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Code  Generation  for  Embedded  Control

• From	  a	  closed-‐loop	  system	  
model
– Controller	  model	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
(i.e.,	  controller	  parameters)

• Code	  generator	  
– step function
–may	  employ	  optimization	  that	  
affects	  the	  controller	  state

Controller	  Model

Code	  
Generator

Platform-‐independent	   Code
double z[n], y[m], u[p];
void step() { 
… }



Code  Generation  for  Embedded  Control

• From	  a	  closed-‐loop	  system	  
model
– Controller	  model	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
(i.e.,	  controller	  parameters)

• Code	  generator	  
– step function
–may	  employ	  optimization	  that	  
affects	  the	  controller	  state

• Goal	  – verification	  of	  the	  
generated	  code
– Linear	  controllers	  -‐ a	  very	  large	  
class	  of	  embedded	   controllers

Controller	  Model

Code	  
Generator

Platform-‐independent	   Code
double z[n], y[m], u[p];
void step() { 
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Code  Generation  for  Embedded  Control

Controller	  Model

Code	  
Generator

Platform-‐independent	   Code
double z[n], y[m], u[p];
void step() { 
… }

Automatic	  Verification	  of	  
Model	  /	  Code	  Consistency

may	  be	  
buggy

yes/no
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A	  straightforward	  approach…
Defining	  Invariants	  for	  Linear	  Controllers	  
based	  on	  input-‐output	  and	  state	  invariants



Annotating  Input-Output  and  State  Invariants

• Exploit	  the	  ACSL’s	  notion	  of	  the	  function	  
contract
– effectively	   a	  Hoare	  triple

• Running	  example:

Controller	  Model
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A	  straightforward	  approach…
…	  does	  not	  always	  work



Example

A  simple  linear  integrator

• Both	  functionally	  correct	  but	  the	  maintained	  states	  are	  different
– The	  latter	  could	  introduce	  a	  lower	  computational	  error	  when	  finite	  
precision	  computations	  are	  taken	  into	  account



Example

MIMO  control  of  a  batch  reactor

multiplications

multiplications

There	  exists	  a	  non-‐singular	  matrix	  T:
If	  the	  same	  inputs	  then:



Example

MIMO  control  of  a  batch  reactor

multiplications

multiplications

When	  same	  inputs	  are	  applied,	  the	  controllers’	  outputs	  will	  be	  identical!
• The	  controllers	  provide	  the	  same	  control	  functionality	  – input-‐output	  conformance
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How	  to	  verify	  LTI	  controllers	  when	  the	  
maintained	  state	  is	  now	  known?

We	  need	  a	  specification	  of	  the	  controller	  that	  is	  
insensitive	  to	  the	  representation	  of	  control	  state



Invariant-Checking  Approach  (IC)

void LTIS_step(void) 
{

{
{

static const int_T colCidxRow0[5] = { 0, 1, 2, 3, 4 };
const int_T *pCidx = &colCidxRow0[0];
const real_T *pC0 = LTIS_ConstP.Internal_C;
const real_T *xd = &LTIS_DW.Internal_DSTATE[0];
real_T *y0 = &LTIS_Y.y[0];
int_T numNonZero = 4;
*y0 = (*pC0++) * xd[*pCidx++];
while (numNonZero--) {

*y0 += (*pC0++) * xd[*pCidx++];
}

}
{

static const int_T colCidxRow1[5] = { 0, 1, 2, 3, 4 };
const int_T *pCidx = &colCidxRow1[0];
const real_T *pC5 = &LTIS_ConstP.Internal_C[5];
const real_T *xd = &LTIS_DW.Internal_DSTATE[0];
real_T *y1 = &LTIS_Y.y[1];
int_T numNonZero = 4;
*y1 = (*pC5++) * xd[*pCidx++];
while (numNonZero--) {

