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Motivating Automation

Maintaining consistency and supporting evolution

— Systems and safety cases evolve
— Keep consistent during development / in operation

Structuring large arguments

— Modularization
— Hierarchisation

Aiding stakeholder comprehension
— Diverse stakeholders care about different things

Supporting analysis and review
— Assess progress, coverage, confidence

Supporting reuse
— Extract reusable safety artifacts



Motivating Formalization

Two distinct notions of formalization

 Formal languages
— Natural language
— Controlled natural language
— Formal assurance language

* Formal structures
— Formalize the “scaffolding” to support automation
— Support range of languages
— Support range of reasoning structures



Argument Structures and Safety Cases
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Lightweight Semantics

* Modeling domain knowledge
— Ontologies provide additional semantics to argument structures

— Capture as metadata associated with argument structure nodes
— Attribute syntax

attribute ::= attributeName param*

param ::= String | Int | Nat | nodelD | sameNodeTypelD | goalNodeld | strategyNodeld |
evidenceNodeld | assumptionNodeld | contextNodeld | justificationNodeld |
contextNodeld | userDefinedEnum

 userDefinedEnum
severity ::= catastrophic | hazardous | major | minor | noSafetyEffect
likelihood ::= frequent | probable | remote | extremelyRemote |
extremelylmprobable

« Examples
— Attribute: risk(severity, likelihood), formalizes(sameNodeTypelD)
— Attribute instance: risk(severity(catastrophic), likelihood(remote))
— Parameter type synonyms: requirement == string



Example @

requirement(id, hierarchyLevel, assuranceConcern)
formalClaim(id), informalClaim(id), hazard(id)
id ::=int | string
hierarchyLevel ::= highLevel | lowLevel
assuranceConcern ::= functional | safety | reliability | availability | maintenance
requirementAppliesTo(elementLevel, elementType, element)
elementLevel ::= system | subsystem | component | module | function | model | signal
elementType ::= hardware | software
element ::= aileron | elevator | flaps | propulsionBattery | avionicsBattery | actuatorBattery |
avionics | autopilot | FMS | AP | aileronPIDController | elevatorPIDController |
propulsion | engine | propeller | engineMotorController | actuator |
flightComputer | wing | actuatorMotorController pilotReceiver | IMU |
references(variable)
variable ::= aileronValue | pitchAttitude | flareAltitude | vRef | vNE | thrust | vS1
regulation(part)
part ::= 14CFR23.73 | 14CFR23.75
risk(severity, likelihood)
severity ::= catastrophic | hazardous | major | minor | noSafetyEffect
likelihood ::= frequent | probable | remote | extremelyRemote | extremelylmprobable
isFormalizedBy(sameNodeTypelD)



Consistency and Evolution
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Tabular Requirements Specifications

Hazards Table

Safety

ID Hazard Cause / Mode Mitigation .
Requirement

HR.1.3 |Propulsion system hazards

HR.1.3.1 |Motor overheating Insufficient airflow Monitoring |RF.1.1.4.1.2
Failure during operation

Incorrect programming of KD motor |Improper procedures to check programming before

HR.1.3.7 controller flight

Checklist |RF.1.1.4.1.9

System Requirements Table

Verification |Verification

ID Requirement Source |Allocation Method Allocation
RS.1.4.3 [Critical systems must be redundant AFSRB |RF.1.1.1.1.3
RS.1.4.3.1 The system shall provide |ncliependent and AFSRB
redundant channels to the pilot
Functional Requirements Table
. . Verification Verification
ID Requirement Source |Allocation Method Allocation
FCS must be dually . . FCS-CDR-20110701,
RF.1.1.1.1.3 redundant RS.1.4.3 [FCS Visual Inspection TR20110826
CPU/autopilot system must
RFA1.14.12 |Peabletomonitorengine o444 |E i systems Checklist Pre-flight checklist
and motor controller
temperature.
Engine software will be
RF.1.14.1.9  |checked during pre- HR.1.3.7 | re-deployment Checklist Pre-deployment
checklist checklist
deployment checkout
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Mapping Multiple Tables
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Mapping Modifications
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Patterns

Patterns represent classes of
arguments

* Typed variables

« Labels

« Constraints on data

Well-formedness constraints
* Well-founded recursion
* Interaction between multiplicity and
boilerplate
« Restrictions on multiple parentage

Can auto-instantiate from
compatible dataset

Semantics
« Hypergraphs
« Structure-preserving embeddings

G1

System/Safety raquirement
{rs :: requirement} hokls

g t by v
method {vm ::
verificationMathod}

I 1...#(va)

G4
Alocated requirement
{a :: goal | (G1, G2, G3), 53} % {ra :: requirement} holds

goal that refines G1, G2 or G3
a
\_ 1.3 P,

Requirements Breakdown Pattern
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Comprehension: Motivating Queries and Views

Real argument structures / safety cases are large

— EUROCONTROL Airport surface surveillance with ADS-B preliminary safety
case is 200 pages!

