
Automatic Software Verification
for High-­Confidence

Cyber-­Physical Systems

Miroslav Pajic

Department of Electrical and Computer Engineering
Department of Computer Science

Duke University

joint work with

Junkil Park Insup Lee Oleg Sokolsky
University of Pennsylvania

Code Generation for Embedded Control

• From	
 a	
 closed-­‐loop	
 system	

model
– Controller	
 model	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

(i.e.,	
 controller	
 parameters)

• Code	
 generator	

– step function
–may	
 employ	
 optimization	
 that	

affects	
 the	
 controller	
 state

Controller	
 Model

Code	

Generator

Platform-­‐independent	
 Code
double z[n], y[m], u[p];
void step() {
… }

Code Generation for Embedded Control

• From	
 a	
 closed-­‐loop	
 system	

model
– Controller	
 model	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

(i.e.,	
 controller	
 parameters)

• Code	
 generator	

– step function
–may	
 employ	
 optimization	
 that	

affects	
 the	
 controller	
 state

• Goal	
 – verification	
 of	
 the	

generated	
 code
– Linear	
 controllers	
 -­‐ a	
 very	
 large	

class	
 of	
 embedded	
 controllers

Controller	
 Model

Code	

Generator

Platform-­‐independent	
 Code
double z[n], y[m], u[p];
void step() {
… }

Code Generation for Embedded Control

Controller	
 Model

Code	

Generator

Platform-­‐independent	
 Code
double z[n], y[m], u[p];
void step() {
… }

Automatic	
 Verification	
 of	

Model	
 /	
 Code	
 Consistency

may	
 be	

buggy

yes/no

5

A	
 straightforward	
 approach…
Defining	
 Invariants	
 for	
 Linear	
 Controllers	

based	
 on	
 input-­‐output	
 and	
 state	
 invariants

Annotating Input-­Output and State Invariants

• Exploit	
 the	
 ACSL’s	
 notion	
 of	
 the	
 function	

contract
– effectively	
 a	
 Hoare	
 triple

• Running	
 example:

Controller	
 Model

7

A	
 straightforward	
 approach…
…	
 does	
 not	
 always	
 work

Example

A simple linear integrator

• Both	
 functionally	
 correct	
 but	
 the	
 maintained	
 states	
 are	
 different
– The	
 latter	
 could	
 introduce	
 a	
 lower	
 computational	
 error	
 when	
 finite	

precision	
 computations	
 are	
 taken	
 into	
 account

Example

MIMO control of a batch reactor

multiplications

multiplications

There	
 exists	
 a	
 non-­‐singular	
 matrix	
 T:
If	
 the	
 same	
 inputs	
 then:

Example

MIMO control of a batch reactor

multiplications

multiplications

When	
 same	
 inputs	
 are	
 applied,	
 the	
 controllers’	
 outputs	
 will	
 be	
 identical!
• The	
 controllers	
 provide	
 the	
 same	
 control	
 functionality	
 – input-­‐output	
 conformance

11

How	
 to	
 verify	
 LTI	
 controllers	
 when	
 the	

maintained	
 state	
 is	
 now	
 known?

We	
 need	
 a	
 specification	
 of	
 the	
 controller	
 that	
 is	

insensitive	
 to	
 the	
 representation	
 of	
 control	
 state

Invariant-­Checking Approach (IC)

void LTIS_step(void)
{

{
{

static const int_T colCidxRow0[5] = { 0, 1, 2, 3, 4 };
const int_T *pCidx = &colCidxRow0[0];
const real_T *pC0 = LTIS_ConstP.Internal_C;
const real_T *xd = <IS_DW.Internal_DSTATE[0];
real_T *y0 = <IS_Y.y[0];
int_T numNonZero = 4;
*y0 = (*pC0++) * xd[*pCidx++];
while (numNonZero--) {

*y0 += (*pC0++) * xd[*pCidx++];
}

}
{

static const int_T colCidxRow1[5] = { 0, 1, 2, 3, 4 };
const int_T *pCidx = &colCidxRow1[0];
const real_T *pC5 = <IS_ConstP.Internal_C[5];
const real_T *xd = <IS_DW.Internal_DSTATE[0];
real_T *y1 = <IS_Y.y[1];
int_T numNonZero = 4;
*y1 = (*pC5++) * xd[*pCidx++];
while (numNonZero--) {

*y1 += (*pC5++) * xd[*pCidx++];
}

}
}
{

real_T xnew[5];
int_T i;
xnew[0] = (0.87224)*LTIS_DW.Internal_DSTATE[0];
xnew[0] += (0.822174)*LTIS_U.u[0]+(-0.438008)*LTIS_U.u[1];
xnew[1] = (0.366378)*LTIS_DW.Internal_DSTATE[1];
xnew[1] += (-0.278536)*LTIS_U.u[0]+(-0.824313)*LTIS_U.u[1];
xnew[2] = (-0.540795)*LTIS_DW.Internal_DSTATE[2];
xnew[2] += (0.874484)*LTIS_U.u[0]+(0.858857)*LTIS_U.u[1];
xnew[3] = (-0.332664)*LTIS_DW.Internal_DSTATE[3];
xnew[3] += (-0.117628)*LTIS_U.u[0]+(-0.506362)*LTIS_U.u[1];
xnew[4] = (-0.204322)*LTIS_DW.Internal_DSTATE[4];
xnew[4] += (-0.955459)*LTIS_U.u[0]+(-0.622498)*LTIS_U.u[1];
for(i=0; i<5; i++) LTIS_DW.Internal_DSTATE[i] = xnew[i];

}
}

zk+1 =

2

66664

�0.500311 0.16751 0.028029 �0.395599 �0.652079
0.850942 0.181639 �0.29276 0.481277 0.638183
�0.458583 �0.002389 �0.154281 �0.578708 �0.769495
1.01855 0.638926 �0.668256 �0.258506 0.119959
0.100383 �0.432501 0.122727 0.82634 0.892296

3

77775

| {z }
A

zk +

2

66664

1.1149 0.164423
�1.56592 0.634384
1.04856 �0.196914
1.96066 3.11571
�3.02046 �1.96087

3

77775

| {z }
B

uk

yk =


0.283441 0.032612 �0.75658 0.085468 0.161088
�0.528786 0.050734 �0.681773 �0.432334 �1.17988

�

| {z }
C

zk

Original	
 Model Code

?