*y1 += (*pC5++) * xd[*pCidx++];
}

}
}
{ 

real_T xnew[5];
int_T i;
xnew[0] = (0.87224)*LTIS_DW.Internal_DSTATE[0];
xnew[0] += (0.822174)*LTIS_U.u[0]+(-0.438008)*LTIS_U.u[1];
xnew[1] = (0.366378)*LTIS_DW.Internal_DSTATE[1];
xnew[1] += (-0.278536)*LTIS_U.u[0]+(-0.824313)*LTIS_U.u[1];
xnew[2] = (-0.540795)*LTIS_DW.Internal_DSTATE[2];
xnew[2] += (0.874484)*LTIS_U.u[0]+(0.858857)*LTIS_U.u[1];
xnew[3] = (-0.332664)*LTIS_DW.Internal_DSTATE[3];
xnew[3] += (-0.117628)*LTIS_U.u[0]+(-0.506362)*LTIS_U.u[1];
xnew[4] = (-0.204322)*LTIS_DW.Internal_DSTATE[4];
xnew[4] += (-0.955459)*LTIS_U.u[0]+(-0.622498)*LTIS_U.u[1];
for(i=0; i<5; i++) LTIS_DW.Internal_DSTATE[i] = xnew[i];

}
}

zk+1 =
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�0.500311 0.16751 0.028029 �0.395599 �0.652079
0.850942 0.181639 �0.29276 0.481277 0.638183
�0.458583 �0.002389 �0.154281 �0.578708 �0.769495
1.01855 0.638926 �0.668256 �0.258506 0.119959
0.100383 �0.432501 0.122727 0.82634 0.892296
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Original	  Model Code

?

Frama/C-‐based	  Toolchain
(1)	  Loop	  unrolling

(2)	  Automatic	  Annotation

M.	  Pajic,	  J.	  Park,	  I.	  Lee,	  G.	  J.	  Pappas,	  and	  O.	  Sokolsky,	  “Automatic	  Verification	  of	  Linear	  Controller	  Software",	  
12th	  ACM	  SIGBED	  International	  Conference	  on	  Embedded	  Software	  (EMSOFT),	  pp.	  217-‐226,	  October	  2015	  



A  More  Scalable  Approach  (SC)

void LTIS_step(void) 
{

{
{

static const int_T colCidxRow0[5] = { 0, 1, 2, 3, 4 };
const int_T *pCidx = &colCidxRow0[0];
const real_T *pC0 = LTIS_ConstP.Internal_C;
const real_T *xd = &LTIS_DW.Internal_DSTATE[0];
real_T *y0 = &LTIS_Y.y[0];
int_T numNonZero = 4;
*y0 = (*pC0++) * xd[*pCidx++];
while (numNonZero--) {

*y0 += (*pC0++) * xd[*pCidx++];
}

}
{

static const int_T colCidxRow1[5] = { 0, 1, 2, 3, 4 };
const int_T *pCidx = &colCidxRow1[0];
const real_T *pC5 = &LTIS_ConstP.Internal_C[5];
const real_T *xd = &LTIS_DW.Internal_DSTATE[0];
real_T *y1 = &LTIS_Y.y[1];
int_T numNonZero = 4;
*y1 = (*pC5++) * xd[*pCidx++];
while (numNonZero--) {

*y1 += (*pC5++) * xd[*pCidx++];
}

}
}
{ 

real_T xnew[5];
int_T i;
xnew[0] = (0.87224)*LTIS_DW.Internal_DSTATE[0];
xnew[0] += (0.822174)*LTIS_U.u[0]+(-0.438008)*LTIS_U.u[1];
xnew[1] = (0.366378)*LTIS_DW.Internal_DSTATE[1];
xnew[1] += (-0.278536)*LTIS_U.u[0]+(-0.824313)*LTIS_U.u[1];
xnew[2] = (-0.540795)*LTIS_DW.Internal_DSTATE[2];
xnew[2] += (0.874484)*LTIS_U.u[0]+(0.858857)*LTIS_U.u[1];
xnew[3] = (-0.332664)*LTIS_DW.Internal_DSTATE[3];
xnew[3] += (-0.117628)*LTIS_U.u[0]+(-0.506362)*LTIS_U.u[1];
xnew[4] = (-0.204322)*LTIS_DW.Internal_DSTATE[4];
xnew[4] += (-0.955459)*LTIS_U.u[0]+(-0.622498)*LTIS_U.u[1];
for(i=0; i<5; i++) LTIS_DW.Internal_DSTATE[i] = xnew[i];

}
}
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ẑk
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Defining  Invariants  for  Linear  Controllers

• Annotating	  input-‐output	  and	  state	  invariants

• Annotating	  input-‐output	  only	  invariants

• Inexact	  controller	  implementations

• Instantiation-‐based	  input-‐output	  invariants



Problem:  How  to  check  input-output   conformance  
when  state  conformance   is  violated?

