
Blueprint for a

Science of Cybersecurity∗

Fred B. Schneider

Department of Computer Science
Cornell University

Ithaca, New York 14853

May 24, 2011

1 Introduction

A secure system must defend against all possible attacks—including those
unknown to the defender. But defenders, having limited resources, typically
develop defenses only for attacks they know about. New kinds of attacks are
then likely to succeed. So our growing dependence on networked computing
systems puts at risk individuals, commercial enterprises, the public sector,
and our military.

The obvious alternative is to build systems whose security follows from
first principles. Unfortunately, we know little about those principles. We
need a science of cybersecurity (see Box 1) that puts the construction of
secure systems onto a firm foundation by giving developers a body of laws
for predicting the consequences of design and implementation choices. The
laws should

• transcend specific technologies and attacks, yet still are applicable in
real settings,

• introduce new models and abstractions, thereby bringing pedagogical
value besides predictive power, and

∗Supported in part by National Science Foundation grants 0430161, 0964409, and CCF-
0424422 (TRUST), ONR grants N00014-01-1-0968 and N00014-09-1-0652, and a grant
from Microsoft. The views and conclusions contained herein are those of the author and
should not be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of these organizations or the U.S. Government.

1



What is a Science? (Box 1)

The term science has evolved in meaning since Aristotle used it to de-
scribe a body of knowledge. To many, it connotes knowledge obtained
by systematic experimentation, so they take that process as the defining
characteristic of a science. The natural sciences satisfy this definition.

Experimentation helps in forming and then affirming theories or laws
that are intended to offer verifiable predictions about man-made and
natural phenomena. It is but a small step from science as experimenta-
tion to science as laws that accurately predict phenomena. The status
of the natural sciences remains unaffected by changing the definition of
a science in this way. But computer science now joins. It is the study
of what processes can be automated efficiently; laws about specification
(problems) and implementations (algorithms) are a comfortable way to
encapsulate such knowledge.

• facilitate discovery of new defenses as well as describing non-obvious
connections between attacks, defenses, and policies, thus providing a
better understanding of the landscape.

The research needed to develop this science of cybersecurity must go
beyond the search for vulnerabilities in deployed systems and beyond the
development of defenses for specific attacks. Yet, use of a science of cy-
bersecurity when implementing a system should not be equated with im-
plementing absolute security or even with concluding that security requires
perfection in design and implementation. Rather, a science of cybersecu-
rity would provide—independent of specific systems—a principled account
for techniques that work, including assumptions they require and ways one
set of assumptions can be transformed or discharged by another. It would
articulate and organize a set of abstractions, principles, and trade-offs for
building secure systems, given the realities of the threats and of our cyber-
security needs.

The field of cryptography comes close to exemplifying the kind of science
base we seek. The focus in cryptography is on understanding the design and
limitations of algorithms and protocols to compute certain kinds of results
(for example, confidential or tamperproof or attributed) in the presence of
certain kinds of adversaries who have access to some, but not all, informa-
tion involved in the computation. Cryptography, however, is but one of

2



many cybersecurity building blocks. A science of cybersecurity would have
to encompass richer kinds of specifications, computing environments, and
adversaries. Peter Neumann [11] summarized the situation well when he
opined about implementing cybersecurity “If you think cryptography is the
answer to your problem, then you don’t know what your problem is.”.

An analogy with medicine can be instructive for contemplating benefits
we might expect from a science of cybersecurity. Some health problems are
best handled in a reactive manner. We know what to do when somebody
breaks a finger, and each year we create a new influenza vaccine in anticipa-
tion of the flu season to come. But only after making significant investments
in basic medical sciences are we starting to understand the mechanisms by
which cancers grow, and a cure seems to require that kind of deep under-
standing. Moreover, nobody believes disease will some day be a “solved
problem”. We make enormous strides in medical research, yet new threats
emerge and old defenses (for example, antibiotics) lose their effectiveness.
Like good health, cybersecurity is never going to be a “solved problem.”
Attacks co-evolve with defenses and in ways to disrupt each new task that
is entrusted to our networked systems. As with medical problems, some
attacks are best addressed in a reactive way, while others are not. But our
success in developing all defenses will benefit considerably from having laws
that constitute a science of cybersecurity.