Frama/C-­‐based	
 Toolchain
(1)	
 Loop	
 unrolling

(2)	
 Automatic	
 Annotation

M.	
 Pajic,	
 J.	
 Park,	
 I.	
 Lee,	
 G.	
 J.	
 Pappas,	
 and	
 O.	
 Sokolsky,	
 “Automatic	
 Verification	
 of	
 Linear	
 Controller	
 Software",	

12th	
 ACM	
 SIGBED	
 International	
 Conference	
 on	
 Embedded	
 Software	
 (EMSOFT),	
 pp.	
 217-­‐226,	
 October	
 2015	

A More Scalable Approach (SC)

void LTIS_step(void)
{

{
{

static const int_T colCidxRow0[5] = { 0, 1, 2, 3, 4 };
const int_T *pCidx = &colCidxRow0[0];
const real_T *pC0 = LTIS_ConstP.Internal_C;
const real_T *xd = <IS_DW.Internal_DSTATE[0];
real_T *y0 = <IS_Y.y[0];
int_T numNonZero = 4;
*y0 = (*pC0++) * xd[*pCidx++];
while (numNonZero--) {

*y0 += (*pC0++) * xd[*pCidx++];
}

}
{

static const int_T colCidxRow1[5] = { 0, 1, 2, 3, 4 };
const int_T *pCidx = &colCidxRow1[0];
const real_T *pC5 = <IS_ConstP.Internal_C[5];
const real_T *xd = <IS_DW.Internal_DSTATE[0];
real_T *y1 = <IS_Y.y[1];
int_T numNonZero = 4;
*y1 = (*pC5++) * xd[*pCidx++];
while (numNonZero--) {

*y1 += (*pC5++) * xd[*pCidx++];
}

}
}
{

real_T xnew[5];
int_T i;
xnew[0] = (0.87224)*LTIS_DW.Internal_DSTATE[0];
xnew[0] += (0.822174)*LTIS_U.u[0]+(-0.438008)*LTIS_U.u[1];
xnew[1] = (0.366378)*LTIS_DW.Internal_DSTATE[1];
xnew[1] += (-0.278536)*LTIS_U.u[0]+(-0.824313)*LTIS_U.u[1];
xnew[2] = (-0.540795)*LTIS_DW.Internal_DSTATE[2];
xnew[2] += (0.874484)*LTIS_U.u[0]+(0.858857)*LTIS_U.u[1];
xnew[3] = (-0.332664)*LTIS_DW.Internal_DSTATE[3];
xnew[3] += (-0.117628)*LTIS_U.u[0]+(-0.506362)*LTIS_U.u[1];
xnew[4] = (-0.204322)*LTIS_DW.Internal_DSTATE[4];
xnew[4] += (-0.955459)*LTIS_U.u[0]+(-0.622498)*LTIS_U.u[1];
for(i=0; i<5; i++) LTIS_DW.Internal_DSTATE[i] = xnew[i];

}
}

zk+1 =

2

66664

�0.500311 0.16751 0.028029 �0.395599 �0.652079
0.850942 0.181639 �0.29276 0.481277 0.638183
�0.458583 �0.002389 �0.154281 �0.578708 �0.769495
1.01855 0.638926 �0.668256 �0.258506 0.119959
0.100383 �0.432501 0.122727 0.82634 0.892296

3

77775

| {z }
A

zk +

2

66664

1.1149 0.164423
�1.56592 0.634384
1.04856 �0.196914
1.96066 3.11571
�3.02046 �1.96087

3

77775

| {z }
B

uk

yk =


0.283441 0.032612 �0.75658 0.085468 0.161088
�0.528786 0.050734 �0.681773 �0.432334 �1.17988

�

| {z }
C

zk

Original	
 Model Code

?

Extracted	
 Model (1)	
 Model	

Extraction

(2)	
 Input-­‐Output	
 Similarity	

Checking

ẑk+1 =

2

66664

0.87224 0 0 0 0
0 0.366378 0 0 0
0 0 �0.540795 0 0
0 0 0 �0.332664 0
0 0 0 0 �0.204322

3

77775

| {z }
Â

ẑk +

2

66664

0.822174 �0.438008
�0.278536 �0.824313
0.874484 0.858857
�0.117628 �0.506362
�0.955459 �0.622498

3

77775

| {z }
B̂

uk,

yk =


�0.793176 0.154365 �0.377883 �0.360608 �0.142123
0.503767 �0.573538 0.170245 �0.583312 �0.56603

�

| {z }
Ĉ

ẑk

J.	
 Park,	
 M.	
 Pajic,	
 I.	
 Lee,	
 and	
 O.	
 Sokolsky,	
 “Scalable	
 Verification	
 of	
 Linear	
 Controller	
 Software",	

Tools	
 and	
 Algorithms	
 for	
 the	
 Construction	
 and	
 Analysis	
 of	
 Systems	
 (TACAS),	
 2016

Defining Invariants for Linear Controllers

• Annotating	
 input-­‐output	
 and	
 state	
 invariants

• Annotating	
 input-­‐output	
 only	
 invariants

• Inexact	
 controller	
 implementations

• Instantiation-­‐based	
 input-­‐output	
 invariants

Problem: How to check input-­output conformance
when state conformance is violated?

• Input-­‐output	
 invariants	
 obtained	
 from	
 controllers	
 transfer	

functions

• In	
 the	
 general	
 case	
 for	
 Single-­‐Input-­‐Single-­‐Output	
 controllers

and	
 the	
 controllers	
 inputs	
 and	
 outputs	
 satisfy	

with	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 because	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 and

