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Code  Generation  for  Embedded  Control

• From	
  a	
  closed-­‐loop	
  system	
  
model
– Controller	
  model	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
(i.e.,	
  controller	
  parameters)

• Code	
  generator	
  
– step function
–may	
  employ	
  optimization	
  that	
  
affects	
  the	
  controller	
  state

Controller	
  Model

Code	
  
Generator

Platform-­‐independent	
   Code
double z[n], y[m], u[p];
void step() { 
… }
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– step function
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  optimization	
  that	
  
affects	
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  controller	
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• Goal	
  – verification	
  of	
  the	
  
generated	
  code
– Linear	
  controllers	
  -­‐ a	
  very	
  large	
  
class	
  of	
  embedded	
   controllers
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Code  Generation  for  Embedded  Control

Controller	
  Model

Code	
  
Generator

Platform-­‐independent	
   Code
double z[n], y[m], u[p];
void step() { 
… }

Automatic	
  Verification	
  of	
  
Model	
  /	
  Code	
  Consistency

may	
  be	
  
buggy

yes/no



5

A	
  straightforward	
  approach…
Defining	
  Invariants	
  for	
  Linear	
  Controllers	
  
based	
  on	
  input-­‐output	
  and	
  state	
  invariants



Annotating  Input-­Output  and  State  Invariants

• Exploit	
  the	
  ACSL’s	
  notion	
  of	
  the	
  function	
  
contract
– effectively	
   a	
  Hoare	
  triple

• Running	
  example:

Controller	
  Model
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A	
  straightforward	
  approach…
…	
  does	
  not	
  always	
  work



Example

A  simple  linear  integrator

• Both	
  functionally	
  correct	
  but	
  the	
  maintained	
  states	
  are	
  different
– The	
  latter	
  could	
  introduce	
  a	
  lower	
  computational	
  error	
  when	
  finite	
  
precision	
  computations	
  are	
  taken	
  into	
  account



Example

MIMO  control  of  a  batch  reactor

multiplications

multiplications

There	
  exists	
  a	
  non-­‐singular	
  matrix	
  T:
If	
  the	
  same	
  inputs	
  then:



Example

MIMO  control  of  a  batch  reactor

multiplications

multiplications

When	
  same	
  inputs	
  are	
  applied,	
  the	
  controllers’	
  outputs	
  will	
  be	
  identical!
• The	
  controllers	
  provide	
  the	
  same	
  control	
  functionality	
  – input-­‐output	
  conformance
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How	
  to	
  verify	
  LTI	
  controllers	
  when	
  the	
  
maintained	
  state	
  is	
  now	
  known?

We	
  need	
  a	
  specification	
  of	
  the	
  controller	
  that	
  is	
  
insensitive	
  to	
  the	
  representation	
  of	
  control	
  state



Invariant-­Checking  Approach  (IC)

void LTIS_step(void) 
{

{
{

static const int_T colCidxRow0[5] = { 0, 1, 2, 3, 4 };
const int_T *pCidx = &colCidxRow0[0];
const real_T *pC0 = LTIS_ConstP.Internal_C;
const real_T *xd = &LTIS_DW.Internal_DSTATE[0];
real_T *y0 = &LTIS_Y.y[0];
int_T numNonZero = 4;
*y0 = (*pC0++) * xd[*pCidx++];
while (numNonZero--) {

*y0 += (*pC0++) * xd[*pCidx++];
}

}
{

static const int_T colCidxRow1[5] = { 0, 1, 2, 3, 4 };
const int_T *pCidx = &colCidxRow1[0];
const real_T *pC5 = &LTIS_ConstP.Internal_C[5];
const real_T *xd = &LTIS_DW.Internal_DSTATE[0];
real_T *y1 = &LTIS_Y.y[1];
int_T numNonZero = 4;
*y1 = (*pC5++) * xd[*pCidx++];
while (numNonZero--) {