This paper gives one perspective on the shape of that science and its
laws. Subjects that might be characterized in laws are discussed in sec-
tion 2. Then, section 3 illustrates by giving concrete examples of laws.
The relationship that a science of cybersecurity would have with existing
branches of computer science is explored in section 4.

2 Laws about What?

In the natural sciences, quantities found in nature are related by laws: E =
mc2, PV = nRT , etc. Continuous mathematics is used to specify these laws.
Continuous mathematics, however, is not intrinsic to the notion of a scientific
law—predictive power is. Indeed, laws that govern digital computations are
often most conveniently expressed using discrete mathematics and logical
formulas. Laws for a science of cybersecurity are likely to follow suit, because
these, too, concern digital computation.

But what should be the subject matter of these laws? To be deemed
secure, a system should, despite attacks, satisfy some prescribed policy that
specifies what the system must do (for example, deliver service) and what

3



it must not do (for example, leak secrets). And defenses are the means
we employ to prevent a system from being compromised by attacks. This
account suggests we strive to develop laws that relate attacks, defenses, and
policies.

For generality, we should prefer laws that relate classes of attacks, classes
of defenses, and classes of policies, where the classification exposes essential
characteristics. Then we can look forward to having laws like “Defenses
in class D enforce policies in class P despite attacks from class A” or “By
composing defenses from class D′ and class D′′ a defense is constructed that
resists the same attacks as defenses from class D.” Appropriate classes are
crucial in order for a science of cybersecurity to be relevant.

2.1 Classes of Attacks

A system’s interfaces define the sole means by which an environment can
change or sense the effects of system execution. Some interfaces have clear
embodiment to hardware: the keyboard and mouse for inputs, a graphic
display or printer for outputs, and a network channel for both inputs and
outputs. Other hardware interfaces and methods of input/output will be
less apparent, and some are quite obscure. For example, Halderman et
al. [7] show how lowering the operating temperature of a memory board
facilitates capture of secret cryptographic keys through what they term a
cold boot attack. The temperature of the environment is, in effect, an input
to a generally overlooked hardware interface. Most familiar are interfaces
created by software. The operating system interface often provides ways for
programs to communicate overtly through system calls and shared memory
or covertly through various side channels (such as battery level or execution
timings).

Since (by definition) interfaces provide the only means for influencing and
sensing system execution, interfaces necessarily constitute the sole avenues
for conducting attacks against a system. The set of interfaces and the specific
operations involved is thus one obvious basis for defining classes of attacks.
For example, we might distinguish attacks (such as SQL-injections) that
exploit overly-powerful interfaces from attacks (such as buffer overflows)
that exploit insufficiently conservative implementations. Another basis for
defining classes of attacks is to characterize the information or effort required
for conducting the attack. With some cryptosystems, for instance, efficient
techniques exist for discovering a decryption key if samples of ciphertext
with corresponding plaintext are available for that key, but these techniques
do not work when only ciphertext is available.

4



A given input might cause some policies to be violated but not others. So
whether an input constitutes an attack on a given system could depend on
the policy that system is expected to enforce. This dependence suggests that
classes of attacks could be defined in terms of what policies they compromise.
The definition of denial-of-service attacks, for instance, equates a class of
attacks with system availability policies.

For attacks on communications channels, cryptographers introduce clas-
sifications based on the computational power or information available to the
attacker. For example, Dolev-Yao attackers are limited to reading, sending,
deleting, or modifying fields in messages being sent as part of some protocol
execution [5]. (The altered traffic confuses the protocol participants, and
they unwittingly undertake some action the attacker desires.) But it is not
obvious how to generalize these attack classes to systems that implement
more complex semantics than message delivery and that provide operations
beyond reading, sending, deleting, or modifying messages.