Annotating Input-­Output Only Invariants

• Cannot	
 be	
 specified	
 using	
 pre-­‐ and	

post-­‐conditions	
 for	
 every	
 execution	

of	
 the	
 step function
– relates	
 the	
 last	
 n+1	
 executions	
 of	
 the	

step	
 function

• Perform	
 execution	
 unrolling of	
 the	

step function
– construct	
 the	
 verif_driver
function	
 invoking	
 the	
 step function	

exactly	
 n+1	
 times

Annotating Input-­Output Only Invariants

• Cannot	
 be	
 specified	
 using	
 pre-­‐ and	

post-­‐conditions	
 for	
 every	
 execution	

of	
 the	
 step function
– relates	
 the	
 last	
 n+1	
 executions	
 of	
 the	

step	
 function

• Perform	
 execution	
 unrolling	
 of	
 the	

step function
– construct	
 the	
 verif_driver
function	
 invoking	
 the	
 step function	

exactly	
 n+1	
 times

Errors from optimization in code generation

• Back	
 to	
 the	
 running	
 example	

– a	
 more	
 efficient	
 controller	
 obtained	
 in	
 Matlab	
 using	
 the	
 function	

canon	
 for	
 the	
 modal	
 type	
 of	
 decomposition

Defining Invariants for Linear Controllers

• Annotating	
 input-­‐output	
 and	
 state	
 invariants

• Annotating	
 input-­‐output	
 only	
 invariants

• Inexact	
 controller	
 implementations

• Instantiation-­‐based	
 input-­‐output	
 invariants

Inexact Controller Implementations

• There	
 is	
 a	
 need	
 to	
 extend	
 our	
 input-­‐output	
 invariants	
 for	
 the	

case	
 with	
 imprecise	
 specification	
 of	
 the	
 transfer	
 functions

• Start	
 by	
 assuming	
 that	
 the	
 transfer	
 function	
 could	
 take	
 the	
 form	

such	
 that

• `Inexact’	
 invariant

nonlinear

Inexact Controller Implementations

• There	
 is	
 a	
 need	
 to	
 extend	
 our	
 input-­‐output	
 invariants	
 for	
 the	

case	
 with	
 imprecise	
 specification	
 of	
 the	
 transfer	
 functions

• Start	
 by	
 assuming	
 that	
 the	
 transfer	
 function	
 could	
 take	
 the	
 form	

such	
 that

• `Inexact’	
 linear invariant

Inexact Controller Implementations

• Start	
 by	
 assuming	
 that	
 the	
 transfer	
 function	
 could	
 take	
 the	
 form	

such	
 that

• `Inexact’	
 linear invariant	
 – for	
 all	

A	
 mixture	
 of	
 both	
 universal	
 and	
 existential	
 quantifiers

Defining Invariants for Linear Controllers

• Annotating	
 input-­‐output	
 and	
 state	
 invariants

• Annotating	
 input-­‐output	
 only	
 invariants

• Inexact	
 controller	
 implementations

• Instantiation-­‐based	
 input-­‐output	
 invariants

Instantiation-­based Input-­Output Invariants

Instantiation-­based Input-­Output Invariants

Code	
 annotations

Allows	
 us	
 to	
 specify	
 a	
 set	
 of	
 2n +	
 1 linear
invariants

Instantiation-­based Input-­Output Invariants

Code	
 annotations	
 for	
 inexact	
 controllers

Framework For Automatic Verification

Automatic Verification for Exact Invariants

Automatic Verification – Inexact Invariants

A More Scalable Approach (SC)

void LTIS_step(void)
{

{
{

static const int_T colCidxRow0[5] = { 0, 1, 2, 3, 4 };
const int_T *pCidx = &colCidxRow0[0];
const real_T *pC0 = LTIS_ConstP.Internal_C;
const real_T *xd = <IS_DW.Internal_DSTATE[0];
real_T *y0 = <IS_Y.y[0];
int_T numNonZero = 4;
*y0 = (*pC0++) * xd[*pCidx++];
while (numNonZero--) {

*y0 += (*pC0++) * xd[*pCidx++];
}

}
{

static const int_T colCidxRow1[5] = { 0, 1, 2, 3, 4 };
const int_T *pCidx = &colCidxRow1[0];
const real_T *pC5 = <IS_ConstP.Internal_C[5];
const real_T *xd = <IS_DW.Internal_DSTATE[0];
real_T *y1 = <IS_Y.y[1];
int_T numNonZero = 4;
*y1 = (*pC5++) * xd[*pCidx++];
while (numNonZero--) {

*y1 += (*pC5++) * xd[*pCidx++];
}

}
}
{

real_T xnew[5];
int_T i;
xnew[0] = (0.87224)*LTIS_DW.Internal_DSTATE[0];
xnew[0] += (0.822174)*LTIS_U.u[0]+(-0.438008)*LTIS_U.u[1];
xnew[1] = (0.366378)*LTIS_DW.Internal_DSTATE[1];
xnew[1] += (-0.278536)*LTIS_U.u[0]+(-0.824313)*LTIS_U.u[1];
xnew[2] = (-0.540795)*LTIS_DW.Internal_DSTATE[2];
xnew[2] += (0.874484)*LTIS_U.u[0]+(0.858857)*LTIS_U.u[1];
xnew[3] = (-0.332664)*LTIS_DW.Internal_DSTATE[3];
xnew[3] += (-0.117628)*LTIS_U.u[0]+(-0.506362)*LTIS_U.u[1];
xnew[4] = (-0.204322)*LTIS_DW.Internal_DSTATE[4];
xnew[4] += (-0.955459)*LTIS_U.u[0]+(-0.622498)*LTIS_U.u[1];
for(i=0; i<5; i++) LTIS_DW.Internal_DSTATE[i] = xnew[i];

}
}

zk+1 =

2

66664

�0.500311 0.16751 0.028029 �0.395599 �0.652079
0.850942 0.181639 �0.29276 0.481277 0.638183
�0.458583 �0.002389 �0.154281 �0.578708 �0.769495
1.01855 0.638926 �0.668256 �0.258506 0.119959
0.100383 �0.432501 0.122727 0.82634 0.892296

3

77775

| {z }
A

zk +

2

66664

1.1149 0.164423
�1.56592 0.634384
1.04856 �0.196914
1.96066 3.11571
�3.02046 �1.96087

3

77775

| {z }
B

uk

yk =


0.283441 0.032612 �0.75658 0.085468 0.161088
�0.528786 0.050734 �0.681773 �0.432334 �1.17988

�

| {z }
C

zk

Original Model Code

?