*y1 += (*pC5++) * xd[*pCidx++];
}

}
}
{ 

real_T xnew[5];
int_T i;
xnew[0] = (0.87224)*LTIS_DW.Internal_DSTATE[0];
xnew[0] += (0.822174)*LTIS_U.u[0]+(-0.438008)*LTIS_U.u[1];
xnew[1] = (0.366378)*LTIS_DW.Internal_DSTATE[1];
xnew[1] += (-0.278536)*LTIS_U.u[0]+(-0.824313)*LTIS_U.u[1];
xnew[2] = (-0.540795)*LTIS_DW.Internal_DSTATE[2];
xnew[2] += (0.874484)*LTIS_U.u[0]+(0.858857)*LTIS_U.u[1];
xnew[3] = (-0.332664)*LTIS_DW.Internal_DSTATE[3];
xnew[3] += (-0.117628)*LTIS_U.u[0]+(-0.506362)*LTIS_U.u[1];
xnew[4] = (-0.204322)*LTIS_DW.Internal_DSTATE[4];
xnew[4] += (-0.955459)*LTIS_U.u[0]+(-0.622498)*LTIS_U.u[1];
for(i=0; i<5; i++) LTIS_DW.Internal_DSTATE[i] = xnew[i];

}
}

zk+1 =
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�0.500311 0.16751 0.028029 �0.395599 �0.652079
0.850942 0.181639 �0.29276 0.481277 0.638183
�0.458583 �0.002389 �0.154281 �0.578708 �0.769495
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0.100383 �0.432501 0.122727 0.82634 0.892296
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Original	
  Model Code

?

Frama/C-­‐based	
  Toolchain
(1)	
  Loop	
  unrolling

(2)	
  Automatic	
  Annotation

M.	
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  J.	
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  “Automatic	
  Verification	
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  Linear	
  Controller	
  Software",	
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  SIGBED	
  International	
  Conference	
  on	
  Embedded	
  Software	
  (EMSOFT),	
  pp.	
  217-­‐226,	
  October	
  2015	
  



A  More  Scalable  Approach  (SC)

void LTIS_step(void) 
{

{
{

static const int_T colCidxRow0[5] = { 0, 1, 2, 3, 4 };
const int_T *pCidx = &colCidxRow0[0];
const real_T *pC0 = LTIS_ConstP.Internal_C;
const real_T *xd = &LTIS_DW.Internal_DSTATE[0];
real_T *y0 = &LTIS_Y.y[0];
int_T numNonZero = 4;
*y0 = (*pC0++) * xd[*pCidx++];
while (numNonZero--) {

*y0 += (*pC0++) * xd[*pCidx++];
}

}
{

static const int_T colCidxRow1[5] = { 0, 1, 2, 3, 4 };
const int_T *pCidx = &colCidxRow1[0];
const real_T *pC5 = &LTIS_ConstP.Internal_C[5];
const real_T *xd = &LTIS_DW.Internal_DSTATE[0];
real_T *y1 = &LTIS_Y.y[1];
int_T numNonZero = 4;
*y1 = (*pC5++) * xd[*pCidx++];
while (numNonZero--) {

*y1 += (*pC5++) * xd[*pCidx++];
}

}
}
{ 

real_T xnew[5];
int_T i;
xnew[0] = (0.87224)*LTIS_DW.Internal_DSTATE[0];
xnew[0] += (0.822174)*LTIS_U.u[0]+(-0.438008)*LTIS_U.u[1];
xnew[1] = (0.366378)*LTIS_DW.Internal_DSTATE[1];
xnew[1] += (-0.278536)*LTIS_U.u[0]+(-0.824313)*LTIS_U.u[1];
xnew[2] = (-0.540795)*LTIS_DW.Internal_DSTATE[2];
xnew[2] += (0.874484)*LTIS_U.u[0]+(0.858857)*LTIS_U.u[1];
xnew[3] = (-0.332664)*LTIS_DW.Internal_DSTATE[3];
xnew[3] += (-0.117628)*LTIS_U.u[0]+(-0.506362)*LTIS_U.u[1];
xnew[4] = (-0.204322)*LTIS_DW.Internal_DSTATE[4];
xnew[4] += (-0.955459)*LTIS_U.u[0]+(-0.622498)*LTIS_U.u[1];
for(i=0; i<5; i++) LTIS_DW.Internal_DSTATE[i] = xnew[i];

