DEPENDABLE
COMPUTING

Simulink Models - Assurance
Through Comprehensive Formal Verification*

John C. Knight

Dependable Computing LLC
&

University of Virginia

*Funded by Toyota ITC, Mountain View, CA

DEPENDABLE

COMPUTING The Problem
raditiona Model-Based Development
. c 9 e e
« / Q’U: 5" é. e o
Natural £s é’
Language 3 02
Informal g30 \
e p: =R
Specification g2
>,) 23 e
‘ — @ Formal
] : Specification
Traditional 5 _ Automatic
Development a Increasing Synthesis
Exiting ¥] And 3
XIStIN .
Techniques) D) Diverse (@ D)
Problematic High Level Use High Level
Language Language
Implementation Implementation
@) @)
Binary Binary
Implementation Implementation

SCC Annapolis - 5/2016

DEPENDABLE
COMPUTING

Formal Languages & Proofs

* Proof in traditional development:

Formal
Specification

l

Syntax Checking
Type Checking
Putative Theorems

Proof is equivalent to
executing all test cases

Design
And
Code

Software

l

Formal Verification
“Correctness” Proof

Static Analysis

SCC Annapolis - 5/2016

In principle, displaced

DEPENDABLE

COMPUTING Derivation of Software Spec’n

System of

Interest \ 7T)

Implication

P Software
Specification

Derivation Of
Specification

Derivation Of
™S Crucial
Properties

Software Based

Component Software specification derives

from systerm design

Crucial software properties derive
from system design

SCC Annapolis - 5/2016

DEPENDABLE

COMPUTING Model-Based Development

Model-Based
Development
Simulink, SCADE, Etc.

New Innovative
Concept

Software
Specification
Design Development
Environment Environment

< /

Software
Implementation

PRODUCTION <.

SCC Annapolis - 5/2016

DEPENDABLE

COMPUTING Verification Concept
@ D) @ D)
Approach:
Model Notation Formal - Formal semantic def'n
(E.g., Simulink) Semantics « Translator from model notation
e e to mathematical
y representations
@ D)
Mathematical
Safety Representation Pgaofaeg?f
& y Property
@ @
Desired
Properties _) Theorem _)
Expressed As Proving System
Theorems

SCC Annapolis - 5/2016

DEPENDABLE .
coiie) LS Translation To PVS

simdlink 3 Translator —>

Model

PVS
Specification

e) -
Original / T
Engineering Reference Simulink
Semantics

N

Basic Approach To Proof
Technology

SCC Annapolis - 5/2016

PVS
Theorem
Proving
System

Formal
Specification

Formal
Semantics

Theorems>

DEPENDABLE
COMPUTING

Simulink Blocks For Which
Semantlcs Defined

1-D Lookup Table
2-D Lookup Table
Abs

Action Port

Assertion
Assignment

Bus Creator

Bus Selector
Compare to Constant
Compare to Zero
Constant

Data Store Memory
Data Store Read
Data Store Write
Data Type Conversion
Data Type Duplicate
Demux

Display

Enaple Port RETerence

From Relational Operator
From Workspace Saturate

Gain Scope

Goto Selector

Ground Shift Arithmetic

If
If Action Subsystem

In Port

Integrator

Logical Operator

Math

Merge

Model Reference

Mux

n-D Lookup Table (for n < 3)
Out Port
Product

Pulse Generator

SCC Annapolis - 5/2016

Signal Conversion
Signal Viewer Scope
Sqgrt

Step

Stop

Subsystem

Sum

Switch

Terminator

Trigger Port

Unary Minus

Unit Delay

Width

DEPENDABLE

COMPUTING Use Of Simulink2PVS
Simulink Application Property
Model | Application Properties of | < pr e
Model Interest Specifications

Mechanical
Translator

v

—_—> Simulink2PVS]

v

PVS Theory for
Application
Model

v

Human
Guidance

I

\/

Humap
Translation

\

PVS Theory for
Application
Properties

4

(PVS Verification System J

v

G

SCC Annapolis - 5/2016

Human
Translator

But Does It
Work?

DEPENDABLE

computing - Antjlock Brake System Example

0.2
: Difference

Desired

relative .m I | 1
@ > — Apply
in_1 ——» | % double Deliberately NG Brakes
) Relational L+ excludes zero jer

