
© 2008 Carnegie Mellon University

Assurance Cases for Formally

Demonstrated Conformance

Relations

Arie Gurfinkel
Member of the Technical Staff
Software Engineering Institute
Carnegie Mellon University
arie@sei.cmu.edu

joint work with Sagar Chaki, Kurt
Wallnau, and Charles Weinstock

mailto:arie@sei.cmu.edu

2

Software Certification Consortium 2010

© 2010 Carnegie Mellon University

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO
ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM
USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this presentation is not intended in any way to infringe on the
rights of the trademark holder.

This Presentation may be reproduced in its entirety, without modification, and freely
distributed in written or electronic form without requesting formal permission. Permission
is required for any other use. Requests for permission should be directed to the Software
Engineering Institute at permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number
FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development center. The
Government of the United States has a royalty-free government-purpose license to use,
duplicate, or disclose the work, in whole or in part and in any manner, and to have or
permit others to do so, for government purposes pursuant to the copyright license under
the clause at 252.227-7013.

mailto:permission@sei.cmu.edu

3

Software Certification Consortium 2010

© 2010 Carnegie Mellon University

Value of Conformance Evidence: A Proposition

Two Axioms*:

• Evidence that software satisfies (implements) claimed behavior has
economic value

• The value of evidence increases as it moves nearer to binary (executable)
code.

Assumption for this presentation:

• We care about demonstrating behavioral conformance, i.e., software does
or does not behave according to some specified policy

Definitions:

• A claim asserts a behavior, typically some combination of safety (behavior
X never happens) and liveness (X eventually happens)

• An invariant is a condition that holds for all program executions

See http://www.sei.cmu.edu/pacc/ as background, and http://www.sei.cmu.edu/pacc/dowloads.html for publicly

released software described in this presentation.

http://www.sei.cmu.edu/pacc/
http://www.sei.cmu.edu/pacc/dowloads.html

4

Software Certification Consortium 2010

© 2010 Carnegie Mellon University

Certifying Software Model Checking (CSMC)

What is software model checking?

• Type of static analysis that aims to provide
precise answers to “deep” claims about the
runtime behavior of programs

• Provides an error trace if a failure is found,
and in some cases a proof certificate that a
claim is satisfied*

• Traditionally used by hardware industry
e.g., Intel, IBM, Cadence (non-certifying)

• Increasingly used in the software industry
e.g., Microsoft, NEC (non-certifying)

• Exhaustive & automated, but scale is a real
challenge, especially for software

Model Checker

Program
Behavior

Claim

False +

Counter-

example

True +

Invariants

*Chaki, S., "SAT-Based Software Certification". pp. 151 - 166. Proceedings of the 12th International Conference on

Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2006). Vienna, Austria, March 25 - April 2,

2006. Notes in Computer Science, Volume 3920, 2006.

5

Software Certification Consortium 2010

© 2010 Carnegie Mellon University

Typical “Claims” Checked by Model Checker

1. An assertion deep in the program is never violated

1. A string buffer that is manipulated in all sorts of tricky ways does not overflow.

2. A null pointer is never dereferenced

2. A program follows a complicated API usage pattern

1. A lock is never acquired twice without being released

3. Concurrency is used correctly

1. Absence of deadlocks/livelocks

4. Every request is eventually serviced

1. A program always accepts a reset command and returns to a safe state

2. A device driver always returns control to the operating system

5. Secure information flow

1. A hospital management software does not show a patient’s SSN to a nurse

2. Amazon does not show credit card information of one customer to another

6

Software Certification Consortium 2010

© 2010 Carnegie Mellon University

Counterexamples are “Witnesses” to Failure

Model checkers describe
execution paths through a
transition system when
they encounter failures.

These counterexamples
can be mapped back to
the original code and can
be confirmed.

Confirmation is usually
quite simple, and can
often be reproduced by a
test case.

We do not need to trust
the model checker since
we have a witness.

7

Software Certification Consortium 2010

© 2010 Carnegie Mellon University
7

Certificate Production

Program

P

Certifying

SMC

Invariant VC-GenP

VCP
Theorem

Prover

Proof

Pr

Policy

S

Trusted

Computing

Base

8

Software Certification Consortium 2010

© 2010 Carnegie Mellon University
8

Proofs are “Witnesses” to Success*

Program invariants are embedded as
BEGIN and INV calls in compiled code.

while(n < 10) {

BEGIN();

INV((n >= 0) && (n < 10));

n = n + 1;

}

These invariants are sufficient
to construct a proof of conformance
to a claim (policy)

lwz %r0,8(%r31)

cmpwi %cr7,%r0,9

bgt %cr7,.L4

bl BEGIN

li %r0,0

stw %r0,16(%r31)

lwz %r0,8(%r31)

cmpwi %cr7,%r0,0

blt %cr7,.L5

lwz %r0,8(%r31)

cmpwi %cr7,%r0,9

bgt %cr7,.L5

li %r0,1

stw %r0,16(%r31)

.L5:

lwz %r3,16(%r31)

crxor 6,6,6

bl INV

lwz %r9,8(%r31)

addi %r0,%r9,1

stw %r0,8(%r31)

b .L3
*Chaki, S., Ivers, J., Lee, P., Wallnau, K., Zeilberger, N., “Model-Driven Construction of

Certified Binaries”, Proceedings of the ACM/IEEE 10th International Conference on

Model Driven Engineering Languages and Systems, 2007, LNCS 4735, pp 666-681.