}
}
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Defining  Invariants  for  Linear  Controllers

• Annotating	
  input-­‐output	
  and	
  state	
  invariants

• Annotating	
  input-­‐output	
  only	
  invariants

• Inexact	
  controller	
  implementations

• Instantiation-­‐based	
  input-­‐output	
  invariants



Problem:  How  to  check  input-­output   conformance  
when  state  conformance   is  violated?

• Input-­‐output	
   invariants	
  obtained	
  from	
  controllers	
  transfer	
  
functions

• In	
  the	
  general	
  case	
  for	
  Single-­‐Input-­‐Single-­‐Output	
   controllers

and	
  the	
  controllers	
  inputs	
  and	
  outputs	
  satisfy	
  

with	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  because	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and



Annotating  Input-­Output  Only  Invariants

• Cannot	
  be	
  specified	
  using	
  pre-­‐ and	
  
post-­‐conditions	
  for	
  every	
  execution	
  
of	
  the	
  step function
– relates	
  the	
  last	
  n+1	
  executions	
  of	
  the	
  
step	
  function

• Perform	
  execution	
  unrolling of	
  the	
  
step function
– construct	
  the	
  verif_driver
function	
  invoking	
  the	
  step function	
  
exactly	
  n+1	
  times
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Errors  from  optimization  in  code  generation

• Back	
  to	
  the	
  running	
  example	
  
– a	
  more	
  efficient	
  controller	
  obtained	
  in	
  Matlab	
  using	
  the	
  function	
  
canon	
  for	
  the	
  modal	
  type	
  of	
  decomposition



Defining  Invariants  for  Linear  Controllers

• Annotating	
  input-­‐output	
  and	
  state	
  invariants

• Annotating	
  input-­‐output	
  only	
  invariants

• Inexact	
  controller	
  implementations

• Instantiation-­‐based	
  input-­‐output	
  invariants



Inexact  Controller  Implementations

• There	
  is	
  a	
  need	
  to	
  extend	
  our	
  input-­‐output	
   invariants	
  for	
  the	
  
case	
  with	
  imprecise	
  specification	
  of	
  the	
  transfer	
   functions

• Start	
  by	
  assuming	
  that	
  the	
  transfer	
  function	
  could	
  take	
  the	
  form	
  

such	
  that

• `Inexact’	
  invariant

nonlinear



Inexact  Controller  Implementations

• There	
  is	
  a	
  need	
  to	
  extend	
  our	
  input-­‐output	
   invariants	
  for	
  the	
  
case	
  with	
  imprecise	
  specification	
  of	
  the	
  transfer	
   functions

• Start	
  by	
  assuming	
  that	
  the	
  transfer	
  function	
  could	
  take	
  the	
  form	
  

such	
  that

• `Inexact’	
  linear invariant



Inexact  Controller  Implementations

• Start	
  by	
  assuming	
  that	
  the	
  transfer	
  function	
  could	
  take	
  the	
  form	
  

such	
  that

• `Inexact’	
  linear invariant	
  – for	
  all	
  

A	
  mixture	
  of	
  both	
  universal	
  and	
  existential	
  quantifiers



Defining  Invariants  for  Linear  Controllers

• Annotating	
  input-­‐output	
  and	
  state	
  invariants

• Annotating	
  input-­‐output	
  only	
  invariants

• Inexact	
  controller	
  implementations

• Instantiation-­‐based	
  input-­‐output	
  invariants



Instantiation-­based  Input-­Output  Invariants



Instantiation-­based  Input-­Output  Invariants

Code	
  annotations

Allows	
  us	
  to	
  specify	
  a	
  set	
  of	
  2n +	
  1 linear
invariants



Instantiation-­based  Input-­Output  Invariants

Code	
  annotations	
  for	
  inexact	
  controllers



Framework  For  Automatic  Verification



Automatic  Verification  for  Exact  Invariants



Automatic  Verification  – Inexact  Invariants



A  More  Scalable  Approach  (SC)