Extracted Model (1) Model
Extraction

(2) Input-­Output Similarity
Checking

ẑk+1 =

2

66664

0.87224 0 0 0 0
0 0.366378 0 0 0
0 0 �0.540795 0 0
0 0 0 �0.332664 0
0 0 0 0 �0.204322

3

77775

| {z }
Â

ẑk +

2

66664

0.822174 �0.438008
�0.278536 �0.824313
0.874484 0.858857
�0.117628 �0.506362
�0.955459 �0.622498

3

77775

| {z }
B̂

uk,

yk =


�0.793176 0.154365 �0.377883 �0.360608 �0.142123
0.503767 �0.573538 0.170245 �0.583312 �0.56603

�

| {z }
Ĉ

ẑk

Model Extraction

• Use	
 symbolic	
 execution	
 to	
 identify	
 transition	
 relation

void LTIS_step(void)
{

{
{

static const int_T colCidxRow0[5] = { 0, 1, 2, 3, 4 };
const int_T *pCidx = &colCidxRow0[0];
const real_T *pC0 = LTIS_ConstP.Internal_C;
const real_T *xd = <IS_DW.Internal_DSTATE[0];
real_T *y0 = <IS_Y.y[0];
int_T numNonZero = 4;
*y0 = (*pC0++) * xd[*pCidx++];
while (numNonZero--) {

*y0 += (*pC0++) * xd[*pCidx++];
}

}
{

static const int_T colCidxRow1[5] = { 0, 1, 2, 3, 4 };
const int_T *pCidx = &colCidxRow1[0];
const real_T *pC5 = <IS_ConstP.Internal_C[5];
const real_T *xd = <IS_DW.Internal_DSTATE[0];
real_T *y1 = <IS_Y.y[1];
int_T numNonZero = 4;
*y1 = (*pC5++) * xd[*pCidx++];
while (numNonZero--) {

*y1 += (*pC5++) * xd[*pCidx++];
}

}
}
{

real_T xnew[5];
int_T i;
xnew[0] = (0.87224)*LTIS_DW.Internal_DSTATE[0];
xnew[0] += (0.822174)*LTIS_U.u[0]+(-0.438008)*LTIS_U.u[1];
xnew[1] = (0.366378)*LTIS_DW.Internal_DSTATE[1];
xnew[1] += (-0.278536)*LTIS_U.u[0]+(-0.824313)*LTIS_U.u[1];
xnew[2] = (-0.540795)*LTIS_DW.Internal_DSTATE[2];
xnew[2] += (0.874484)*LTIS_U.u[0]+(0.858857)*LTIS_U.u[1];
xnew[3] = (-0.332664)*LTIS_DW.Internal_DSTATE[3];
xnew[3] += (-0.117628)*LTIS_U.u[0]+(-0.506362)*LTIS_U.u[1];
xnew[4] = (-0.204322)*LTIS_DW.Internal_DSTATE[4];
xnew[4] += (-0.955459)*LTIS_U.u[0]+(-0.622498)*LTIS_U.u[1];
for(i=0; i<5; i++) LTIS_DW.Internal_DSTATE[i] = xnew[i];

}
}

typedef double real_T;
typedef int int_T;
typedef char char_T;

typedef struct tag_RTM_LTIS_T RT_MODEL_LTIS_T;

typedef struct { real_T Internal_DSTATE[5]; } DW_LTIS_T;

typedef struct { real_T Internal_C[10]; } ConstP_LTIS_T;

typedef struct { real_T u[2]; } ExtU_LTIS_T;

typedef struct { real_T y[2]; } ExtY_LTIS_T;

struct tag_RTM_LTIS_T { const char_T * volatile errorStatus; };

extern DW_LTIS_T LTIS_DW;
extern ExtU_LTIS_T LTIS_U;
extern ExtY_LTIS_T LTIS_Y;
extern const ConstP_LTIS_T LTIS_ConstP;
extern void LTIS_initialize(void);
extern void LTIS_step(void);
extern void LTIS_terminate(void);
extern RT_MODEL_LTIS_T *const LTIS_M;

const ConstP_LTIS_T LTIS_ConstP = {
{ -0.793176, 0.154365, -0.377883, -0.360608, -0.142123,

0.503767, -0.573538, 0.170245, -0.583312, -0.56603 } };

DW_LTIS_T LTIS_DW;
ExtU_LTIS_T LTIS_U;
ExtY_LTIS_T LTIS_Y;
RT_MODEL_LTIS_T LTIS_M_;
RT_MODEL_LTIS_T *const LTIS_M = <IS_M_;

As the result of the symbolic execution of the step function, the global vari-
ables are updated with symbolic formulas. By collecting the updated variables
and their new values (i.e., symbolic formulas), the big-step transition relation of
the step function can be represented as a system of equations; each equation is
in the following form

v(new) = f(v1, v2, . . . , vt)

where t is the number of variables used in the symbolic formula f , v, v
i

are
the global variables, v(new) denotes that the variable v is updated with the
symbolic formula on the right-hand side of the equation, the variable without
the superscript “(new)” denotes the initial symbolic value of the variable (i.e.,
from the initial state before symbolic execution of the step function). We call
this equation transition equation.

For example, we consider symbolic execution for the step function in [24],
obtained from the model (5), (6); we illustrate the transition equations of the
step function as follows, replacing the original variable names with new shortened
names for presentation purpose only, such as x for LTIS DW.Internal DSTATE,
u for LTIS U.u, and y for LTIS Y.y:

x[0](new) = ((0.87224 · x[0]) + ((0.822174 · u[0]) + (�0.438008 · u[1])))
x[1](new) = ((0.366377 · x[1]) + ((�0.278536 · u[0]) + (�0.824312 · u[1])))
x[2](new) = ((�0.540795 · x[2]) + ((0.874484 · u[0]) + (0.858857 · u[1])))
x[3](new) = ((�0.332664 · x[3]) + ((�0.117628 · u[0]) + (�0.506362 · u[1])))
x[4](new) = ((�0.204322 · x[4]) + ((�0.955459 · u[0]) + (�0.622498 · u[1])))
y[0](new) = (((((�0.793176 · x[0]) + (0.154365 · x[1])) + (�0.377883 · x[2]))

+(�0.360608 · x[3])) + (�0.142123 · x[4]))
y[1](new) = (((((0.503767 · x[0]) + (�0.573538 ⇤ ·x[1])) + (0.170245 · x[2]))

+(�0.583312 · x[3])) + (�0.56603 · x[4])).

(9)

4.2 Linear Time-Invariant System Model Extraction

To extract an LTI model from the obtained transition equations, we first de-
termine which variables are used to store the controller state. To do this, we
examine the data flow among the variables which appear in the equations. Let
V
used

be the set of used variables which appears on the right-hand side of the
transition equations. Let V

updated

be the set of updated variables which appears
on the left-hand side of the transition equations. As the interface of the step func-
tion, we assume that the sets of input and output variables are given, which are
denoted by V

input

and V
output

, respectively. We define the set of state variables
V
state

as
V
state

= (V
updated

\ V
output

) [(V
used

\ V
input

).