9

Software Certification Consortium 2010

© 2010 Carnegie Mellon University

Scenario

You are a consumer who has been presented with executable software

• The software includes an embedded proof of claim C

The vendor asserts C is satisfied and that you do not need to trust

• the developers (their identities or their motives)

• the processes developers used to design or build the software

• the compiler or any tools used to design or build the software

• the software model checker that supplied proof invariants

• any tools (theorem provers, etc.) used to construct the proof

• the security of any distribution channels, i.e, if code or proof is tampered with:

– proof checking will fail, or

– the code conforms to policies in C

Do you believe the vendor?

10

Software Certification Consortium 2010

© 2010 Carnegie Mellon University

Assurance Cases

Evidence without argument is unexplained

Argument without evidence is unfounded

An assurance case requires claims, evidence, and an argument

• Evidence

– Results of observing, analyzing, testing, simulating, and estimating the
properties of a system that provide fundamental information from which
the presence of some system property can be inferred

• Argument

– Explanation of how the available evidence can be reasonably interpreted
as indicating acceptable operation, usually by demonstrating compliance
with requirements, sufficient and avoidance of hazards, etc.

11

Software Certification Consortium 2010

© 2010 Carnegie Mellon University

What is an Assurance Case?

A structured demonstration that a system is acceptably safe, secure,
reliable, etc.

• A comprehensive presentation of evidence linked (by argument) to a claim
of some policy

Evidence

Evidence

Evidence

Argument

IF THEN Claim1; IF THEN Claim2; IF THEN Claim3;

IF Claim2 and Claim3 THEN Claim4; IF Claim1 and Claim4 THEN Claim

Claim2

Claim3

Claim4

Claim1

Claim

12

Software Certification Consortium 2010

© 2010 Carnegie Mellon University

An Assurance Pattern for Proof Evidence*
C: Property

Property <X> holds

Ev: Proof

<Proof of property

<X>, e.g., results of

a state machine

model with various

safety and liveness

properties)

S: Proof hazards

Argue over the various

ways in which the proof

could be wrong

C: No false assumptions

All assumptions on which the

proof depends have been

identified and their correctness

has been verified

C: Assumption valid

<Assumption N> is

valid

C: Completeness

All assumptions affecting

proof validity have been

identified

Ev: Experience

In similar

systems, this

assumption has

proven to be valid

Ev: Analysis

Analysis of

assumption <N>

demonstrates that

it is unlikely to be

false

Ev: Tests

OK

No tests

have failed

C: No proof errors

There are no errors in

the proof

Ev: Proof

checker

<Results from a

proof checker

indicate the proof

is valid>

C: Model omissions

The model used in the proof is

sufficiently accurate to justify the proof's

conclusions in the real world, i.e.,

aspects ignored by the model do not

invalidate the proof

C: Impl/model

consistent

The implementation is

consistent with the model

C: Human review

Results of human review of

code show conformance to

the model used in the proof

C: Test states

Tests have been constructed

so all states relevant to the

proof have been exercised by

the tests

Ctxt: Proof Hazards

False assumptions, errors

in proof, inaccurate model

of system, implementation

inconsistent with model

C: Defensive check

<Assumption N> is validated at

run time by the implementation

(defensive programming)

S: Unmodeled aspects

Argue over potentially

significant unmodeled aspects

of the system (e.g.,

performance properties)

C: Validated prover

Tools used in creating the

proof are known to produce

valid proofs

C: Validated checker

Proof checker has been

validated and can be trusted

to detect invalid proofs

*Goodenough, J., Weinstock, C., “Hazards to Evidence: Demonstrating the Quality of Evidence in an Assurance Case”,

Technical Note CMU/SEI-2008-TN-016 , Software Engineering Institute, Carnegie Mellon University, 2008 (in preparation)

13

Software Certification Consortium 2010

© 2010 Carnegie Mellon University

Top-Level Assurance Case

C: Software <S> satisfies desired safety policies <P>

C0: Property: Assertion <X> is never violated

S0: Prove absence of assertion failures
Ctx0: This is a safety property. It can be
reduced to a set of program assertions.