• Input-‐output	   invariants	  obtained	  from	  controllers	  transfer	  
functions

• In	  the	  general	  case	  for	  Single-‐Input-‐Single-‐Output	   controllers

and	  the	  controllers	  inputs	  and	  outputs	  satisfy	  

with	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  because	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  and



Annotating  Input-Output  Only  Invariants

• Cannot	  be	  specified	  using	  pre-‐ and	  
post-‐conditions	  for	  every	  execution	  
of	  the	  step function
– relates	  the	  last	  n+1	  executions	  of	  the	  
step	  function

• Perform	  execution	  unrolling of	  the	  
step function
– construct	  the	  verif_driver
function	  invoking	  the	  step function	  
exactly	  n+1	  times
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– relates	  the	  last	  n+1	  executions	  of	  the	  
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• Perform	  execution	  unrolling	  of	  the	  
step function
– construct	  the	  verif_driver
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exactly	  n+1	  times



Errors  from  optimization  in  code  generation

• Back	  to	  the	  running	  example	  
– a	  more	  efficient	  controller	  obtained	  in	  Matlab	  using	  the	  function	  
canon	  for	  the	  modal	  type	  of	  decomposition



Defining  Invariants  for  Linear  Controllers

• Annotating	  input-‐output	  and	  state	  invariants

• Annotating	  input-‐output	  only	  invariants

• Inexact	  controller	  implementations

• Instantiation-‐based	  input-‐output	  invariants



Inexact  Controller  Implementations

• There	  is	  a	  need	  to	  extend	  our	  input-‐output	   invariants	  for	  the	  
case	  with	  imprecise	  specification	  of	  the	  transfer	   functions

• Start	  by	  assuming	  that	  the	  transfer	  function	  could	  take	  the	  form	  

such	  that

• `Inexact’	  invariant

nonlinear



Inexact  Controller  Implementations

• There	  is	  a	  need	  to	  extend	  our	  input-‐output	   invariants	  for	  the	  
case	  with	  imprecise	  specification	  of	  the	  transfer	   functions

• Start	  by	  assuming	  that	  the	  transfer	  function	  could	  take	  the	  form	  

such	  that

• `Inexact’	  linear invariant



Inexact  Controller  Implementations

• Start	  by	  assuming	  that	  the	  transfer	  function	  could	  take	  the	  form	  

such	  that

• `Inexact’	  linear invariant	  – for	  all	  

A	  mixture	  of	  both	  universal	  and	  existential	  quantifiers



Defining  Invariants  for  Linear  Controllers

• Annotating	  input-‐output	  and	  state	  invariants

• Annotating	  input-‐output	  only	  invariants

• Inexact	  controller	  implementations

• Instantiation-‐based	  input-‐output	  invariants



Instantiation-based  Input-Output  Invariants



Instantiation-based  Input-Output  Invariants

Code	  annotations

Allows	  us	  to	  specify	  a	  set	  of	  2n +	  1 linear
invariants



Instantiation-based  Input-Output  Invariants

Code	  annotations	  for	  inexact	  controllers



Framework  For  Automatic  Verification



Automatic  Verification  for  Exact  Invariants



Automatic  Verification  – Inexact  Invariants



A  More  Scalable  Approach  (SC)

void LTIS_step(void) 
{

{
{

static const int_T colCidxRow0[5] = { 0, 1, 2, 3, 4 };
const int_T *pCidx = &colCidxRow0[0];
const real_T *pC0 = LTIS_ConstP.Internal_C;
const real_T *xd = &LTIS_DW.Internal_DSTATE[0];
real_T *y0 = &LTIS_Y.y[0];
int_T numNonZero = 4;
*y0 = (*pC0++) * xd[*pCidx++];
while (numNonZero--) {

