ismt

e Preliminary results:

- Abstract counterexamples do help in finding quantifier instantiations
- But dozens of instantiations are needed

- Most instantiations are actually rewrite rules for functions that Yices
doesn’t know about

galois

Next steps

e Incorporate rewriting directly into SMT solver
- Solver could then interpret domain-specific functions

e Isabelle theory solver tactics
- Called repeatedly as SMT solver explores partial models
- Each call returns either

« Theorem saying partial model is inconsistent -- SMT solver prunes that
part of search space.

o Concrete witness that model is satisfiable.
e Zero or more new derived facts.

e These require custom SMT solver extensions

- So we’re also starting to use Intel’s Decision Procedure Toolkit (DPT), an
open source SMT solver

galois

Conclusions

Code analyzers unlikely to provide EAL7 assurance
- Most analyzers make unsound simplifying assumptions
- Cross-domain components have quantified state invariants

Theorem provers can provide EAL7 assurance for small cross domain
components

- Took one engineer-year to verify 800-line BAC

Reducing cost of formal verification is essential to scale up EAL7
assurance

- Greatest TSE project risk was BAC verification
- Integrating code analysis algorithms into Isabelle could help a lot

We’re pursuing an open source strategy
- Galois is too small to fund this “infrastructure” project through IR&D

galois

Questions

galois