void LTIS_step(void) 
{

{
{

static const int_T colCidxRow0[5] = { 0, 1, 2, 3, 4 };
const int_T *pCidx = &colCidxRow0[0];
const real_T *pC0 = LTIS_ConstP.Internal_C;
const real_T *xd = &LTIS_DW.Internal_DSTATE[0];
real_T *y0 = &LTIS_Y.y[0];
int_T numNonZero = 4;
*y0 = (*pC0++) * xd[*pCidx++];
while (numNonZero--) {

*y0 += (*pC0++) * xd[*pCidx++];
}

}
{

static const int_T colCidxRow1[5] = { 0, 1, 2, 3, 4 };
const int_T *pCidx = &colCidxRow1[0];
const real_T *pC5 = &LTIS_ConstP.Internal_C[5];
const real_T *xd = &LTIS_DW.Internal_DSTATE[0];
real_T *y1 = &LTIS_Y.y[1];
int_T numNonZero = 4;
*y1 = (*pC5++) * xd[*pCidx++];
while (numNonZero--) {

*y1 += (*pC5++) * xd[*pCidx++];
}

}
}
{ 

real_T xnew[5];
int_T i;
xnew[0] = (0.87224)*LTIS_DW.Internal_DSTATE[0];
xnew[0] += (0.822174)*LTIS_U.u[0]+(-0.438008)*LTIS_U.u[1];
xnew[1] = (0.366378)*LTIS_DW.Internal_DSTATE[1];
xnew[1] += (-0.278536)*LTIS_U.u[0]+(-0.824313)*LTIS_U.u[1];
xnew[2] = (-0.540795)*LTIS_DW.Internal_DSTATE[2];
xnew[2] += (0.874484)*LTIS_U.u[0]+(0.858857)*LTIS_U.u[1];
xnew[3] = (-0.332664)*LTIS_DW.Internal_DSTATE[3];
xnew[3] += (-0.117628)*LTIS_U.u[0]+(-0.506362)*LTIS_U.u[1];
xnew[4] = (-0.204322)*LTIS_DW.Internal_DSTATE[4];
xnew[4] += (-0.955459)*LTIS_U.u[0]+(-0.622498)*LTIS_U.u[1];
for(i=0; i<5; i++) LTIS_DW.Internal_DSTATE[i] = xnew[i];

}
}
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Model  Extraction

• Use	
  symbolic	
  execution	
  to	
  identify	
  transition	
  relation

void LTIS_step(void) 
{

{
{

static const int_T colCidxRow0[5] = { 0, 1, 2, 3, 4 };
const int_T *pCidx = &colCidxRow0[0];
const real_T *pC0 = LTIS_ConstP.Internal_C;
const real_T *xd = &LTIS_DW.Internal_DSTATE[0];
real_T *y0 = &LTIS_Y.y[0];
int_T numNonZero = 4;
*y0 = (*pC0++) * xd[*pCidx++];
while (numNonZero--) {

*y0 += (*pC0++) * xd[*pCidx++];
}

}
{

static const int_T colCidxRow1[5] = { 0, 1, 2, 3, 4 };
const int_T *pCidx = &colCidxRow1[0];
const real_T *pC5 = &LTIS_ConstP.Internal_C[5];
const real_T *xd = &LTIS_DW.Internal_DSTATE[0];
real_T *y1 = &LTIS_Y.y[1];
int_T numNonZero = 4;
*y1 = (*pC5++) * xd[*pCidx++];
while (numNonZero--) {