*y0 += (*pC0++) * xd[*pCidx++];
}

}
{

static const int_T colCidxRow1[5] = { 0, 1, 2, 3, 4 };
const int_T *pCidx = &colCidxRow1[0];
const real_T *pC5 = &LTIS_ConstP.Internal_C[5];
const real_T *xd = &LTIS_DW.Internal_DSTATE[0];
real_T *y1 = &LTIS_Y.y[1];
int_T numNonZero = 4;
*y1 = (*pC5++) * xd[*pCidx++];
while (numNonZero--) {

*y1 += (*pC5++) * xd[*pCidx++];
}

}
}
{ 

real_T xnew[5];
int_T i;
xnew[0] = (0.87224)*LTIS_DW.Internal_DSTATE[0];
xnew[0] += (0.822174)*LTIS_U.u[0]+(-0.438008)*LTIS_U.u[1];
xnew[1] = (0.366378)*LTIS_DW.Internal_DSTATE[1];
xnew[1] += (-0.278536)*LTIS_U.u[0]+(-0.824313)*LTIS_U.u[1];
xnew[2] = (-0.540795)*LTIS_DW.Internal_DSTATE[2];
xnew[2] += (0.874484)*LTIS_U.u[0]+(0.858857)*LTIS_U.u[1];
xnew[3] = (-0.332664)*LTIS_DW.Internal_DSTATE[3];
xnew[3] += (-0.117628)*LTIS_U.u[0]+(-0.506362)*LTIS_U.u[1];
xnew[4] = (-0.204322)*LTIS_DW.Internal_DSTATE[4];
xnew[4] += (-0.955459)*LTIS_U.u[0]+(-0.622498)*LTIS_U.u[1];
for(i=0; i<5; i++) LTIS_DW.Internal_DSTATE[i] = xnew[i];

}
}
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Model  Extraction

• Use	  symbolic	  execution	  to	  identify	  transition	  relation

void LTIS_step(void) 
{

{
{

static const int_T colCidxRow0[5] = { 0, 1, 2, 3, 4 };
const int_T *pCidx = &colCidxRow0[0];
const real_T *pC0 = LTIS_ConstP.Internal_C;
const real_T *xd = &LTIS_DW.Internal_DSTATE[0];
real_T *y0 = &LTIS_Y.y[0];
int_T numNonZero = 4;
*y0 = (*pC0++) * xd[*pCidx++];
while (numNonZero--) {

*y0 += (*pC0++) * xd[*pCidx++];
}

}
{

static const int_T colCidxRow1[5] = { 0, 1, 2, 3, 4 };
const int_T *pCidx = &colCidxRow1[0];
const real_T *pC5 = &LTIS_ConstP.Internal_C[5];
const real_T *xd = &LTIS_DW.Internal_DSTATE[0];
real_T *y1 = &LTIS_Y.y[1];
int_T numNonZero = 4;
*y1 = (*pC5++) * xd[*pCidx++];
while (numNonZero--) {

*y1 += (*pC5++) * xd[*pCidx++];
}

}
}
{ 

real_T xnew[5];
int_T i;
xnew[0] = (0.87224)*LTIS_DW.Internal_DSTATE[0];
xnew[0] += (0.822174)*LTIS_U.u[0]+(-0.438008)*LTIS_U.u[1];
xnew[1] = (0.366378)*LTIS_DW.Internal_DSTATE[1];
xnew[1] += (-0.278536)*LTIS_U.u[0]+(-0.824313)*LTIS_U.u[1];
xnew[2] = (-0.540795)*LTIS_DW.Internal_DSTATE[2];
xnew[2] += (0.874484)*LTIS_U.u[0]+(0.858857)*LTIS_U.u[1];
xnew[3] = (-0.332664)*LTIS_DW.Internal_DSTATE[3];
xnew[3] += (-0.117628)*LTIS_U.u[0]+(-0.506362)*LTIS_U.u[1];
xnew[4] = (-0.204322)*LTIS_DW.Internal_DSTATE[4];
xnew[4] += (-0.955459)*LTIS_U.u[0]+(-0.622498)*LTIS_U.u[1];
for(i=0; i<5; i++) LTIS_DW.Internal_DSTATE[i] = xnew[i];