S1: Certificate Hazards:
Argue over the various

ways in which the
certificate could be wrong

Ctx1: Certificate
Hazards. Unrecognized

assumptions, invalid
assumptions, modeling

abstraction error,
unsound proof logic,

implementation
inconsistent with

model

C1: Assumptions
valid: All assumptions

relevant to the
certificate are valid

C2: Sufficiently accurate model: The
model used in the certificate is

sufficiently accurate to justify the
certificate’s conclusions in the real world

C3: Sound proof:
The chain of logic
in the proof <Pr>

is sound

C4: Implementation
and model are
consistent: The

implementation is
consistent with the

model

Ev0: Safety
Theorem: If

there exists an
Invariant with a

valid VC, then the
assertion <X> is
never violated

Ev1:
Certificate:

Invariant <I>
and Proof <Pr>
of Verification

Condition

14

Software Certification Consortium 2010

© 2010 Carnegie Mellon University

C1: Assumptions valid

C1: Assumptions valid: All assumptions relevant to the certificate are valid

C5: Assumptions identified: All assumptions relevant
to the certificate’s identity have been identified

C6: No invalid assumptions: Every identified assumption
used in the certificate is valid for the actual system

C7: Assumption valid: <Assumption i> is valid

i = 1 ... n

C8: Past Experience: In similar
systems, <Assumption i> has

proven to be valid

C9: Assumption
Analysis: <Assumption i>

is proven to be valid

C10: Defensive check: <Assumption i> is
validated at runtime by the implementation

C11: Failure Analysis: No
test failures invalidates

<Assumption i>
Ev2:

Experience

Ev3: Analysis Results Ev4: Code review results
Ev5: Failure Analysis Results

one or more

15

Software Certification Consortium 2010

© 2010 Carnegie Mellon University

C2: Sufficiently Accurate Model

C2: Sufficiently accurate model: The model used
in the certificate is sufficiently accurate to justify

the certificate’s conclusions in the real world

Ctx2: Sufficiently accurate: Aspects
ignored by the model used in the
proof do not invalidate the proofs
conclusion

C12: VC-Gen correctness: Model <M> of program execution used by the VC generator <G> is sufficiently accurate

 C14: Past
Experience:

Previous uses of <G>
have not revealed

any inaccuracies in
its model

Ev7: Experience

C16: Testing:
No test failure

invalidates <M>.
Test cases used
are adequate.

Ev9: Testing
results

C17: Mechanical
proving: The

correctness of <M> has
been proved manually.

Ev10: Manually
generated proofs

C13: Logical
Consistency: The
logic <L> used by

<G> is believed to be
consistent

Ev6: Scrutiny
and Peer-

review results

C15: Human review: Results of
human review of the code show
that <G> models the hardware

instruction set semantics correctly

Ev8: Code review
results

16

Software Certification Consortium 2010

© 2010 Carnegie Mellon University

C3: Sound Proof

C3: Sound proof: The chain of logic in the proof <Pr> is sound

Ev14: Checker Validation:
Validation evidence

Ev13: Review
Results: Results of

proof review,
showing items

checked, experience
of reviewers, etc.

C19: Mechanical check: A (mechanical) proof
checker <C> has confirmed the validity of <Pr>

C18: Validated prover. The <T> tool
used to create the proofs is known to

produce valid proofs

Ev11:
Experience

C23: Past Experience: Previous uses
of <C> has not revealed any errors in

its operation

Ev15: Experience

C20: Human review:
External reviewers have
confirmed the soundness

of <Pr>

C21: Reliable proof checker: <C> can be
relied on to detect invalid proofs

Ev12: Checker
Results: Results

from <C> C22: Validated checker: <C> has been validated

S2: Checker hazards. Argue over possible
shortcomings in validating <C>.

C24: Testing: No test failures
indicate errors in <C>. Test cases

used are adequate.

Ev16: Testing results

C25: Human review: Results of human
code review have not unearthed any

checker errors in <C>.

Ev17: Code review results

one or more

17

Software Certification Consortium 2010

© 2010 Carnegie Mellon University

C4: Implementation and Model are Consistent

C4: Implementation and model are consistent: The
implementation is consistent with the model

Ctx3: Model of program execution
used by compiler and VC generator

C26: Model of program execution used by the compiler <Co> and VC generator <G> are sufficiently similar

C27: Testing: No test failures
differentiate between program

execution models used by <Co> and
<G>. Test cases used are adequate.

Ev18: Testing results

C28: Human review: Results of
human review of the code show
conformance between execution

models used by <Co> and <G>

Ev19: Code review results

C29: Mechanical proving:
Correspondence between <G>’s model

and <Co>’s model has been proved
mechanically

Ev20: Manually generated proofs

18

Software Certification Consortium 2010

© 2010 Carnegie Mellon University

What Might This Mean for Certification?

A claim of conformance can be only as strong as the policy is precise

• Good news: we know how to specify machine-checkable behavior

• Bad news: it can be costly to specify precisely required software behavior

Software producers can shoulder the “burden of proof” for conformance

• Good news: proof-strength evidence can be mechanized for small but critical
code (e.g., embedded software, trusted security kernel, …)

• Bad news: software acquisition and development practice must change if we
are to generate, and use evidence of software quality in a cost-effective way

How much evidence is enough, and how strong must the evidence be?

• A proof is not a proof unless it is believed to be a proof, and different
standards of “believability” obtain in different settings

• Assurance cases are one way of calibrating “believability”

© 2008 Carnegie Mellon University

END