For example, from the transition equations (9), x[0], x[1], x[2], x[3] and x[4]

are identified as controller state variables as given the input variables u[0] and
u[1], and the output variables y[0] and y[1].

The next step is to convert the transition equations into a canonical form.
We fully expand the expressions on the right-hand side of the transition equa-
tions using the distributive law. The resulting expressions are represented in the

fragment	
 of
step	
 function

big-­‐step	

transition	

relation

y stands	
 for	
 LTIS_Y.y,	
 and	
 x stands	
 for	
 LTIS_DW.Internal_DSTATE

symbolic execution

Model Extraction (cont.)

• Identify	
 the	
 set	
 of	
 state	
 variables	
 𝑉"#$#%

• Transform	
 into	
 matrix	
 form

As the result of the symbolic execution of the step function, the global vari-
ables are updated with symbolic formulas. By collecting the updated variables
and their new values (i.e., symbolic formulas), the big-step transition relation of
the step function can be represented as a system of equations; each equation is
in the following form

v(new) = f(v1, v2, . . . , vt)

where t is the number of variables used in the symbolic formula f , v, v
i

are
the global variables, v(new) denotes that the variable v is updated with the
symbolic formula on the right-hand side of the equation, the variable without
the superscript “(new)” denotes the initial symbolic value of the variable (i.e.,
from the initial state before symbolic execution of the step function). We call
this equation transition equation.

For example, we consider symbolic execution for the step function in [24],
obtained from the model (5), (6); we illustrate the transition equations of the
step function as follows, replacing the original variable names with new shortened
names for presentation purpose only, such as x for LTIS DW.Internal DSTATE,
u for LTIS U.u, and y for LTIS Y.y:

x[0](new) = ((0.87224 · x[0]) + ((0.822174 · u[0]) + (�0.438008 · u[1])))
x[1](new) = ((0.366377 · x[1]) + ((�0.278536 · u[0]) + (�0.824312 · u[1])))
x[2](new) = ((�0.540795 · x[2]) + ((0.874484 · u[0]) + (0.858857 · u[1])))
x[3](new) = ((�0.332664 · x[3]) + ((�0.117628 · u[0]) + (�0.506362 · u[1])))
x[4](new) = ((�0.204322 · x[4]) + ((�0.955459 · u[0]) + (�0.622498 · u[1])))
y[0](new) = (((((�0.793176 · x[0]) + (0.154365 · x[1])) + (�0.377883 · x[2]))

+(�0.360608 · x[3])) + (�0.142123 · x[4]))
y[1](new) = (((((0.503767 · x[0]) + (�0.573538 ⇤ ·x[1])) + (0.170245 · x[2]))

+(�0.583312 · x[3])) + (�0.56603 · x[4])).

(9)

4.2 Linear Time-Invariant System Model Extraction

To extract an LTI model from the obtained transition equations, we first de-
termine which variables are used to store the controller state. To do this, we
examine the data flow among the variables which appear in the equations. Let
V
used

be the set of used variables which appears on the right-hand side of the
transition equations. Let V

updated

be the set of updated variables which appears
on the left-hand side of the transition equations. As the interface of the step func-
tion, we assume that the sets of input and output variables are given, which are
denoted by V

input

and V
output

, respectively. We define the set of state variables
V
state

as
V
state

= (V
updated

\ V
output

) [(V
used

\ V
input

).

For example, from the transition equations (9), x[0], x[1], x[2], x[3] and x[4]

are identified as controller state variables as given the input variables u[0] and
u[1], and the output variables y[0] and y[1].

The next step is to convert the transition equations into a canonical form.
We fully expand the expressions on the right-hand side of the transition equa-
tions using the distributive law. The resulting expressions are represented in the

form of the sum of products without containing any parentheses. We check if the
expressions equations are linear (i.e., each product term should be the multipli-
cation of a constant and a single variable), and otherwise, it is rejected. Finally,
each transition equation is represented as the following canonical form

v(new) = c1v1 + c2v2 + · · ·+ c
t

v
t

where t is the number of product terms, v 2 V
updated

is the updated variable,
v
i

2 V
used

are the used variables, and c
i

2 R are the coe�cients. When con-
verting the transition equations into canonical form, we regard floating-point
arithmetic expressions as real arithmetic expressions. The analysis of the dis-
crepancy between them is left for future work. Instead, in the next section, the
discrepancy issue between two LTI models due to numerical errors of floating-
point arithmetic is addressed as the first step toward the full treatment of the
problem.

Since the transition equations in canonical form are a system of linear equa-
tions, we finally rewrite the transition equations as matrix equations. In order
to do this, we first define the input variable vector u = vec(V

input

), the output
variable vector y = vec(V

output

) and the state variable vector x = vec(V
state

)
where vec(V) denotes the vectorization of the set V (e.g., vec({v1, v2, v3}) =
[v1, v2, v3]T). This allows for rewriting each transition equation in terms of the
state variable vector x and the input variable vector u as

v(new) = [c1, c2, . . . , cn]x+ [d1, d2, . . . , dp]u

where n is the length of the state variable vector, p is the length of the input
variable vector and c

i

, d
i

2 R are constants. Finally, we rewrite the transition
equations as two matrix equations as follows

x(new) = Âx+ B̂u

y(new) = Ĉx+ D̂u

where Â 2 Rn⇥n, B̂ 2 Rn⇥p, Ĉ 2 Rm⇥n, D̂ 2 Rm⇥p, and for any vector

v = [v1, . . . vt]T, we define v(new) = [v(new)
1 , . . . , v(new)

t

]T.

For example, consider the transition equation about y[0](new) in (9), which is
represented in canonical form, and then rewritten as a vector equation (i.e., equa-
tion in terms of the state and the input variable vectors) as follows

y[0](new) = (((((�0.793176 · x[0]) + (0.154365 · x[1])) + (�0.377883 · x[2]))
+(�0.360608 · x[3])) + (�0.142123 · x[4]))

= �0.793176 · x[0] + 0.154365 · x[1] +�0.377883 · x[2]
+� 0.360608 · x[3] +�0.142123 · x[4]

= [�0.793176, 0.154365,�0.377883,�0.360608,�0.142123] · x + [0, 0] · u

where x = [x[0], x[1], x[2], x[3], x[4]]T, and u = [u[0], u[1]]T. Converting each
transition equation (9) into the corresponding vector equation, we finally recon-
struct the LTI model (i.e., same as (5) (6)) from the step function of [24].

form of the sum of products without containing any parentheses. We check if the
expressions equations are linear (i.e., each product term should be the multipli-
cation of a constant and a single variable), and otherwise, it is rejected. Finally,
each transition equation is represented as the following canonical form

v(new) = c1v1 + c2v2 + · · ·+ c
t

v
t

where t is the number of product terms, v 2 V
updated

is the updated variable,
v
i

2 V
used

are the used variables, and c
i

2 R are the coe�cients. When con-
verting the transition equations into canonical form, we regard floating-point
arithmetic expressions as real arithmetic expressions. The analysis of the dis-
crepancy between them is left for future work. Instead, in the next section, the
discrepancy issue between two LTI models due to numerical errors of floating-
point arithmetic is addressed as the first step toward the full treatment of the
problem.