}
}

typedef double real_T;
typedef int int_T;
typedef char char_T;

typedef struct tag_RTM_LTIS_T RT_MODEL_LTIS_T;

typedef struct { real_T Internal_DSTATE[5]; } DW_LTIS_T;

typedef struct { real_T Internal_C[10]; } ConstP_LTIS_T;

typedef struct { real_T u[2]; } ExtU_LTIS_T;

typedef struct { real_T y[2]; } ExtY_LTIS_T;
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extern ExtU_LTIS_T LTIS_U;
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extern RT_MODEL_LTIS_T *const LTIS_M;
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ExtY_LTIS_T LTIS_Y;
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RT_MODEL_LTIS_T *const LTIS_M = &LTIS_M_;

As the result of the symbolic execution of the step function, the global vari-
ables are updated with symbolic formulas. By collecting the updated variables
and their new values (i.e., symbolic formulas), the big-step transition relation of
the step function can be represented as a system of equations; each equation is
in the following form

v(new) = f(v1, v2, . . . , vt)

where t is the number of variables used in the symbolic formula f , v, v
i

are
the global variables, v(new) denotes that the variable v is updated with the
symbolic formula on the right-hand side of the equation, the variable without
the superscript “(new)” denotes the initial symbolic value of the variable (i.e.,
from the initial state before symbolic execution of the step function). We call
this equation transition equation.

For example, we consider symbolic execution for the step function in [24],
obtained from the model (5), (6); we illustrate the transition equations of the
step function as follows, replacing the original variable names with new shortened
names for presentation purpose only, such as x for LTIS DW.Internal DSTATE,
u for LTIS U.u, and y for LTIS Y.y:

x[0](new) = ((0.87224 · x[0]) + ((0.822174 · u[0]) + (�0.438008 · u[1])))
x[1](new) = ((0.366377 · x[1]) + ((�0.278536 · u[0]) + (�0.824312 · u[1])))
x[2](new) = ((�0.540795 · x[2]) + ((0.874484 · u[0]) + (0.858857 · u[1])))
x[3](new) = ((�0.332664 · x[3]) + ((�0.117628 · u[0]) + (�0.506362 · u[1])))
x[4](new) = ((�0.204322 · x[4]) + ((�0.955459 · u[0]) + (�0.622498 · u[1])))
y[0](new) = (((((�0.793176 · x[0]) + (0.154365 · x[1])) + (�0.377883 · x[2]))

+(�0.360608 · x[3])) + (�0.142123 · x[4]))
y[1](new) = (((((0.503767 · x[0]) + (�0.573538 ⇤ ·x[1])) + (0.170245 · x[2]))

+(�0.583312 · x[3])) + (�0.56603 · x[4])).

(9)

4.2 Linear Time-Invariant System Model Extraction

To extract an LTI model from the obtained transition equations, we first de-
termine which variables are used to store the controller state. To do this, we
examine the data flow among the variables which appear in the equations. Let
V
used

be the set of used variables which appears on the right-hand side of the
transition equations. Let V

updated

be the set of updated variables which appears
on the left-hand side of the transition equations. As the interface of the step func-
tion, we assume that the sets of input and output variables are given, which are
denoted by V

input

and V
output

, respectively. We define the set of state variables
V
state

as
V
state

= (V
updated

\ V
output

) [ (V
used

\ V
input

).

For example, from the transition equations (9), x[0], x[1], x[2], x[3] and x[4]

are identified as controller state variables as given the input variables u[0] and
u[1], and the output variables y[0] and y[1].

The next step is to convert the transition equations into a canonical form.
We fully expand the expressions on the right-hand side of the transition equa-
tions using the distributive law. The resulting expressions are represented in the
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are identified as controller state variables as given the input variables u[0] and
u[1], and the output variables y[0] and y[1].