*y1 += (*pC5++) * xd[*pCidx++];
}

}
}
{ 

real_T xnew[5];
int_T i;
xnew[0] = (0.87224)*LTIS_DW.Internal_DSTATE[0];
xnew[0] += (0.822174)*LTIS_U.u[0]+(-0.438008)*LTIS_U.u[1];
xnew[1] = (0.366378)*LTIS_DW.Internal_DSTATE[1];
xnew[1] += (-0.278536)*LTIS_U.u[0]+(-0.824313)*LTIS_U.u[1];
xnew[2] = (-0.540795)*LTIS_DW.Internal_DSTATE[2];
xnew[2] += (0.874484)*LTIS_U.u[0]+(0.858857)*LTIS_U.u[1];
xnew[3] = (-0.332664)*LTIS_DW.Internal_DSTATE[3];
xnew[3] += (-0.117628)*LTIS_U.u[0]+(-0.506362)*LTIS_U.u[1];
xnew[4] = (-0.204322)*LTIS_DW.Internal_DSTATE[4];
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}
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ExtY_LTIS_T LTIS_Y;
RT_MODEL_LTIS_T LTIS_M_;
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As the result of the symbolic execution of the step function, the global vari-
ables are updated with symbolic formulas. By collecting the updated variables
and their new values (i.e., symbolic formulas), the big-step transition relation of
the step function can be represented as a system of equations; each equation is
in the following form

v(new) = f(v1, v2, . . . , vt)

where t is the number of variables used in the symbolic formula f , v, v
i

are
the global variables, v(new) denotes that the variable v is updated with the
symbolic formula on the right-hand side of the equation, the variable without
the superscript “(new)” denotes the initial symbolic value of the variable (i.e.,
from the initial state before symbolic execution of the step function). We call
this equation transition equation.

For example, we consider symbolic execution for the step function in [24],
obtained from the model (5), (6); we illustrate the transition equations of the
step function as follows, replacing the original variable names with new shortened
names for presentation purpose only, such as x for LTIS DW.Internal DSTATE,
u for LTIS U.u, and y for LTIS Y.y:

x[0](new) = ((0.87224 · x[0]) + ((0.822174 · u[0]) + (�0.438008 · u[1])))
x[1](new) = ((0.366377 · x[1]) + ((�0.278536 · u[0]) + (�0.824312 · u[1])))
x[2](new) = ((�0.540795 · x[2]) + ((0.874484 · u[0]) + (0.858857 · u[1])))
x[3](new) = ((�0.332664 · x[3]) + ((�0.117628 · u[0]) + (�0.506362 · u[1])))
x[4](new) = ((�0.204322 · x[4]) + ((�0.955459 · u[0]) + (�0.622498 · u[1])))
y[0](new) = (((((�0.793176 · x[0]) + (0.154365 · x[1])) + (�0.377883 · x[2]))

+(�0.360608 · x[3])) + (�0.142123 · x[4]))
y[1](new) = (((((0.503767 · x[0]) + (�0.573538 ⇤ ·x[1])) + (0.170245 · x[2]))

+(�0.583312 · x[3])) + (�0.56603 · x[4])).

(9)

4.2 Linear Time-Invariant System Model Extraction

To extract an LTI model from the obtained transition equations, we first de-
termine which variables are used to store the controller state. To do this, we
examine the data flow among the variables which appear in the equations. Let
V
used

be the set of used variables which appears on the right-hand side of the
transition equations. Let V

updated

be the set of updated variables which appears
on the left-hand side of the transition equations. As the interface of the step func-
tion, we assume that the sets of input and output variables are given, which are
denoted by V

input

and V
output

, respectively. We define the set of state variables
V
state

as
V
state

= (V
updated

\ V
output

) [ (V
used

\ V
input

).

For example, from the transition equations (9), x[0], x[1], x[2], x[3] and x[4]

are identified as controller state variables as given the input variables u[0] and
u[1], and the output variables y[0] and y[1].