Operator -

Sum out

I <
0) - p double

Constant Relational
Operator1 ﬁ

Wheel Speed J—FE
Divide
|~:0\ EpsIfZero(p_Vehicle Speed: real,

Divide (p_Wheel Speed: real
p_EpsIfZeroyfnzreal)y real =

VehiC|e Speed S | p_Vehicle Speed: real,
p_eps: real): real =
EpslfZero IF (p_Vehicle Speed) /= 0 THEN From

p_Vehicle Speed

eps e MathWorks
ops Web Site

SCC Annapolis - 5/2016

DEPENDABLE

coiie) LS ABS Model In PVS

% Whole system run, this can only be called after
INIT and inputs setting
run(p_sys: sys_type, p_Wheel Speed: real, p_Vehicle_Speed:
real): sys_type =
LET v_EpsIfZero: real = EpsIfZero(p_Vehicle_Speed,
p_Vehicle_Speed, eps) IN
LET v_Divide: real =
Divide(p_Wheel_Speed, v_EpsIfZero) IN
LET v_Relative_Slip: real =
Relative_Slip(One, v_Divide) IN
LET v_Use_ABS: real = Use_ABS(v_Relative_Slip) IN
LET v_Difference: real =
Difference(Desired_relative_slip, v_Use_ABS) IN
LET v_Bang_bang_controller_sys:
Bang_bang_controller.sys_type =
Bang_bang_controller.run(p_sys f_state
“f_Bang_bang_controller_sys, v_Difference) IN
LET v_Apply_Brakes: real =
Apply_Brakes(v_Bang_bang_controller_sys
“f_output f_out_1_i2) IN

of

(#
f_state :=
prepare_state(v_Bang_bang_controller_sys),
f_output := prepare_output(v_Apply_Brakes)

SCC Annapolis - 5/2016

DEPENDABLE

COMPU

TING

Properties

 Property 1 specification:

Applies_Brake_When_Not_Slipping: THEOREM
FORALL (v_sys: ABS_Controller_oem.sys_type,
vSpeed: {v: nzreal | v >= (2 ~ -52)},

Property 1

wSpeed: {w: real | w > 0.8 % vSpeed }):
f_Apply_Brakes(f_output(run(v_sys, wSpeed,

 Pro

Property 2

vSpeed))) =1
perty 2 specification:
Lets_Off_Brake_When_Slipping: THEOREM

FORALL (v_sys: ABS_Controller_oem.sys_type,

vSpeed: {v: nzreal | v >= (2 ~ -52)},

wSpeed: {w: real | w < 0.8 x vSpeed }):

f_Apply_Brakes(f_output(run(v_sys, wSpeed,

vSpeed))) = -1

 Property 3 specification:

Property 3

Does Neither_ At _Threshold: THEOREM

FORALL (v_sys: ABS_Controller_oem.sys_type,
vSpeed: {v: nzreal | v >= (2 ~ -52)}):
f_Apply_Brakes(f_output(run(v_sys, 0.8 *x vSpeed,

vSpeed))) = 0

SCC Annapolis - 5/2016

DEPENDABLE ;
SONPUTILES Properties

* Property 4 specification:
Applies_Brake_When_At_Rest_And_Wheels_Stopped: THEOREM
//fORALL (v_sys: ABS_Controller_oem.sys_type):

f_Apply_Brakes/(f glitput(run(v_sys, 0, 0))) =1

Property 4

Proof Failed

Wheel speed Vehicle speed

* Opposite of Property 4:

Releases_Brake_When_At_Rest_And_Wheels_Stopped: THEOREM
FORALL (v_sys: ABS_Controller_oem.sys_type):
f_Apply_Brakes(f_output(run(v_sys, 0, 0))) = -1

Proved Recall That Model Came

From MathWorks Web Site

SCC Annapolis - 5/2016

DEPENDABLE

COMPUTING Another Problem

Model Based Development
Simulink, SCADE, Etc.

“New Innovative

Concept Specification ;
OEM Model Supplier
Model
Design Development
Environment Environment

\

Implementation

PRODUCTION | < System

SCC Annapolis - 5/2016

DEPENDABLE .
COMPUTING Problem Detalls

 Development models rarely take account of practical
limitations of target platforms

e Production models must address these limitations

« Example:
— Development model uses 32-bit integers

— Target platform used for the production model only
supports 16-bit integers

* Difference means two models will not be identical
* Such differences are common in engineering

« How can “equivalence” be established?

 What does “equivalence” mean?

SCC Annapolis - 5/2016

DEPENDABLE
COMPUTING Example - ABS

800 - ¥4 ABS Controller_supplier - — —
__File Edit View Display Diagram Simulation Analysis Code Tools Help |
MO e —— A L L. 00 e —————————] L tde-d4o At — RN
Fia Edi View Diapiy Do Sendaion Anayas Code oo Hep
e 15403, Comoter o - ® [%a]ABS_Controller_supplier M
= q
[+] 0.2 2]
= J Difference = ive i i
= Negative if the Wheel Speed is
= D?SItI_’ed = “ less than 80%01"'1;:
relative _>. Vehicle Speed
slip :': (1)
Bang-bang E,;.\ pﬁly »
- rakes
1 controller Wheel Speed Wheel Speed
) Gain
one {0 (D)
—=a Apply
’ F-Q Al Rest Brakes
1 P X Heslﬁg"'e Vehicle Speed g Negalive Switch
Wheel Speed % Veh»cclieaﬁpasd
_\ Divide
H~=0
Vehicle Speed —a
EpsliZero Depress
ﬂ Brakes
eps

Hypothetical

Hypothetical
OEM Model Supplier Model

Are They Equivalent?

