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Formal Languages & Proofs

* Proof in traditional development:

Formal
Specification

l

Syntax Checking
Type Checking
Putative Theorems

Proof is equivalent to
executing all test cases

Design
And
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Software

l

Formal Verification
“Correctness” Proof

Static Analysis
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Simulink Blocks For Which
Semantlcs Defined

1-D Lookup Table
2-D Lookup Table
Abs

Action Port

Assertion
Assignment

Bus Creator

Bus Selector
Compare to Constant
Compare to Zero
Constant

Data Store Memory
Data Store Read
Data Store Write
Data Type Conversion
Data Type Duplicate
Demux

Display

Enaple Port RETerence

From Relational Operator
From Workspace Saturate

Gain Scope

Goto Selector

Ground Shift Arithmetic

If
If Action Subsystem

In Port

Integrator

Logical Operator

Math

Merge

Model Reference

Mux

n-D Lookup Table (for n < 3)
Out Port
Product

Pulse Generator
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% Whole system run, this can only be called after
INIT and inputs setting
run(p_sys: sys_type, p_Wheel Speed: real, p_Vehicle_Speed:
real): sys_type =
LET v_EpsIfZero: real = EpsIfZero(p_Vehicle_Speed,
p_Vehicle_Speed, eps) IN
LET v_Divide: real =
Divide(p_Wheel_Speed, v_EpsIfZero) IN
LET v_Relative_Slip: real =
Relative_Slip(One, v_Divide) IN
LET v_Use_ABS: real = Use_ABS(v_Relative_Slip) IN
LET v_Difference: real =
Difference(Desired_relative_slip, v_Use_ABS) IN
LET v_Bang_bang_controller_sys:
Bang_bang_controller.sys_type =
Bang_bang_controller.run(p_sys f_state
“f_Bang_bang_controller_sys, v_Difference) IN
LET v_Apply_Brakes: real =
Apply_Brakes(v_Bang_bang_controller_sys
“f_output f_out_1_i2) IN

of

(#
f_state :=
prepare_state(v_Bang_bang_controller_sys),
f_output := prepare_output(v_Apply_Brakes)
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 Property 1 specification:

Applies_Brake_When_Not_Slipping: THEOREM
FORALL (v_sys: ABS_Controller_oem.sys_type,
vSpeed: {v: nzreal | v >= (2 ~ -52)},

Property 1

wSpeed: {w: real | w > 0.8 % vSpeed }):
f_Apply_Brakes(f_output(run(v_sys, wSpeed,

 Pro

Property 2

vSpeed))) =1
perty 2 specification:
Lets_Off_Brake_When_Slipping: THEOREM

FORALL (v_sys: ABS_Controller_oem.sys_type,

vSpeed: {v: nzreal | v >= (2 ~ -52)},

wSpeed: {w: real | w < 0.8 x vSpeed }):

f_Apply_Brakes(f_output(run(v_sys, wSpeed,

vSpeed))) = -1

 Property 3 specification:

Property 3

Does Neither_ At _Threshold: THEOREM

FORALL (v_sys: ABS_Controller_oem.sys_type,
vSpeed: {v: nzreal | v >= (2 ~ -52)}):
f_Apply_Brakes(f_output(run(v_sys, 0.8 *x vSpeed,

vSpeed))) = 0
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* Property 4 specification:
Applies_Brake_When_At_Rest_And_Wheels_Stopped: THEOREM
//fORALL (v_sys: ABS_Controller_oem.sys_type):

f_Apply_Brakes/(f glitput(run(v_sys, 0, 0))) =1

Property 4

Proof Failed

Wheel speed Vehicle speed

* Opposite of Property 4:

Releases_Brake_When_At_Rest_And_Wheels_Stopped: THEOREM
FORALL (v_sys: ABS_Controller_oem.sys_type):
f_Apply_Brakes(f_output(run(v_sys, 0, 0))) = -1

Proved Recall That Model Came

From MathWorks Web Site
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Model Based Development
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 Development models rarely take account of practical
limitations of target platforms

e Production models must address these limitations

« Example:
— Development model uses 32-bit integers

— Target platform used for the production model only
supports 16-bit integers

* Difference means two models will not be identical
* Such differences are common in engineering

« How can “equivalence” be established?

 What does “equivalence” mean?
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 Two models exhibit constrained equivalence if:

— All valid inputs to the first model produce the same
output in the second model to within a specified
tolerance

— Inputs to the second model that are within a
specified tolerance of the inputs to the first model
produce the same output

* Predefined scaling factors and offsets might be
used in determining whether two factors are the

Same
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 Model of an automobile anti-lock brake system
(ABS) controller

* Derived from an ABS model published by
MathWorks

* Model:
— Serves as the development model in the study

— Relies on a “bang-bang” controller published
separately by MathWorks

— ABS logic is only valid when the driver is depressing
the brake pedal
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e Development model:
— Apply brakes if

Wheel Slip < 0.2
— where:

Wheel Slip = 1 - (Wheel Speed /Vehicle Speed)
* Production model:
— Apply brakes if:
10 x Wheel Speed > 8 x Vehicle Speed

 |dentical provided:
Vehicle Speed /=0
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Constrained Equivalence: THEOREM
FORALL (v_sys: ABS Controller production.sys type,
vSpeed: {1: nonneg int32 | i1 <= 100000},

wSpeed: {1: nonneg int32 | 1 <= 100000}):
f Apply Brakes (f output (ABS_Controller development.run

(conv_sys(v_sys), vSpeed / 100, wSpeed / 100))) =

f Apply Brakes (f output (ABS_Controller production.run
(v_sys, vSpeed, wSpeed)))

* Predicate states:

Application of brakes by the two models equivalent for vehicle
and wheel speeds with integer values in range 0 to 100,000

* Divisions by 100 in development model are scale factors
necessary to align the speed measurement units

* |Integer values are meaningful, because data supplied g
speed sensors are discrete
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Proof by parts:
— Car moving and wheels not slipping
— Car moving and wheels are slipping
— Car at rest
* And the envelope please....
As before, theorem is false
* Informally:
— Stationary, wheels not moving, want brakes on
— Development model does not do this - error
e Easily analyzed, easily fixed
* Not necessarily easy to find.
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 Demonstration of model equivalence is necessary
element of engineering

* Problem arises from inevitable separation of:
— Design/development engineering
— Production engineering
e “Constrained equivalence” provides basis
 Mechanical proof has been demonstrated to be:
— Feasible
— Probably cost effective compared to testing
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