Safety cases contain diverse information and heterogeneous reasoning

— Results of various analyses, inspections, audits, reviews, simulations, other
verification activities, etc.

— Evidence of safe prior operations, if available / applicable

Safety cases evolve
— Assumptions validated / invalidated
— Counterevidence, additional corroborative evidence, new evidence

Need to improve comprehension, change management, assessment
— Present role-specific information to stakeholder(s)
* e.g., show traceability of different kinds to regulator
— Updates safety case to be consistent with reality
— Change safety case during as it evolves
— Need to locate specific information for all of the above



Arguments, Queries, and Views

* Query
— A pre-query Q, of arity 1, according to well-formedness rules
l applied to
« Argument structure / diagram oroduces

— Diagram in GSN showing the structure
and elements of an argument

\ 4

* View: Sub-argument derived from query

— Represented as a View diagram
« Shows argument structure that satisfies the query
« Hides all nodes that do not satisfy the query
» Abstracted into concealment nodes (C-nodes)

16



Example Argument for Querying

Unanticipated UA nose pitch down
during descent and landing hazard
mitigation

Metadata

Regulatory requirements
System Organization
Requirement types, and relations

Arguments over safety requirements
Arguments over functional breakdown
Arguments over physical architecture

Diverse evidence
* Reviews
* Inspections
« System Testing

17



AQL Queries and Views: Example

« Natural language query

— Which parts of the argument structure address the FARs 14 CFR
Parts 23.73 and 23.757

 Interpretation

— Those fragments of the argument structure whose root goals contain
claims related to the regulatory requirements 14 CFR 23.73, 23.75.

* Formulating an AQL query

— Goal(s) where attributes (or description) have references to the
regulations, or

— Complete sub-trees with the goals above as root(s)

18



AQL Queries and Views: Example
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Evaluation: Metrics

« Quantitative basis for evaluation

— Internal measures of “quality” e.g.,
« To what extent are claims developed — fully? partially?: Claims coverage
« To what extent are high- / low-level safety requirements covered?: Requirements coverage

— External measures of “quality” e.qg.,
» To what extent are hazards covered? — fully? partially?: Hazard coverage

— Integrating confidence into a measure e.g.,
* How well are the hazards covered?

« Quantitative basis for decision making

— Tracking progress of an integrated systems development and safety process
e.g.,

« Coverage of hazards / claims / requirements at a specific milestone
« Coverage for a specific sub-system / operational mode

— Resource/Effort allocation e.g.,
» Low coverage and/or Low confidence = Reallocate effort (contingent on cost-benefit analysis)

20



Language for Safety Case Metrics

e Build on AQL

 Examples

— Number of claims that are related to hazards:
#(type has claim and attributes has hazard))

— Ageneric coverage metric: Proportion of undeveloped claims to total
number of claims

#(type has claim and status has undeveloped) / #(type has claim)

— Specific metrics: Coverage of claims for hazard H1
{#(type has claim and
status has undeveloped and
iIsBelow(attributes has hazard and description has H1))} /
{#(type has claim and isBelow(attributes has hazard and
description has H1))

21



Structuring: Motivating Hierarchy

Safety cases aggregate heterogeneous reasoning and evidence
— Safety / System / Subsystem / Component / Software Analysis
— Requirements, Design information, Models, Code
— Verification, Inspections, Reviews, Simulations
— Data and records from prior/ongoing operations, maintenance, ...

Aggregation of large amounts of information
— Preliminary safety case ~ 200 pages
— Slice of safety argument ~ 500+ nodes

Structures that are inherently hierarchical
— Requirements decomposition
— Formal property decomposition
— Physical / structural breakdown

Represent argument at multiple levels of abstraction
— Refine abstract to concrete, retaining trace between levels

Modules vs hierarchy
— Horizontal vs vertical decomposition

22



Abstraction Types

« Hierarchical node types

— Hierarchical Goal: abstract well-developed argument fragments,
hiding intermediate decomposition steps
* e.g., Refinement and formalization of a requirement

— Hierarchical Strategy: aggregate meaningful chain of strategies (plus
supplemental reasoning)

* e.g., Decomposition over system breakdown, followed by decomposition
over operating phases