The next step is to convert the transition equations into a canonical form.
We fully expand the expressions on the right-hand side of the transition equa-
tions using the distributive law. The resulting expressions are represented in the

form of the sum of products without containing any parentheses. We check if the
expressions equations are linear (i.e., each product term should be the multipli-
cation of a constant and a single variable), and otherwise, it is rejected. Finally,
each transition equation is represented as the following canonical form

v(new) = c1v1 + c2v2 + · · ·+ c
t

v
t

where t is the number of product terms, v 2 V
updated

is the updated variable,
v
i

2 V
used

are the used variables, and c
i

2 R are the coe�cients. When con-
verting the transition equations into canonical form, we regard floating-point
arithmetic expressions as real arithmetic expressions. The analysis of the dis-
crepancy between them is left for future work. Instead, in the next section, the
discrepancy issue between two LTI models due to numerical errors of floating-
point arithmetic is addressed as the first step toward the full treatment of the
problem.

Since the transition equations in canonical form are a system of linear equa-
tions, we finally rewrite the transition equations as matrix equations. In order
to do this, we first define the input variable vector u = vec(V

input

), the output
variable vector y = vec(V

output

) and the state variable vector x = vec(V
state

)
where vec(V ) denotes the vectorization of the set V (e.g., vec({v1, v2, v3}) =
[v1, v2, v3]T). This allows for rewriting each transition equation in terms of the
state variable vector x and the input variable vector u as

v(new) = [c1, c2, . . . , cn]x+ [d1, d2, . . . , dp]u

where n is the length of the state variable vector, p is the length of the input
variable vector and c

i

, d
i

2 R are constants. Finally, we rewrite the transition
equations as two matrix equations as follows

x(new) = Âx+ B̂u

y(new) = Ĉx+ D̂u

where Â 2 Rn⇥n, B̂ 2 Rn⇥p, Ĉ 2 Rm⇥n, D̂ 2 Rm⇥p, and for any vector

v = [v1, . . . vt]T, we define v(new) = [v(new)
1 , . . . , v(new)

t

]T.

For example, consider the transition equation about y[0](new) in (9), which is
represented in canonical form, and then rewritten as a vector equation (i.e., equa-
tion in terms of the state and the input variable vectors) as follows

y[0](new) = (((((�0.793176 · x[0]) + (0.154365 · x[1])) + (�0.377883 · x[2]))
+(�0.360608 · x[3])) + (�0.142123 · x[4]))

= �0.793176 · x[0] + 0.154365 · x[1] +�0.377883 · x[2]
+� 0.360608 · x[3] +�0.142123 · x[4]

= [�0.793176, 0.154365,�0.377883,�0.360608,�0.142123] · x + [0, 0] · u

where x = [x[0], x[1], x[2], x[3], x[4]]T, and u = [u[0], u[1]]T. Converting each
transition equation (9) into the corresponding vector equation, we finally recon-
struct the LTI model (i.e., same as (5) (6)) from the step function of [24].
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y(new) = Ĉx+ D̂u
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Input-output  equivalence  checking

• Check	  similarity	  between	   two	  models

• Find	  the	  existence	  of	  similarity	  transformation
matrix	   using
– SMT	  formulation	  approach
– Convex	  optimization	  formulation	  approach

• Need	  to	  tolerate	  the	  numerical	  errors	  on	  the	  model	  parameters

Remark 1. In general, the size of the extracted model ⌃̂ may not be equal to the
size of the initial controller model ⌃ from (1) (i.e., n). As we assume that ⌃ is
minimal, if the obtained model has the size less than n it would clearly have to
violate input-output (IO) requirements of the controller. However, if the size of ⌃̂
is larger than n, we consider a controllable and observable subsystem computed
via Kalman decomposition [26] from the extracted model, as the ⌃̂(Â, B̂, Ĉ, D̂)
model extracted from the code. Note that ⌃̂ is minimal in this case, and thus
its size has to be equal to n to provide IO conformance with the initial model.

