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Value of Conformance Evidence: A Proposition

Two Axioms*:  

• Evidence that software satisfies (implements) claimed behavior has 
economic value

• The value of evidence increases as it moves nearer to binary (executable) 
code. 

Assumption for this presentation:

• We care about demonstrating behavioral conformance, i.e., software does 
or does not behave according to some specified policy

Definitions:

• A claim asserts a behavior, typically some combination of safety (behavior 
X never happens) and liveness (X eventually happens)

• An invariant is a condition that holds for all program executions

See http://www.sei.cmu.edu/pacc/ as background, and http://www.sei.cmu.edu/pacc/dowloads.html for publicly 

released software described in this presentation.  

http://www.sei.cmu.edu/pacc/
http://www.sei.cmu.edu/pacc/dowloads.html


4

Software Certification Consortium 2010

© 2010 Carnegie Mellon University

Certifying Software Model Checking (CSMC)

What is software model checking?

• Type of static analysis that aims to provide 
precise answers to “deep” claims about the 
runtime behavior of programs

• Provides an error trace if a failure is found, 
and in some cases a proof certificate that a 
claim is satisfied*

• Traditionally used by hardware industry 
e.g., Intel, IBM, Cadence (non-certifying)

• Increasingly used in the software industry 
e.g., Microsoft, NEC (non-certifying)

• Exhaustive & automated, but scale is a real 
challenge, especially for software

Model Checker

Program
Behavior

Claim

False + 

Counter-

example

True + 

Invariants

*Chaki, S., "SAT-Based Software Certification". pp. 151 - 166. Proceedings of the 12th International Conference on 

Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2006). Vienna, Austria, March 25 - April 2, 

2006. Notes in Computer Science, Volume 3920, 2006.
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Typical “Claims” Checked by Model Checker

1. An assertion deep in the program is never violated

1. A string buffer that is manipulated in all sorts of tricky ways does not overflow.

2. A null pointer is never dereferenced

2. A program follows a complicated API usage pattern

1. A lock is never acquired twice without being released

3. Concurrency is used correctly

1. Absence of deadlocks/livelocks

4. Every request is eventually serviced

1. A program always accepts a reset command and returns to a safe state

2. A device driver always returns control to the operating system

5. Secure information flow

1. A hospital management software does not show a patient’s SSN to a nurse

2. Amazon does not show credit card information of one customer to another
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Counterexamples are “Witnesses” to Failure

Model checkers describe 
execution paths through a 
transition system when 
they encounter failures.

These counterexamples 
can be mapped back to 
the original code and can 
be confirmed.

Confirmation is usually 
quite simple, and can 
often be reproduced by a 
test case.

We do not need to trust 
the model checker since 
we have a witness.
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Certificate Production
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Proofs are “Witnesses” to Success*

Program invariants are embedded as 
BEGIN and INV calls in compiled code.

while(n < 10) {

BEGIN(); 

INV((n >= 0) && (n < 10)); 

n = n + 1;

}

These invariants are sufficient
to construct a proof of conformance 
to a claim (policy)

lwz %r0,8(%r31)

cmpwi %cr7,%r0,9

bgt %cr7,.L4

bl BEGIN

li %r0,0

stw %r0,16(%r31)

lwz %r0,8(%r31)

cmpwi %cr7,%r0,0

blt %cr7,.L5

lwz %r0,8(%r31)

cmpwi %cr7,%r0,9

bgt %cr7,.L5

li %r0,1

stw %r0,16(%r31)

.L5:

lwz %r3,16(%r31)

crxor 6,6,6

bl INV

lwz %r9,8(%r31)

addi %r0,%r9,1

stw %r0,8(%r31)

b .L3
*Chaki, S., Ivers, J., Lee, P., Wallnau, K., Zeilberger, N., “Model-Driven Construction of 

Certified Binaries”, Proceedings of the ACM/IEEE 10th International Conference on 

Model Driven Engineering Languages and Systems, 2007,  LNCS 4735, pp 666-681.
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Scenario

You are a consumer who has been presented with executable software

• The software includes an embedded proof of claim C

The vendor asserts C is satisfied and that you do not need to trust

• the developers (their identities or their motives)

• the processes developers used to design or build the software

• the compiler or any tools used to design or build the software

• the software model checker that supplied proof invariants

• any tools (theorem provers, etc.) used to construct the proof

• the security of any distribution channels, i.e, if code or proof is tampered with:

– proof checking will fail, or

– the code conforms to policies in C

Do you believe the vendor?
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Assurance Cases

Evidence without argument is unexplained

Argument without evidence is unfounded

An assurance case requires claims, evidence, and an argument 

• Evidence

– Results of observing, analyzing, testing, simulating, and estimating the 
properties of a system that provide fundamental information from which 
the presence of some system property can be inferred

• Argument

– Explanation of how the available evidence can be reasonably interpreted 
as indicating acceptable operation, usually by demonstrating compliance 
with requirements, sufficient and avoidance of hazards, etc.
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What is an Assurance Case?