Since the transition equations in canonical form are a system of linear equa-
tions, we finally rewrite the transition equations as matrix equations. In order
to do this, we first define the input variable vector u = vec(V

input

), the output
variable vector y = vec(V

output

) and the state variable vector x = vec(V
state

)
where vec(V) denotes the vectorization of the set V (e.g., vec({v1, v2, v3}) =
[v1, v2, v3]T). This allows for rewriting each transition equation in terms of the
state variable vector x and the input variable vector u as

v(new) = [c1, c2, . . . , cn]x+ [d1, d2, . . . , dp]u

where n is the length of the state variable vector, p is the length of the input
variable vector and c

i

, d
i

2 R are constants. Finally, we rewrite the transition
equations as two matrix equations as follows

x(new) = Âx+ B̂u

y(new) = Ĉx+ D̂u

where Â 2 Rn⇥n, B̂ 2 Rn⇥p, Ĉ 2 Rm⇥n, D̂ 2 Rm⇥p, and for any vector

v = [v1, . . . vt]T, we define v(new) = [v(new)
1 , . . . , v(new)

t

]T.

For example, consider the transition equation about y[0](new) in (9), which is
represented in canonical form, and then rewritten as a vector equation (i.e., equa-
tion in terms of the state and the input variable vectors) as follows

y[0](new) = (((((�0.793176 · x[0]) + (0.154365 · x[1])) + (�0.377883 · x[2]))
+(�0.360608 · x[3])) + (�0.142123 · x[4]))

= �0.793176 · x[0] + 0.154365 · x[1] +�0.377883 · x[2]
+� 0.360608 · x[3] +�0.142123 · x[4]

= [�0.793176, 0.154365,�0.377883,�0.360608,�0.142123] · x + [0, 0] · u

where x = [x[0], x[1], x[2], x[3], x[4]]T, and u = [u[0], u[1]]T. Converting each
transition equation (9) into the corresponding vector equation, we finally recon-
struct the LTI model (i.e., same as (5) (6)) from the step function of [24].

form of the sum of products without containing any parentheses. We check if the
expressions equations are linear (i.e., each product term should be the multipli-
cation of a constant and a single variable), and otherwise, it is rejected. Finally,
each transition equation is represented as the following canonical form

v(new) = c1v1 + c2v2 + · · ·+ c
t

v
t

where t is the number of product terms, v 2 V
updated

is the updated variable,
v
i

2 V
used

are the used variables, and c
i

2 R are the coe�cients. When con-
verting the transition equations into canonical form, we regard floating-point
arithmetic expressions as real arithmetic expressions. The analysis of the dis-
crepancy between them is left for future work. Instead, in the next section, the
discrepancy issue between two LTI models due to numerical errors of floating-
point arithmetic is addressed as the first step toward the full treatment of the
problem.

Since the transition equations in canonical form are a system of linear equa-
tions, we finally rewrite the transition equations as matrix equations. In order
to do this, we first define the input variable vector u = vec(V

input

), the output
variable vector y = vec(V

output

) and the state variable vector x = vec(V
state

)
where vec(V) denotes the vectorization of the set V (e.g., vec({v1, v2, v3}) =
[v1, v2, v3]T). This allows for rewriting each transition equation in terms of the
state variable vector x and the input variable vector u as

v(new) = [c1, c2, . . . , cn]x+ [d1, d2, . . . , dp]u

where n is the length of the state variable vector, p is the length of the input
variable vector and c

i

, d
i

2 R are constants. Finally, we rewrite the transition
equations as two matrix equations as follows

x(new) = Âx+ B̂u

y(new) = Ĉx+ D̂u

where Â 2 Rn⇥n, B̂ 2 Rn⇥p, Ĉ 2 Rm⇥n, D̂ 2 Rm⇥p, and for any vector

v = [v1, . . . vt]T, we define v(new) = [v(new)
1 , . . . , v(new)

t

]T.

For example, consider the transition equation about y[0](new) in (9), which is
represented in canonical form, and then rewritten as a vector equation (i.e., equa-
tion in terms of the state and the input variable vectors) as follows

y[0](new) = (((((�0.793176 · x[0]) + (0.154365 · x[1])) + (�0.377883 · x[2]))
+(�0.360608 · x[3])) + (�0.142123 · x[4]))

= �0.793176 · x[0] + 0.154365 · x[1] +�0.377883 · x[2]
+� 0.360608 · x[3] +�0.142123 · x[4]

= [�0.793176, 0.154365,�0.377883,�0.360608,�0.142123] · x + [0, 0] · u

where x = [x[0], x[1], x[2], x[3], x[4]]T, and u = [u[0], u[1]]T. Converting each
transition equation (9) into the corresponding vector equation, we finally recon-
struct the LTI model (i.e., same as (5) (6)) from the step function of [24].

form of the sum of products without containing any parentheses. We check if the
expressions equations are linear (i.e., each product term should be the multipli-
cation of a constant and a single variable), and otherwise, it is rejected. Finally,
each transition equation is represented as the following canonical form

v(new) = c1v1 + c2v2 + · · ·+ c
t

v
t

where t is the number of product terms, v 2 V
updated

is the updated variable,
v
i

2 V
used

are the used variables, and c
i

2 R are the coe�cients. When con-
verting the transition equations into canonical form, we regard floating-point
arithmetic expressions as real arithmetic expressions. The analysis of the dis-
crepancy between them is left for future work. Instead, in the next section, the
discrepancy issue between two LTI models due to numerical errors of floating-
point arithmetic is addressed as the first step toward the full treatment of the
problem.