5 Input-Output Equivalence Checking between Linear
Controller Models

In order to verify a linear controller implementation against an LTI specifica-
tion, in the previous section we described how to extract an LTI model from the
implementation. This section introduces a method to check input-output (IO)
equivalence between two linear controller models: (1) the original LTI specifica-
tion and (2) the LTI model extracted from the implementation.

To check the IO equivalence between two LTI models, we exploit the fact that
two minimal LTI models with the same size are IO equivalent if and only if they
are similar to each other. Two LTI models ⌃(A,B,C,D) and ⌃̂(Â, B̂, Ĉ, D̂)
are said to be similar if there exists a non-singular matrix T such that

Â = TAT�1, B̂ = TB, Ĉ = CT�1, and D̂ = D (10)

where T is referred to as the similarity transformation matrix [26]. Thus, given
two minimal LTI models, the problem of equivalence checking between the mod-
els is reduced to the problem of finding a similarity transformation matrix for
the models. The rest of this section explains how to formulate this problem as a
satisfiability problem and a convex optimization problem.

5.1 Satisfiability Problem Formulation

We start by describing an approach to formulate the problem of finding similarity
transformation matrices as the satisfiability problem instance when two LTI
models ⌃(A,B,C,D) and ⌃̂(Â, B̂, Ĉ, D̂) are given. Since existing SMT solvers
hardly support matrices and linear algebra operations, we encode the similarity
transformation matrix T as a set of scalar variables {T

i,j

| 1  i, j  n} where
T
i,j

is the variable to represent the element in the i-th row and j-th column of
the matrix T. The following constraints rephrase the equations of (10) in an
element-wise manner
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Two	  minimal	  LTI	  models	  Σ 𝐴, 𝐵, 𝐶, 𝐷 and	  Σ, 𝐴-, 𝐵, , 𝐶-, 𝐷. are	  input-‐output	  equivalent	  iff
there	  exists	  a	  non-‐singular	  matrix	  𝑇 such	  that
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Fig. 1. The verification toolchain for the similarity checking-based approach.

6.1 Verification Toolchain

We implemented an automatic verification framework (presented in Fig. 1) based
on the proposed approach described in Section 4 and Section 5. We refer to
this approach as similarity checking (SC)-based approach. Given a step function
(i.e., C code), we employ the o↵-the-shelf symbolic execution tool PathCrawler [32]
to symbolically execute the step function and generate a set of transition equa-
tions. The model extractor which implements the method in Section 4.2 extracts
an LTI model from the transition equations. Finally, the equivalence checker
based on the method in Section 5 decides the similarity between the extracted
LTI model and the given specification (i.e., LTI model), and produces the ver-
ification result. The equivalence checker uses either the SMT solver CVC4 [4]6

or the convex optimization solver CVX [14] depending on the formulation em-
ployed, which is described in Section 5.

For the invariant checking (IC)-based approach described in Section 3, we
use the toolchain Frama-C/Why3/Z3 to verify C code with annotated controller
invariants [23]. The step function is annotated with the invariants as described in
Section 3. Given annotated C code, Frama-C/Why3 [9, 5] generates proof obli-
gations as SMT instances. The SMT solver Z3 [11]7 solves the proof obligations
and produces the verification result (see [23] for more details).

6.2 Scalability Evaluation

To evaluate the SC-based approach compared to the IC-based approach, we
randomly generate stable linear controller specifications (i.e., the elements of
⌃(A,B,C,D)). Since we observed that the controller dimension n dominates
the performance (i.e., running time) of both approaches, we vary n from 2 to
14, and generate three controller specifications for each n. For each controller
specification, we employ the code generator Embedded Coder to generate the
step function in C. Since we use the LTI system block of Simulink for code gener-
ation, the structure of generated C code is not straightforward, having multiple

6 CVC4 was chosen among other SMT solvers because it showed the best performance
for our QF LRA SMT instances.

7 Z3 was chosen among other SMT solvers because it showed the best performance
for the generated proof obligations in our experiment.