The next step is to convert the transition equations into a canonical form.
We fully expand the expressions on the right-hand side of the transition equa-
tions using the distributive law. The resulting expressions are represented in the
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For example, from the transition equations (9), x[0], x[1], x[2], x[3] and x[4]

are identified as controller state variables as given the input variables u[0] and
u[1], and the output variables y[0] and y[1].

The next step is to convert the transition equations into a canonical form.
We fully expand the expressions on the right-hand side of the transition equa-
tions using the distributive law. The resulting expressions are represented in the

form of the sum of products without containing any parentheses. We check if the
expressions equations are linear (i.e., each product term should be the multipli-
cation of a constant and a single variable), and otherwise, it is rejected. Finally,
each transition equation is represented as the following canonical form

v(new) = c1v1 + c2v2 + · · ·+ c
t

v
t

where t is the number of product terms, v 2 V
updated

is the updated variable,
v
i

2 V
used

are the used variables, and c
i

2 R are the coe�cients. When con-
verting the transition equations into canonical form, we regard floating-point
arithmetic expressions as real arithmetic expressions. The analysis of the dis-
crepancy between them is left for future work. Instead, in the next section, the
discrepancy issue between two LTI models due to numerical errors of floating-
point arithmetic is addressed as the first step toward the full treatment of the
problem.

Since the transition equations in canonical form are a system of linear equa-
tions, we finally rewrite the transition equations as matrix equations. In order
to do this, we first define the input variable vector u = vec(V

input

), the output
variable vector y = vec(V

output

) and the state variable vector x = vec(V
state

)
where vec(V ) denotes the vectorization of the set V (e.g., vec({v1, v2, v3}) =
[v1, v2, v3]T). This allows for rewriting each transition equation in terms of the
state variable vector x and the input variable vector u as

v(new) = [c1, c2, . . . , cn]x+ [d1, d2, . . . , dp]u

where n is the length of the state variable vector, p is the length of the input
variable vector and c

i

, d
i

2 R are constants. Finally, we rewrite the transition
equations as two matrix equations as follows

x(new) = Âx+ B̂u

y(new) = Ĉx+ D̂u

where Â 2 Rn⇥n, B̂ 2 Rn⇥p, Ĉ 2 Rm⇥n, D̂ 2 Rm⇥p, and for any vector

v = [v1, . . . vt]T, we define v(new) = [v(new)
1 , . . . , v(new)

t

]T.

For example, consider the transition equation about y[0](new) in (9), which is
represented in canonical form, and then rewritten as a vector equation (i.e., equa-
tion in terms of the state and the input variable vectors) as follows

y[0](new) = (((((�0.793176 · x[0]) + (0.154365 · x[1])) + (�0.377883 · x[2]))
+(�0.360608 · x[3])) + (�0.142123 · x[4]))

= �0.793176 · x[0] + 0.154365 · x[1] +�0.377883 · x[2]
+� 0.360608 · x[3] +�0.142123 · x[4]

= [�0.793176, 0.154365,�0.377883,�0.360608,�0.142123] · x + [0, 0] · u

where x = [x[0], x[1], x[2], x[3], x[4]]T, and u = [u[0], u[1]]T. Converting each
transition equation (9) into the corresponding vector equation, we finally recon-
struct the LTI model (i.e., same as (5) (6)) from the step function of [24].
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Remark 1. In general, the size of the extracted model ⌃̂ may not be equal to the
size of the initial controller model ⌃ from (1) (i.e., n). As we assume that ⌃ is
minimal, if the obtained model has the size less than n it would clearly have to
violate input-output (IO) requirements of the controller. However, if the size of ⌃̂
is larger than n, we consider a controllable and observable subsystem computed
via Kalman decomposition [26] from the extracted model, as the ⌃̂(Â, B̂, Ĉ, D̂)
model extracted from the code. Note that ⌃̂ is minimal in this case, and thus
its size has to be equal to n to provide IO conformance with the initial model.

5 Input-Output Equivalence Checking between Linear
Controller Models

In order to verify a linear controller implementation against an LTI specifica-
tion, in the previous section we described how to extract an LTI model from the
implementation. This section introduces a method to check input-output (IO)
equivalence between two linear controller models: (1) the original LTI specifica-
tion and (2) the LTI model extracted from the implementation.

