Automotive System Safety
Engineering Practitioner Knowledge

Joseph D’Ambrosio
1ISO 26262 Automotive Functional Safety

Technical Expert
(ISO/TC22/SC3/WG16 Member)

Lab Group Manager
GM Research Laboratories

Outline

SO 26262 Overview
SO 26262 Competence Management
W |SO 26262 Safe SW Development

>

What is 1ISO 262627

Adaptation of IEC 61508 to comply with the specific

needs of E/E systems within road vehicles

> Specifies a functional safety life-cycle for automotive
products

Applies to all activities during the safety lifecycle of
safety-related systems comprised of electrical,
electronic, and software components

Is a standard, not a regulation

» Broad industry participation in its development

> Indication of broad industry adoption

> Expected Publication Date: Nov. 15

Key concept: Automotive Safety Integrity Level (ASIL)
> Specify risk associated with a potential hazard

> Specifies development requirements to achieve
targeted integrity levels with respect to systematic and
random hardware failures

I 1. Vocabulary |

2. Management of functional safety
2-5 Overall safety management 26 Safety management during item development ﬁ;::’: ;th?g_‘ management after release for
3. Concept phase 4. Product development: system level ’roduction and operation ‘
| 3-5 Item definition BNt At e System level [4-11 Release for productiog Production
J) o] |4-10 Functional safety ag -5 Operation, service
— 3-6 Initiation of the safety lifecycle ation otf the technical (maintenance and repair), and
ements ‘At decommissioning
) 3-7 Hazard analysis and risk |4'9 Safety validation d
assessment k
£ ign ‘ |4-8 Iltem integratiol ‘
~~ 3-8 Functional safety @
concept 5. Prod 6. Prog sment: n
[}
ha el <1}
\ S Initiation O B-5 Inifi uct 3
development a deve software level =
5-6 Specification 5-6 of software sate Q.
e safety requireme requ ()
5-7 Hardware desig . 6-7 So architectural design 8
; : B Soff e unit design and
e 5-8 Hardware architectural met lementation 9
'5-9 Evaluation of violation of if v . \
O safety goal due to random oftware unit testing
failures
5-10 Hardware integration and D Software integration and
testing ing
B-11 Verification of software safety
m requirements J
— 8. Supporting processes
> -5 Interfaces within distributed developments 8-10 Documentation
-6 Specification and management of safety requirements 8-11 Qualification of software tools
| - 7 Configuration management 8-12 Qualification of software components
w -8 Change management [8-13 Qualification of hardware components
-9 Verification |8-14 Proven in use argument
> 9. ASIL-oriented and safety -oriented analyses
9-5 Requirements decomposition with respect to ASIL tailoring [9-7 Analysis of dependent failures
6 Criteria for coexistence of elements |9-8 Safety analyses

I 10. Guideline on ISO 26262 (informative) |

Outline

SO 26262 Overview
SO 26262 Competence Management
W |SO 26262 Safe SW Development

1ISO 26262 Competence
Management

B Part 2, 5.4.3.1 “The organization shall ensure that the
persons involved in the execution of the safety lifecycle
have a sufficient level of skills, competences and
qualifications corresponding to their responsibilities.”

1SO 26262 Competence
Management
B Part 2, 5.4.3.1 Note 1 - “One of the possible means
to achieve a sufficient level of skills and
competences in development is a training and
qualification programme that considers the following
knowledge areas:
e usual safety practices, concepts and designs;
e |SO 26262 and, if applicable, further safety standards;
e organization-specific rules for functional safety;
e functional safety processes instituted in the organization.”

Source ISO/FDIS 26262

1SO 26262 Competence

Management

W Part 2, 5.4.3.1 Note 2 — “To evaluate the skills,
competences and qualifications to carry out
activities to comply with ISO 26262, the

experience from previous professional activities
can be considered, e.g.

e domain knowledge of the item;
e expertise on the environment of the item;
e management experience.”

Source ISO/FDIS 26262

ISO 26262 Lifecycle Steps

B Safety Management
e Process Management
e Design Confirmation Including Reviewers
B Safety-Critical Systems Development
e Systems Development & Testing
e S\W Development & Testing
e HW Development & Testing
B Distributed Development Management
I

“Usual System Safety Concept” from ISO
26262

B Hazard Analysis and Risk Assessment

B Safety Concept Development

e Functional safety requirements

e Technical safety requirements

B Safety Analysis

e HW & SW FMEA, FTA, Modeling & Simulation Tools
B Diagnostic & Remediation Strategies

e Diagnostic Methods

e Microcontroller and circuit board concepts

B \erification & Validation

e HW /SW testing methods, including unit, integration, bench,
vehicle

B Functional Safety Assessment / Safety Case

Outline

SO 26262 Overview
SO 26262 Competence Management
W |SO 26262 Safe SW Development

Software Development

4-8 ltem integration and

B-5 Initiation of product development

at the software level

B-6 Specification of

Software testing

\ ltem testing /
4-7 System design [
Test phase
> verification
%
%
Desiyn phase
veri ‘atinn

testing

software safety
requirements

" %

%
Desiyn phase)
variﬁcqtian

Test phase
verification

B-11 Verfication of
software safety
requirerments

[+ B-7 Software < Software testing
"%r architectural design Test phase
> » venfication
L3
Al
Desiyn phase
verl Ii‘.atiun

%
A

B-10 Software
integration and testing

B-8 Software unit
design and

implementation

B-9 Software unit
testing

Reference Phase Model for the Software Development

Source ISO/FDIS 26262

OO0

C O OO0

SOVV DCVCCIUPITICHIL VVWUITK

Products

Safety plan (refined)
Software verification plan

Design and coding guidelines for
modelling and programming
languages

Software tool application guidelines

Software safety requirements
specification

Hardware-software interface
specification (refined)