Evaluation

• Compare	  scalability	  of	  the	  two	  approaches
– Random	  LTI	  models	  with	  a	  range	  of	  state	  sizes
– Code	  obtained	  by	  Simulink	  Coder

• Similarity-‐checking	  approach	  (SC)	  dramatically	  outperforms	  
invariant-‐checking	  approach	  (IC)
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Fig. 2. The average running time of the front-ends of both SC-based and IC-based
approaches (with the log-scaled y-axis)

loops and pointer arithmetic operations as illustrated in the step function [24].
This negatively a↵ects the performance of the IC-based approach for reasons
to be described later in this subsection. For a comparative evaluation, we use
both SC-based and IC-based approaches to verify the generated step function
C code against its specification. For each generated controller, we checked that
IC-based and SC-based approaches give the same verification result, as long as
both complete normally.

To thoroughly compare both approaches, we measure the running time of
the front-end and the back-end of each approach separately. By the front-end,
we refer to the process from parsing C code to generating proof obligations to be
input for constraint solvers. The front-end of the SC-based approach includes the
symbolic execution by PathCrawler and the model extraction, while the front-
end of the IC-based approach is processing annotated code and generating proof
obligations by Frama-C/Why3. On the other hand, by the back-end, we refer to
the process of constraint solving. While the back-end of the SC-based approach
is the IO equivalence checking based on either SMT solving using CVC4 or
convex optimization solving using CVX, the back-end of the IC-based approach
is proving the generated proof obligations using Z3.

We first evaluate the frond-end of both approaches (i.e., the whole verification
process until constraint solving). Fig. 2 shows that the average running time of
the front-ends of both approaches, where missing bars indicate no data due
to the lack of scalability of the utilized verification approach (e.g., the tool’s
abnormal termination or no termination for a prolonged time). Here, IB 0

2n+1,
IB

00
3n+1, IB

00
3n+1 and IB

0
2n+1 denote the variations of annotating methods as

described in [23]. We observe that the running time of the IC-based approaches
exponentially increase as the controller dimension n increases, while the SC-
based approach remains scalable. The main reason for this is that the IC-based
approach requires the preprocessing of code [23], which is unrolling the execution
of the step function multiple times (e.g., 2n + 1 or 3n + 1 times) as well as
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unrolling each loop in the step function (n+1) times. Therefore, in contrast with
the SC-based approach, the IC-based approach needs to handle the significantly
increased lines of code due to unrolling, so it does not scale up.

Next, we evaluate the back-end of both approaches (i.e., constraint solving).
Fig. 3 shows the average running time of the back-ends of both approaches, where
missing bars result from the lack of scalability of either the constraint solver used
at this stage or the front-end tools. “SC-based (CVC4)” denotes the SMT-based
formulation while “SC-based (CVX)” denotes the convex optimization-based for-
mulation. Recall that the SC-based approach using CVC4 and the IC-based ap-
proaches employ the SMT solvers for constraint solving, which uses the arbitrary-
precision arithmetic. We observe that the running time of the back-ends of those
approaches exponentially increase as the controller dimension n increases be-
cause of the cost of the bignum arithmetic, while the SC-based approach using
CVX remains scalable.

7 Related Work

Recently, there has been much attention to research on high-assurance control
software for cyber physical systems (e.g., [28, 1, 21, 20, 19, 10, 12]). First of all,
there has been a line of work focused on robust controller software implemen-
tations. For example, in [28], a model-based simulation platform is presented to
analyze controllers’ robustness. In [1, 21], the authors present a fixed-point de-
sign method for robust, stable, error-minimized controller implementations. [19]
presents a robustness analysis tool to analyze the uncertainties of measurements
and plant states. In [10, 12], the authors address the synthesis of fixed-point con-
troller software using SMT solvers. Moreover, there exists work on verifying the
control-related properties of Simulink models using theorem proving [2]. Yet, the
verification is done at the model level, not at the code level.

However, there has been less attention given to the code-level verification of
controller software. In [27, 20], the authors present equivalence checking between



Current  work

• Focus	  on	  more	  complex	  controllers
–Convex	  optimization-‐based	  controllers
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