Finally, the role of people in a system can be a basis for defining classes
of attacks. Security mechanisms that are inconvenient will be ignored or
circumvented by users; security mechanisms that are difficult to understand
will be misused (with vulnerabilities introduced as a result). Distinct classes
of attacks can thus be classified according to how or when the human user is
fooled into empowering an adversary. Phishing attacks, which enable theft
of passwords and ultimately facilitate identity theft, are one such class of
attacks.

2.2 Classes of Policies

Traditionally, the cybersecurity community has formulated policies in terms
of three kinds of requirements.

Confidentiality. Which principals are allowed to learn what infor-
mation.

Integrity. What changes to the system (stored information and re-
source usage) and to its environment (outputs) are allowed.

Availability. When must inputs be read or outputs produced.

This classification, as it now stands, is likely to be problematic as a basis
for the laws that form a science of cybersecurity.

One problem is the lack of widespread agreement on mathematical def-
initions for confidentiality, integrity, and availability. A second problem is

5



Trace Properties, Safety, and Liveness (Box 2)

A specification for a sequential program would characterize for each in-
put whether the program terminates and what outputs it produces. This
characterization of execution as a relation is inadequate for concurrent
programs. Lamport [9] introduced safety and liveness to describe the
more expressive class of specifications that are needed for this setting.
Safety asserts that no “bad thing” happens during execution and liveness
asserts that some “good thing” happens.

A trace is a (possibly infinite) sequence of states; a trace property is
a set of traces, where each trace in isolation satisfies some characteristic
predicate associated with that trace property. Examples include partial
correctness (the first state satisfies the input specification and any ter-
minal state satisfies the output specification) and mutual exclusion (in
each state, the program for at most one process designates an instruc-
tion in a critical section). Not all sets of traces define trace properties.
Information flow, which stipulates a correlation between the values of
the two variables across all traces, is an example. This set of traces does
not have a characteristic predicate that depends only on each individual
trace, so the set is not a trace property.

Every trace property is either safety, liveness, or the conjunction of
two trace properties—one that is safety and one that is liveness [1]. In
addition, an invariance argument suffices for proving that a program
satisfies a trace property that is safety; a variant function is needed for
proving a trace property that is liveness [2]. Thus, the safety-liveness
classification for trace properties comes with proof methods beyond of-
fering formal definitions.

that the three kinds of requirements are not orthogonal. For example, secret
data can be protected simply by corrupting it so that the resulting value
no longer accurately conveys the true secret value, thus trading integrity for
confidentiality.1 As a second example, any confidentiality property can be
satisfied by enforcing a weak enough availability property, because a system
that does nothing cannot be accessed by attackers to learn secret informa-
tion.

1Clarkson and Schneider [4] use information theory to derive a law that characterizes
the trade-off between confidentiality and integrity for database-privacy mechanisms.

6



Contrast this state of affairs with trace properties, where safety (“no
‘bad thing’ happens”) and liveness (“some ‘good thing’ happens”) are or-
thogonal classes.2 Moreover, there is added value when requirements are
formulated in terms of safety and liveness, because safety and liveness are
each connected to a proof method. Trace properties, though, are not ex-
pressive enough for specifying all confidentiality and integrity policies. The
class of hyperproperties [3], a generalization of trace properties, is. And
hyperproperties include safety and liveness classes that enjoy the same kind
of orthogonal decomposition that exists for trace properties. So hyperprop-
erties are a promising candidate for use in a science of cybersecurity.