SCC Annapolis - 5/2016

DEPENDABLE

COMPUTING Assurance of “Equivalence”

Specification .

OEM Model Supplier
Model

Design Development

/

Environment Environment
|

Implementation

Sub

System System

SCC Annapolis - 5/2016

DEPENDABLE . »
computing Defn: Constrained Equivalence

 Two models exhibit constrained equivalence if:

— All valid inputs to the first model produce the same
output in the second model to within a specified
tolerance

— Inputs to the second model that are within a
specified tolerance of the inputs to the first model
produce the same output

* Predefined scaling factors and offsets might be
used in determining whether two factors are the

Same

SCC Annapolis - 5/2016

DEPENDABLE

COMPUTING Equivalence Proof System
Simulink Simulink
Development Production
Model Model
+ + \ Two Models
[Simulink2PVS) \
+ + Translator &
b =
PVS Theory for PVS Theory for o
Development ' Production \ Two ;
Model Model Specification =
v : 8
8
Equivalence Tolerances & . ()
Theorem ~ Target Details \ E%]_l;l;/g::::e =
+ m
[PVS Verification] Human \ Proof
S <)
ystem Guidance

SCC Annapolis - 5/2016

§<[§%PMEFN>5’?FNL5 Exploratory Study

 Model of an automobile anti-lock brake system
(ABS) controller

* Derived from an ABS model published by
MathWorks

* Model:
— Serves as the development model in the study

— Relies on a “bang-bang” controller published
separately by MathWorks

— ABS logic is only valid when the driver is depressing
the brake pedal

SCC Annapolis - 5/2016

DEPENDABLE

COMPUTING ABS Development Model

#3 ABS_Controller_oem

ram Simulation Analysis Code Tools Help

MathWorks -
ABS Model
0.2
= Difference
- D(?Sired
relative
sip -+
Apply
Bang-bang Brakes
1 controller
One J\
() N Relative Also From
Wheel Speed J—p + Slip Mathworks
Divide
I:o\
Vehicle Speed —p—mn
EpslfZero
eps

eps

SCC Annapolis - 5/2016

DEPENDABLE

COMPUTING ABS Production Model

8-A.5 . . ’ ____*4ABS_Controller_supplier
isplay Diagram Simulation Analysis Code Tools Help
Locally = &~) @ > = @~ 100 | Normal i | @~
Developed - A= '
ABS MOdeI ller_supplier hd

s}
=

Negative if the Wheel Speed is
= less than 80% of the

Vehicle Speed
————P
Wheel Speed —p 7 [int8
Wheel Speed —
Gain Positive >+
—pl = —»
0 —p int8 Bang —p—a Apply
> . At Rest Brakes
Vehicle Speed . Zero Negative Switch
Vehicle Speed
Gain
1
Depress
Brakes

SCC Annapolis - 5/2016

DEPENDABLE

§COMPUTING Computations

e Development model:
— Apply brakes if

Wheel Slip < 0.2
— where:

Wheel Slip = 1 - (Wheel Speed /Vehicle Speed)
* Production model:
— Apply brakes if:
10 x Wheel Speed > 8 x Vehicle Speed

 |dentical provided:
Vehicle Speed /=0

SCC Annapolis - 5/2016

DEPENDABLE

computiNng Constrained Equivalence Theorem

Constrained Equivalence: THEOREM
FORALL (v_sys: ABS Controller production.sys type,
vSpeed: {1: nonneg int32 | i1 <= 100000},

wSpeed: {1: nonneg int32 | 1 <= 100000}):
f Apply Brakes (f output (ABS_Controller development.run

(conv_sys(v_sys), vSpeed / 100, wSpeed / 100))) =

f Apply Brakes (f output (ABS_Controller production.run
(v_sys, vSpeed, wSpeed)))

* Predicate states:

Application of brakes by the two models equivalent for vehicle
and wheel speeds with integer values in range 0 to 100,000

* Divisions by 100 in development model are scale factors
necessary to align the speed measurement units

* |Integer values are meaningful, because data supplied g
speed sensors are discrete

SCC Annapolis - 5/2016

DEPENDABLE

§COMPUT|NG Theorem Proof

Proof by parts:
— Car moving and wheels not slipping
— Car moving and wheels are slipping
— Car at rest
* And the envelope please....
As before, theorem is false
* Informally:
— Stationary, wheels not moving, want brakes on
— Development model does not do this - error
e Easily analyzed, easily fixed
* Not necessarily easy to find.

SCC Annapolis - 5/2016

DEPENDABLE

§cowuwe Conclusion

 Demonstration of model equivalence is necessary
element of engineering

* Problem arises from inevitable separation of:
— Design/development engineering
— Production engineering
e “Constrained equivalence” provides basis
 Mechanical proof has been demonstrated to be:
— Feasible
— Probably cost effective compared to testing

SCC Annapolis - 5/2016