— Hierarchical Evidence: fully developed argument chain (hierarchical
strategy with no outgoing goals)
« e.g., Formal decomposition of a requirement ending in proof

23



Example

24



MIZOPEX Ground-based Sense and Avoid (GBSAA)

« Performing Earth Science measurements in the Arctic Ice
— Off the coast of Alaska (Oliktok Point)
— Satellite-based solution was too expensive
— Use airborne instruments on UAS

» Two classes of small UAS
* NASA SIERRA; University of Alaska’s Boeing Insitu ScanEagle

— Too dangerous for visual observers
» So use ground-based air defense RADAR for “sense-and-avoid”

« Considered an alternative means of compliance (AMOC) by the
FAA

— Hard requirement to submit a safety case for approval of operations by
means of a Certificate of Authorization (COA)

— Use N 8900.207, FAA National Policy Document on UAS operational
approval guidance (now replaced by N 8900.227)

— Our role

» Create an operational safety case for this AMOC



MIZOPEX GBSAA Concept

SIERRA UAV

Corridor of
Threat Volumes

»

. operations

Due regard
airspace

{

Air Defense RADAR for monitoring
and airspace deconfliction

LN

RADAR Surveillance Volume

Bdundary of
US NAS
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MIZOPEX GBSAA Hazard Analysis

GBSAA Hazard

Known / unknown state of the GBSAA system (which may / may not
be a deviation from its required operational state)

One or more known / unknown classes of environmental conditions
Combinations in different flight phases

Examples

 Loss of RADAR system to detect air traffic in the surveillance volume,
during outbound transit when surveillance volume previously all clear

« GBSAA functioning as required, with non cooperative aircraft in the
threat volume not covered by the surveillance volume on an intercept
flight path, when UA is outbound in the transit corridor.

5 known states, 8 flight phases, 3 classes of environmental
conditions ~ 26 cases leading to potential mid-air collision

Collision with terrain managed through range safety



MIZOPEX GBSAA Operational Safety Case

Ground-based Sense and Avoid Concept
for MIZOPEX Operations

Operational Safety Case
Version 1.0

June 12, 2013

National Aer ics and Space Administrati

Moffett Field, CA

Accepted by the FAA, COAs
granted

— Primarily a report

— Explicit argumentation not

required to be communicated by
the regulator

— However, we are preparing safety
arguments

— First known example of GBSAA
use for civilian UAS operations in
the NAS

— First known accepted safety case
for civilian UAS operations in the
NAS

— Explicitly required hazard tracking
and monitoring to validate
assumptions and safety case

28
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Hierarchised Fragment
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A. Hierarchical Strategy (Open)

* Representing a chain of strategies

» “Operator directed avoidance” followed by
“Categories of avoidance procedures”

Operator-drected

procedures restrict UA flight to
specfic operational windows to
acceptably aveid intruder arcradt

Bcoaplable for avoding
intruder asrcraft in the transit
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arcraft in the threat volume of
arspace for operations

G14
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Item 3.3.3 (e) of the:
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B. Hierarchical Evidence (Open)
« Representing procedures for avoidance
based on aircraft location

a1
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S
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Operator-drected avodance
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Tool Support
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CpiQwi v v n . | | = |l 75%

e e— ~_ « Functionality

S = — Report generation
— Generation of to-do
lists

g — Generation of
traceability matrices

e — Computation of metrics
— Queries, views
— Verification
» Creation of safety / assurance argument * Structuring
« Hyperlinks in nodes to documents, data for * Patterns
evidence, context, etc. * Modules
« Metadata on nodes: hazards, high/low * Hierarchy
requirements, risk (severity, likelihood),
provenance o * Integration/generation
Vision « Requirements tables
Safety information, assurance and risk management « Formal methods

(SMART) Dashboard 35



Conclusions

Automation: Why?
— Consistency and evolution
— Comprehension, analysis, and review
— Reuse

Automation: How?
— Pattern instantiation and transformation
— Querying, views, metrics, verification
— Confidence

Rigorous basis
— Family of reasoning structures: arguments + metadata
— Spectrum of language formality: natural - lightweight - formal

Raising the level of abstraction of arguments
— cf. Model-based development

— Implemented in AdvoCATE

— Need to qualify argument generation tool
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Please consider submitting a paper @
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3'd International Workshop on Assurance Cases
for Software-intensive Systems (ASSURE 2015)

September 22, 2015. Delft, The Netherlands.
Collocated with SAFECOMP 2015

Paper submission deadline: May 22, 2015

http://ti.arc.nasa.gov/events/assure2015/
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