To check the IO equivalence between two LTI models, we exploit the fact that
two minimal LTI models with the same size are IO equivalent if and only if they
are similar to each other. Two LTI models ⌃(A,B,C,D) and ⌃̂(Â, B̂, Ĉ, D̂)
are said to be similar if there exists a non-singular matrix T such that

Â = TAT�1, B̂ = TB, Ĉ = CT�1, and D̂ = D (10)

where T is referred to as the similarity transformation matrix [26]. Thus, given
two minimal LTI models, the problem of equivalence checking between the mod-
els is reduced to the problem of finding a similarity transformation matrix for
the models. The rest of this section explains how to formulate this problem as a
satisfiability problem and a convex optimization problem.

5.1 Satisfiability Problem Formulation

We start by describing an approach to formulate the problem of finding similarity
transformation matrices as the satisfiability problem instance when two LTI
models ⌃(A,B,C,D) and ⌃̂(Â, B̂, Ĉ, D̂) are given. Since existing SMT solvers
hardly support matrices and linear algebra operations, we encode the similarity
transformation matrix T as a set of scalar variables {T

i,j

| 1  i, j  n} where
T
i,j

is the variable to represent the element in the i-th row and j-th column of
the matrix T. The following constraints rephrase the equations of (10) in an
element-wise manner
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Ĉ
i,k

T
k,j

= C
i,j

1

A ^
^

1in

^

1jn

D̂
i,j

= D
i,j

(11)

Two	
  minimal	
  LTI	
  models	
  Σ 𝐴, 𝐵, 𝐶, 𝐷 and	
  Σ, 𝐴-, 𝐵, , 𝐶-, 𝐷. are	
  input-­‐output	
  equivalent	
  iff
there	
  exists	
  a	
  non-­‐singular	
  matrix	
  𝑇 such	
  that



Verification  Toolchain

• Similarity	
  Checking	
  (SC)-­‐based	
  approach

C	code
(the	step	
function)

Specification
(LTI	model)

Symbolic	
executor

(PathCrawler)

Transition	
equations

Model	
extractor

Extracted	
LTI	model

IO	equivalence	
checker

(using	 either	
CVC4	or	CVX)

Verification	
result
(yes/no)

Fig. 1. The verification toolchain for the similarity checking-based approach.

6.1 Verification Toolchain

We implemented an automatic verification framework (presented in Fig. 1) based
on the proposed approach described in Section 4 and Section 5. We refer to
this approach as similarity checking (SC)-based approach. Given a step function
(i.e., C code), we employ the o↵-the-shelf symbolic execution tool PathCrawler [32]
to symbolically execute the step function and generate a set of transition equa-
tions. The model extractor which implements the method in Section 4.2 extracts
an LTI model from the transition equations. Finally, the equivalence checker
based on the method in Section 5 decides the similarity between the extracted
LTI model and the given specification (i.e., LTI model), and produces the ver-
ification result. The equivalence checker uses either the SMT solver CVC4 [4]6

or the convex optimization solver CVX [14] depending on the formulation em-
ployed, which is described in Section 5.

For the invariant checking (IC)-based approach described in Section 3, we
use the toolchain Frama-C/Why3/Z3 to verify C code with annotated controller
invariants [23]. The step function is annotated with the invariants as described in
Section 3. Given annotated C code, Frama-C/Why3 [9, 5] generates proof obli-
gations as SMT instances. The SMT solver Z3 [11]7 solves the proof obligations
and produces the verification result (see [23] for more details).