Since the transition equations in canonical form are a system of linear equa-
tions, we finally rewrite the transition equations as matrix equations. In order
to do this, we first define the input variable vector u = vec(V

input

), the output
variable vector y = vec(V

output

) and the state variable vector x = vec(V
state

)
where vec(V) denotes the vectorization of the set V (e.g., vec({v1, v2, v3}) =
[v1, v2, v3]T). This allows for rewriting each transition equation in terms of the
state variable vector x and the input variable vector u as

v(new) = [c1, c2, . . . , cn]x+ [d1, d2, . . . , dp]u

where n is the length of the state variable vector, p is the length of the input
variable vector and c

i

, d
i

2 R are constants. Finally, we rewrite the transition
equations as two matrix equations as follows

x(new) = Âx+ B̂u

y(new) = Ĉx+ D̂u

where Â 2 Rn⇥n, B̂ 2 Rn⇥p, Ĉ 2 Rm⇥n, D̂ 2 Rm⇥p, and for any vector

v = [v1, . . . vt]T, we define v(new) = [v(new)
1 , . . . , v(new)

t

]T.

For example, consider the transition equation about y[0](new) in (9), which is
represented in canonical form, and then rewritten as a vector equation (i.e., equa-
tion in terms of the state and the input variable vectors) as follows

y[0](new) = (((((�0.793176 · x[0]) + (0.154365 · x[1])) + (�0.377883 · x[2]))
+(�0.360608 · x[3])) + (�0.142123 · x[4]))

= �0.793176 · x[0] + 0.154365 · x[1] +�0.377883 · x[2]
+� 0.360608 · x[3] +�0.142123 · x[4]

= [�0.793176, 0.154365,�0.377883,�0.360608,�0.142123] · x + [0, 0] · u

where x = [x[0], x[1], x[2], x[3], x[4]]T, and u = [u[0], u[1]]T. Converting each
transition equation (9) into the corresponding vector equation, we finally recon-
struct the LTI model (i.e., same as (5) (6)) from the step function of [24].

transition	
 relation

canonical	
 form

vector	
 form

matrix	
 form

Input-­output equivalence checking

• Check	
 similarity	
 between	
 two	
 models

• Find	
 the	
 existence	
 of	
 similarity	
 transformation
matrix	
 using
– SMT	
 formulation	
 approach
– Convex	
 optimization	
 formulation	
 approach

• Need	
 to	
 tolerate	
 the	
 numerical	
 errors	
 on	
 the	
 model	
 parameters

Remark 1. In general, the size of the extracted model ⌃̂ may not be equal to the
size of the initial controller model ⌃ from (1) (i.e., n). As we assume that ⌃ is
minimal, if the obtained model has the size less than n it would clearly have to
violate input-output (IO) requirements of the controller. However, if the size of ⌃̂
is larger than n, we consider a controllable and observable subsystem computed
via Kalman decomposition [26] from the extracted model, as the ⌃̂(Â, B̂, Ĉ, D̂)
model extracted from the code. Note that ⌃̂ is minimal in this case, and thus
its size has to be equal to n to provide IO conformance with the initial model.

5 Input-Output Equivalence Checking between Linear
Controller Models

In order to verify a linear controller implementation against an LTI specifica-
tion, in the previous section we described how to extract an LTI model from the
implementation. This section introduces a method to check input-output (IO)
equivalence between two linear controller models: (1) the original LTI specifica-
tion and (2) the LTI model extracted from the implementation.

To check the IO equivalence between two LTI models, we exploit the fact that
two minimal LTI models with the same size are IO equivalent if and only if they
are similar to each other. Two LTI models ⌃(A,B,C,D) and ⌃̂(Â, B̂, Ĉ, D̂)
are said to be similar if there exists a non-singular matrix T such that

Â = TAT�1, B̂ = TB, Ĉ = CT�1, and D̂ = D (10)

where T is referred to as the similarity transformation matrix [26]. Thus, given
two minimal LTI models, the problem of equivalence checking between the mod-
els is reduced to the problem of finding a similarity transformation matrix for
the models. The rest of this section explains how to formulate this problem as a
satisfiability problem and a convex optimization problem.

5.1 Satisfiability Problem Formulation

We start by describing an approach to formulate the problem of finding similarity
transformation matrices as the satisfiability problem instance when two LTI
models ⌃(A,B,C,D) and ⌃̂(Â, B̂, Ĉ, D̂) are given. Since existing SMT solvers
hardly support matrices and linear algebra operations, we encode the similarity
transformation matrix T as a set of scalar variables {T

i,j

| 1  i, j  n} where
T
i,j

is the variable to represent the element in the i-th row and j-th column of
the matrix T. The following constraints rephrase the equations of (10) in an
element-wise manner

^

1in

^

1jn

0

@
X

1kn

Â
i,k

T
k,j

=
X

1kn

T
i,k

A
k,j

1

A ^
^

1in

^

1jn

0

@B̂
i,j

=
X

1kn

T
i,k

B
k,j

1

A

^

1in

^

1jn

0

@
X

1kn

Ĉ
i,k

T
k,j

= C
i,j

1

A ^
^

1in

^

1jn

D̂
i,j

= D
i,j

(11)

Two	
 minimal	
 LTI	
 models	
 Σ 𝐴, 𝐵, 𝐶, 𝐷 and	
 Σ, 𝐴-, 𝐵, , 𝐶-, 𝐷. are	
 input-­‐output	
 equivalent	
 iff
there	
 exists	
 a	
 non-­‐singular	
 matrix	
 𝑇 such	
 that

Verification Toolchain

• Similarity	
 Checking	
 (SC)-­‐based	
 approach

C	code
(the	step	
function)

Specification
(LTI	model)

Symbolic	
executor

(PathCrawler)

Transition	
equations

Model	
extractor

Extracted	
LTI	model

IO	equivalence	
checker

(using	 either	
CVC4	or	CVX)

Verification	
result
(yes/no)

Fig. 1. The verification toolchain for the similarity checking-based approach.

6.1 Verification Toolchain

We implemented an automatic verification framework (presented in Fig. 1) based
on the proposed approach described in Section 4 and Section 5. We refer to
this approach as similarity checking (SC)-based approach. Given a step function
(i.e., C code), we employ the o↵-the-shelf symbolic execution tool PathCrawler [32]
to symbolically execute the step function and generate a set of transition equa-
tions. The model extractor which implements the method in Section 4.2 extracts
an LTI model from the transition equations. Finally, the equivalence checker
based on the method in Section 5 decides the similarity between the extracted
LTI model and the given specification (i.e., LTI model), and produces the ver-
ification result. The equivalence checker uses either the SMT solver CVC4 [4]6

or the convex optimization solver CVX [14] depending on the formulation em-
ployed, which is described in Section 5.