A structured demonstration that a system is acceptably safe, secure, 
reliable, etc.

• A comprehensive presentation of evidence linked (by argument) to a claim
of some policy

Evidence

Evidence

Evidence

Argument 

IF THEN Claim1; IF THEN Claim2; IF THEN Claim3; 

IF Claim2 and Claim3 THEN Claim4; IF Claim1 and Claim4 THEN Claim

Claim2

Claim3

Claim4

Claim1

Claim
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An Assurance Pattern for Proof Evidence*
C: Property

Property <X> holds

Ev: Proof

<Proof of property 

<X>, e.g., results of 

a state machine 

model with various 

safety and liveness 

properties)

S: Proof hazards

Argue over the various 

ways in which the proof 

could be wrong

C: No false assumptions

All assumptions on which the 

proof depends have been 

identified and their correctness 

has been verified

C: Assumption valid

<Assumption N> is 

valid

C: Completeness

All assumptions affecting 

proof validity have been 

identified

Ev: Experience

In similar 

systems, this 

assumption has 

proven to be valid

Ev: Analysis

Analysis of 

assumption <N> 

demonstrates that 

it is unlikely to be 

false

Ev: Tests 

OK

No tests 

have failed

C: No proof errors

There are no errors in 

the proof

Ev: Proof 

checker

<Results from a 

proof checker 

indicate the proof 

is valid>

C: Model omissions 

The model used in the proof is 

sufficiently accurate to justify the proof's 

conclusions in the real world, i.e., 

aspects ignored by the model do not 

invalidate the proof

C: Impl/model 

consistent

The implementation is 

consistent with the model

C: Human review

Results of human review of 

code show conformance to 

the model used in the proof

C: Test states

Tests have been constructed 

so all states relevant to the 

proof have been exercised by 

the tests

Ctxt: Proof Hazards

False assumptions, errors 

in proof, inaccurate model 

of system, implementation 

inconsistent with model

C: Defensive check

<Assumption N> is validated at 

run time by the implementation 

(defensive programming)

S: Unmodeled aspects

Argue over potentially 

significant unmodeled aspects 

of the system (e.g., 

performance properties)

C: Validated prover

Tools used in creating the 

proof are known to produce 

valid proofs

C: Validated checker

Proof checker has been 

validated and can be trusted 

to detect invalid proofs

*Goodenough, J., Weinstock, C., “Hazards to Evidence: Demonstrating the Quality of Evidence in an Assurance Case”, 

Technical Note CMU/SEI-2008-TN-016 , Software Engineering Institute, Carnegie Mellon University, 2008 (in preparation)
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Top-Level Assurance Case

 

C: Software <S> satisfies desired safety policies <P> 

C0: Property: Assertion <X> is never violated 

S0: Prove absence of assertion failures 
Ctx0: This is a safety property. It can be 
reduced to a set of program assertions. 

 

S1: Certificate Hazards: 
Argue over the various 

ways in which the 
certificate could be wrong 

Ctx1: Certificate 
Hazards. Unrecognized 

assumptions, invalid 
assumptions, modeling 

abstraction error, 
unsound proof logic, 

implementation 
inconsistent with 

model 

C1: Assumptions 
valid: All assumptions 

relevant to the 
certificate are valid 

C2: Sufficiently accurate model: The 
model used in the certificate is 

sufficiently accurate to justify the 
certificate’s conclusions in the real world 

C3: Sound proof: 
The chain of logic 
in the proof <Pr> 

is sound 

C4: Implementation 
and model are 
consistent: The 

implementation is 
consistent with the 

model 

Ev0: Safety 
Theorem: If 

there exists an 
Invariant with a 

valid VC, then the 
assertion <X> is 
never violated  

Ev1: 
Certificate: 

Invariant <I> 
and Proof <Pr> 
of Verification 

Condition 
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C1: Assumptions valid

 

C1: Assumptions valid: All assumptions relevant to the certificate are valid 

C5: Assumptions identified: All assumptions relevant 
to the certificate’s identity have been identified 