Software verification plan (refined)

o OO0 O OO0 OO

Software verification report

Software architectural design
specification

Safety analysis report

Dependent failures analysis
report

Software unit design
specification

Software unit implementation

Software verification
specification (refined)

Embedded software

Source ISO/FDIS 26262

SW Architecture Design

“eoHertatton

Table 2 — Notations for software architectural design

Methods

ASIL

1a

Informal notations

++

++

b

Semi-formal notations

++

++

++

1c

Formal notations

SW Architecture Design

Table 3 — Principles for software architectural design

Methods ASIL

A B C D
1a |Hierarchical structure of software components ++ ++ ++ ++
1b | Restricted size of sofiware components® ++ ++ ++ ++
1c | Restricted size of interfaces? + + + +
1d |High cohesion within each software component® + ++ ++ ++
1e |Restricted coupling between software componentsa. b ¢ + ++ ++ ++
1t | Appropriate scheduling properties ++ ++ ++ ++
1g |Restricted use of interrupts® 9 + + ¥ ++

4 In methods 1b, 1c, 1e and 1g "restricted” means to minimize in balance with other design considerations.

b Methods 1d and 1e can, for example, be achieved by separation of concems which refers to the ability to identify, encapsulate, and
manipulate those parts of software that are relevant to a particular concept, goal, task, or purpose.

€ Method 1e addresses the limitation of the external coupling of software components.

d Any interrupts used have to be priority-based.

Source ISO/FDIS 26262

SW Architecture Design

Table 4 — Mechanisms for error detection at the software architectural level

Methods ASIL

A B C D
la |Range checks of input and output data ++ ++ ++ ++
1b | Plausibility check? + + + ++
1c | Detection of data errorsP + + + +
1d | External monitoring facility®© o + + ++
1e | Control flow monitoring 0 + ++ ++
11 Diverse software design 0 0 + ++

4

Plausibility checks can include using a reference model of the desired behaviour, assertion checks, or comparing signals from

different sources.

b

C

Types of methods that may be used to detect data errors include error detecting codes and multiple data storage.

An external monitoring facility can be, for example, an ASIC or another software element performing a watchdog function.

Source ISO/FDIS 26262

Software Unit Design
Representation-

Table 7 — Notations for software unit design

Methods ASIL
A B C D
1a | Natural language ++ =+ ++ ++
1b | Informal notations 4+ ++ + +
Tc | Semi-formal notations + ++ ++ ++
1d | Formal notations + + + +

SW Unit Design Methods

Table 8 — Design principles for software unit design and implementation

Methods ASIL

A B Cc D
la | One entry and one exit point in subprograms and functions® ++ ++ ++ ++
1b | No dynamic objects or variables, or else online test during their creationa? + ++ ++ ++
1c |Initialization of variables ++ ++ ++ ++
1d | No multiple use of variable names? + ++ ++ ++
1le |Avoid global variables or else justify their usage® + + ++ ++
1f |Limited use of pointers® 0 + + i+
1g | No implicit type conversionsa + ++ ++ ++
1h |No hidden data flow or control flow® + ++ ++ ++
1i | No unconditional jumpsabe ++ ++ 4 +
1 Mo recursions + + 4 +

a

b

C

Methods 1a, 1b, 1d, 1e, 1f, 1g and 1i may not be applicable for graphical modelling notations used in model-based development.
Methods 1g and 1i are not applicable in assembler programming.

Methods 1h and 1i reduce the potential for modelling data flow and control flow through jumps or global variables.

NOTE Far the C language, MISEA cBl covers many of the methods listed in Table 8.

Source ISO/FDIS 26262

Coding Guidelines

Table 1 — Topics to be covered by modelling and coding guidelines

Topics ASIL

A B c D
1a |Enforcement of low complexity? ++ + ++ ++
1b | Use of language subsetsP 14 + ++ t
1c | Enforcement of strong typing® ++ ++ ++ +
1d |Use of defensive implementation techniques 0 ~ ++ ++
1e |Use of established design principles + + + ++
1f | Use of unambiguous graphical representation + ++ ++ ++
1g |Use of style guides + + + ++
1h | Use of naming conventions ++ + + ++

a4 An appropriate compromise of this topic with other methods in this part of IS0 26262 may be required.

B The chjectives of method 1b are

— Exclusion of ambiguously defined language constructs which may be interpreted differently by different modellers,
programmers, code generators or compilers.

— Exclusion of language constructs which from experience easily lead to mistakes, for example assignments in conditions or
identical naming of local and global variables.

— Exclusion of language constructs which could result in unhandled run-time emors.

¢ The objective of method 1c is to impose principles of strong typing where these are not inherent in the language.

Source ISO/FDIS 26262

Example Software Unit Design Table

Table 9 — Methods for the verification of software unit design and implementation

Methods ASIL

A B C D
1a |Walk-through?® T+ + o o
1b | Inspection® + ++ ++ +
1c | Semi-formal verification + + i +
1d | Formal verification o o + +
1e | Control flow analysisbc + + ++ +
1f | Data flow analysis®® + + ot o
1g | Static code analysis + T+ ++ +
1h | Semantic code analysis® + + + +

2 In the case of model-based software development the software unit specification design and implementation can be verified at the
model level.

b Methods 1e and 1f can be applied at the source code level. These methods are applicable both to manual code development and
to model-based development.

¢ Methods 1e and 1f can be part of methods 1d, 1g or 1h.

4 Method 1h is used for mathematical analysis of source code by use of an abstract representation of possible values for the
variables. For this it is not necessary to translate and execute the source code.

Source ISO/FDIS 26262