For the invariant checking (IC)-based approach described in Section 3, we
use the toolchain Frama-C/Why3/Z3 to verify C code with annotated controller
invariants [23]. The step function is annotated with the invariants as described in
Section 3. Given annotated C code, Frama-C/Why3 [9, 5] generates proof obli-
gations as SMT instances. The SMT solver Z3 [11]7 solves the proof obligations
and produces the verification result (see [23] for more details).

6.2 Scalability Evaluation

To evaluate the SC-based approach compared to the IC-based approach, we
randomly generate stable linear controller specifications (i.e., the elements of
⌃(A,B,C,D)). Since we observed that the controller dimension n dominates
the performance (i.e., running time) of both approaches, we vary n from 2 to
14, and generate three controller specifications for each n. For each controller
specification, we employ the code generator Embedded Coder to generate the
step function in C. Since we use the LTI system block of Simulink for code gener-
ation, the structure of generated C code is not straightforward, having multiple

6 CVC4 was chosen among other SMT solvers because it showed the best performance
for our QF LRA SMT instances.

7 Z3 was chosen among other SMT solvers because it showed the best performance
for the generated proof obligations in our experiment.

Evaluation

• Compare	
 scalability	
 of	
 the	
 two	
 approaches
– Random	
 LTI	
 models	
 with	
 a	
 range	
 of	
 state	
 sizes
– Code	
 obtained	
 by	
 Simulink	
 Coder

• Similarity-­‐checking	
 approach	
 (SC)	
 dramatically	
 outperforms	

invariant-­‐checking	
 approach	
 (IC)

2 3 4 5 6 7 8 9 10 11 12 13 14
n

10-1

100

101

102

103

104

tim
e(

s)
 (l

og
-s

ca
le

d)

The average running time of the front-ends of both approaches
SC-based
IC-based (IB'2n+1)
IC-based (IB''2n+1)
IC-based (IB'3n+1)
IC-based (IB''3n+1)

Fig. 2. The average running time of the front-ends of both SC-based and IC-based
approaches (with the log-scaled y-axis)

loops and pointer arithmetic operations as illustrated in the step function [24].
This negatively a↵ects the performance of the IC-based approach for reasons
to be described later in this subsection. For a comparative evaluation, we use
both SC-based and IC-based approaches to verify the generated step function
C code against its specification. For each generated controller, we checked that
IC-based and SC-based approaches give the same verification result, as long as
both complete normally.

To thoroughly compare both approaches, we measure the running time of
the front-end and the back-end of each approach separately. By the front-end,
we refer to the process from parsing C code to generating proof obligations to be
input for constraint solvers. The front-end of the SC-based approach includes the
symbolic execution by PathCrawler and the model extraction, while the front-
end of the IC-based approach is processing annotated code and generating proof
obligations by Frama-C/Why3. On the other hand, by the back-end, we refer to
the process of constraint solving. While the back-end of the SC-based approach
is the IO equivalence checking based on either SMT solving using CVC4 or
convex optimization solving using CVX, the back-end of the IC-based approach
is proving the generated proof obligations using Z3.

We first evaluate the frond-end of both approaches (i.e., the whole verification
process until constraint solving). Fig. 2 shows that the average running time of
the front-ends of both approaches, where missing bars indicate no data due
to the lack of scalability of the utilized verification approach (e.g., the tool’s
abnormal termination or no termination for a prolonged time). Here, IB 0

2n+1,
IB

00
3n+1, IB

00
3n+1 and IB

0
2n+1 denote the variations of annotating methods as

described in [23]. We observe that the running time of the IC-based approaches
exponentially increase as the controller dimension n increases, while the SC-
based approach remains scalable. The main reason for this is that the IC-based
approach requires the preprocessing of code [23], which is unrolling the execution
of the step function multiple times (e.g., 2n + 1 or 3n + 1 times) as well as

2 3 4 5 6 7 8 9 10 11 12 13 14
n

10-2

100

102

104

106

tim
e(

s)
 (l

og
-s

ca
le

d)

The average running time of the back-ends of both approaches
SC-based (CVC4)
SC-based (CVX)
IC-based (IB'2n+1)
IC-based (IB''2n+1)
IC-based (IB'3n+1)
IC-based (IB''3n+1)

Fig. 3. The average running time of the back-ends of both SC-based and IC-based
approaches (with the log-scaled y-axis)

unrolling each loop in the step function (n+1) times. Therefore, in contrast with
the SC-based approach, the IC-based approach needs to handle the significantly
increased lines of code due to unrolling, so it does not scale up.

Next, we evaluate the back-end of both approaches (i.e., constraint solving).
Fig. 3 shows the average running time of the back-ends of both approaches, where
missing bars result from the lack of scalability of either the constraint solver used
at this stage or the front-end tools. “SC-based (CVC4)” denotes the SMT-based
formulation while “SC-based (CVX)” denotes the convex optimization-based for-
mulation. Recall that the SC-based approach using CVC4 and the IC-based ap-
proaches employ the SMT solvers for constraint solving, which uses the arbitrary-
precision arithmetic. We observe that the running time of the back-ends of those
approaches exponentially increase as the controller dimension n increases be-
cause of the cost of the bignum arithmetic, while the SC-based approach using
CVX remains scalable.

7 Related Work

Recently, there has been much attention to research on high-assurance control
software for cyber physical systems (e.g., [28, 1, 21, 20, 19, 10, 12]). First of all,
there has been a line of work focused on robust controller software implemen-
tations. For example, in [28], a model-based simulation platform is presented to
analyze controllers’ robustness. In [1, 21], the authors present a fixed-point de-
sign method for robust, stable, error-minimized controller implementations. [19]
presents a robustness analysis tool to analyze the uncertainties of measurements
and plant states. In [10, 12], the authors address the synthesis of fixed-point con-
troller software using SMT solvers. Moreover, there exists work on verifying the
control-related properties of Simulink models using theorem proving [2]. Yet, the
verification is done at the model level, not at the code level.

However, there has been less attention given to the code-level verification of
controller software. In [27, 20], the authors present equivalence checking between

Current work

• Focus	
 on	
 more	
 complex	
 controllers
–Convex	
 optimization-­‐based	
 controllers

Thank	
 You