C6: No invalid assumptions: Every identified assumption 
used in the certificate is valid for the actual system 

C7: Assumption valid: <Assumption i> is valid 

i = 1 ... n 

C8: Past Experience: In similar 
systems, <Assumption i> has 

proven to be valid 

C9: Assumption 
Analysis: <Assumption i> 

is proven to be valid 

C10: Defensive check: <Assumption i> is 
validated at runtime by the implementation 

C11: Failure Analysis: No 
test failures invalidates 

<Assumption i> 
Ev2: 

Experience 

Ev3: Analysis Results Ev4: Code review results 
Ev5: Failure Analysis Results 

one or more 
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C2: Sufficiently Accurate Model

 

C2: Sufficiently accurate model: The model used 
in the certificate is sufficiently accurate to justify 

the certificate’s conclusions in the real world 

 

Ctx2: Sufficiently accurate: Aspects 
ignored by the model used in the 
proof do not invalidate the proofs 
conclusion 

C12: VC-Gen correctness: Model <M> of program execution used by the VC generator <G> is sufficiently accurate 

 C14: Past 
Experience: 

Previous uses of <G> 
have not revealed 

any inaccuracies in 
its model 

Ev7: Experience 

C16: Testing: 
No test failure 

invalidates <M>. 
Test cases used 
are adequate. 

Ev9: Testing 
results 

C17: Mechanical 
proving: The 

correctness of <M> has 
been proved manually. 

Ev10: Manually 
generated proofs 

C13: Logical 
Consistency: The 
logic <L> used by 

<G> is believed to be 
consistent 

Ev6: Scrutiny 
and Peer-

review results 

C15: Human review: Results of 
human review of the code show 
that <G> models the hardware 

instruction set semantics correctly 

Ev8: Code review 
results  
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C3: Sound Proof

 

C3: Sound proof: The chain of logic in the proof <Pr> is sound 

Ev14: Checker Validation: 
Validation evidence 

Ev13: Review 
Results: Results of 

proof review, 
showing items 

checked, experience 
of reviewers, etc. 

C19: Mechanical check: A (mechanical) proof 
checker <C> has confirmed the validity of <Pr> 

C18: Validated prover. The <T> tool 
used to create the proofs is known to 

produce valid proofs 

Ev11: 
Experience 

C23: Past Experience: Previous uses 
of <C> has not revealed any errors in 

its operation 

Ev15: Experience 

C20: Human review: 
External reviewers have 
confirmed the soundness 

of <Pr> 

C21: Reliable proof checker: <C> can be 
relied on to detect invalid proofs 

Ev12: Checker 
Results: Results 

from <C> C22: Validated checker: <C> has been validated 

S2: Checker hazards. Argue over possible 
shortcomings in validating <C>. 

C24: Testing: No test failures 
indicate errors in <C>. Test cases 

used are adequate. 

Ev16: Testing results 

C25: Human review: Results of human 
code review have not unearthed any 

checker errors in <C>. 

Ev17: Code review results 

one or more 
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C4: Implementation and Model are Consistent

 

C4: Implementation and model are consistent: The 
implementation is consistent with the model 

Ctx3: Model of program execution 
used by compiler and VC generator 

C26: Model of program execution used by the compiler <Co> and VC generator <G> are sufficiently similar 

C27: Testing: No test failures 
differentiate between program 

execution models used by <Co> and 
<G>. Test cases used are adequate. 

Ev18: Testing results 

C28: Human review: Results of 
human review of the code show 
conformance between execution 

models used by <Co> and <G> 

Ev19: Code review results 

C29: Mechanical proving: 
Correspondence between <G>’s model 

and <Co>’s model has been proved 
mechanically 

Ev20: Manually generated proofs 
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What Might This Mean for Certification?

A claim of conformance can be only as strong as the policy is precise

• Good news: we know how to specify machine-checkable behavior

• Bad news: it can be costly to specify precisely required software behavior

Software producers can shoulder the “burden of proof” for conformance

• Good news: proof-strength evidence can be mechanized for small but critical 
code (e.g., embedded software, trusted security kernel, …)

• Bad news: software acquisition and development practice must change if we 
are to generate, and use evidence of software quality in a cost-effective way 

How much evidence is enough, and how strong must the evidence be?

• A proof is not a proof unless it is believed to be a proof, and different 
standards of “believability” obtain in different settings

• Assurance cases are one way of calibrating “believability”
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