6.2 Scalability Evaluation

To evaluate the SC-based approach compared to the IC-based approach, we
randomly generate stable linear controller specifications (i.e., the elements of
⌃(A,B,C,D)). Since we observed that the controller dimension n dominates
the performance (i.e., running time) of both approaches, we vary n from 2 to
14, and generate three controller specifications for each n. For each controller
specification, we employ the code generator Embedded Coder to generate the
step function in C. Since we use the LTI system block of Simulink for code gener-
ation, the structure of generated C code is not straightforward, having multiple

6 CVC4 was chosen among other SMT solvers because it showed the best performance
for our QF LRA SMT instances.

7 Z3 was chosen among other SMT solvers because it showed the best performance
for the generated proof obligations in our experiment.
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loops and pointer arithmetic operations as illustrated in the step function [24].
This negatively a↵ects the performance of the IC-based approach for reasons
to be described later in this subsection. For a comparative evaluation, we use
both SC-based and IC-based approaches to verify the generated step function
C code against its specification. For each generated controller, we checked that
IC-based and SC-based approaches give the same verification result, as long as
both complete normally.

To thoroughly compare both approaches, we measure the running time of
the front-end and the back-end of each approach separately. By the front-end,
we refer to the process from parsing C code to generating proof obligations to be
input for constraint solvers. The front-end of the SC-based approach includes the
symbolic execution by PathCrawler and the model extraction, while the front-
end of the IC-based approach is processing annotated code and generating proof
obligations by Frama-C/Why3. On the other hand, by the back-end, we refer to
the process of constraint solving. While the back-end of the SC-based approach
is the IO equivalence checking based on either SMT solving using CVC4 or
convex optimization solving using CVX, the back-end of the IC-based approach
is proving the generated proof obligations using Z3.

We first evaluate the frond-end of both approaches (i.e., the whole verification
process until constraint solving). Fig. 2 shows that the average running time of
the front-ends of both approaches, where missing bars indicate no data due
to the lack of scalability of the utilized verification approach (e.g., the tool’s
abnormal termination or no termination for a prolonged time). Here, IB 0

2n+1,
IB

00
3n+1, IB

00
3n+1 and IB

0
2n+1 denote the variations of annotating methods as

described in [23]. We observe that the running time of the IC-based approaches
exponentially increase as the controller dimension n increases, while the SC-
based approach remains scalable. The main reason for this is that the IC-based
approach requires the preprocessing of code [23], which is unrolling the execution
of the step function multiple times (e.g., 2n + 1 or 3n + 1 times) as well as
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unrolling each loop in the step function (n+1) times. Therefore, in contrast with
the SC-based approach, the IC-based approach needs to handle the significantly
increased lines of code due to unrolling, so it does not scale up.

Next, we evaluate the back-end of both approaches (i.e., constraint solving).
Fig. 3 shows the average running time of the back-ends of both approaches, where
missing bars result from the lack of scalability of either the constraint solver used
at this stage or the front-end tools. “SC-based (CVC4)” denotes the SMT-based
formulation while “SC-based (CVX)” denotes the convex optimization-based for-
mulation. Recall that the SC-based approach using CVC4 and the IC-based ap-
proaches employ the SMT solvers for constraint solving, which uses the arbitrary-
precision arithmetic. We observe that the running time of the back-ends of those
approaches exponentially increase as the controller dimension n increases be-
cause of the cost of the bignum arithmetic, while the SC-based approach using
CVX remains scalable.

7 Related Work

Recently, there has been much attention to research on high-assurance control
software for cyber physical systems (e.g., [28, 1, 21, 20, 19, 10, 12]). First of all,
there has been a line of work focused on robust controller software implemen-
tations. For example, in [28], a model-based simulation platform is presented to
analyze controllers’ robustness. In [1, 21], the authors present a fixed-point de-
sign method for robust, stable, error-minimized controller implementations. [19]
presents a robustness analysis tool to analyze the uncertainties of measurements
and plant states. In [10, 12], the authors address the synthesis of fixed-point con-
troller software using SMT solvers. Moreover, there exists work on verifying the
control-related properties of Simulink models using theorem proving [2]. Yet, the
verification is done at the model level, not at the code level.

However, there has been less attention given to the code-level verification of
controller software. In [27, 20], the authors present equivalence checking between
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