Any classification of policies is likely to be associated with some kind of
system model and, in particular, with the interfaces the model defines (hence
the operations available to adversaries). For example, we might model a
system in terms of the set of possible indivisble state transitions that it
performs while operating, or we might model a system as a black box that
reads information streams from some channels and outputs on others. Sets
of indivisible state transitions are a useful model for expressing laws about
classes of policies enforced by various OS mechanisms (for example, refer-
ence monitors versus code rewriting) which themselves are concerned with
allowed and disallowed changes to system state; stream models are often
used for quantifying information leakage or corruption in output streams.
We should expect that a science of cybersecurity will not be built around a
single model or around a single classification of policies.

2.3 Classes of Defenses

A large and varied collection of different defenses can be found in the cy-
bersecurity literature.

Program analysis and rewriting form one natural class characterized by
expending the effort for deploying the defense (mostly) prior to execution.
This class of defenses, called language-based security, can be further subdi-
vided according to whether rewriting occurs (it might not occur with type-
checking, for example) and according to the work required by the analysis
and/or the rewriting. The undecidability of certain analysis questions and
the high computation costs of answering others is sometimes a basis for
further distinguishing conservative defenses—those analysis methods that
can reject as being insecure programs that actually are secure, and those
rewriting methods that add unnecessary checks.

2Formal definitions of trace properties, safety, and liveness are given in Box 2 for those
readers who are interested.

7



Run-time defenses have, as their foundation, only a few basic mecha-
nisms.

Isolation. Execution of one program is somehow prevented from ac-
cessing interfaces that are associated with the execution of others.
Examples include physically isolated hardware, virtual machines, and
processes (which, by definition, have isolated memory segments).

Monitoring. A reference monitor is guaranteed to receive control
whenever any operation in some specified set is invoked; it further has
the capacity to block subsequent execution, which it does to prevent an
operation from proceeding when that execution would not comply with
whatever policy is being enforced. Examples include memory mapping
hardware, processors having modes that disable certain instructions,
OS kernels, and firewalls,

Obfuscation. Code or data is transmitted or stored in a form that
can be understood only with knowledge of a secret. That secret is kept
from the attacker, who then is unable to abuse, understand, or alter
in a meaningful way the content being protected. Examples include
data encryption, digital signatures, and program transformations that
increase the work factor needed to craft attacks.

Obviously, a classification of run-time defenses could be derived from this
taxonomy of mechanisms.

Another way to view defenses is in terms of trust relocation. For ex-
ample, by running an application under control of a reference monitor we
relocate trust in that application to trust in the reference monitor. This
trust-relocation view of defenses invites discovery of general laws that gov-
ern how trust in one component can be replaced by trust in another.

We know that it is always possible for trust in an analyzer to be relocated
to a proof checker—simply have an analyzer that concludes P also generate
a proof of P . Moreover, this specific means of trust relocation is attractive,
because proof checkers can be simple, hence easy to trust, whereas analyzers
can be quite large and complicated. This suggests a related question: Is it
ever possible to add defenses and transform one system into another, where
the latter requires weaker assumptions about components being trusted?
Perhaps trust is analogous to entropy in thermodynamics—something that
can be reversed only at some cost (where “cost” corresponds to the strength
of the assumptions that must be made)? Such questions are fundamental to
the design of secure systems, and today’s designers have no theory to help
with answers. A science of cybersecurity could provide that foundation.

8



3 Laws Already on the Books

Attacks co-evolve with defenses, so a system that yesterday was secure might
no longer be secure tomorrow. You can then wonder whether yesterday’s
science of cybersecurity would be made irrelevant by new attacks and new
defenses. This depends on the laws, but if the classes of attacks, defenses,
and policies are wisely constructed and sufficiently general then laws about
them should be both interesting and long-lived. Examples of extant laws can
provide some confirmation, and two (developed by the author) are discussed
below.

3.1 Law: Policies and Reference Monitors

A developer who contemplates building or modifying a system will have in
mind some class of policies that must be enforced. Laws that characterize
what policies are enforced by given classes of defenses would be helpful
here. Such laws have been derived for various defenses. Below, we discuss a
law [13] concerning reference monitors.

The policy enforced by a reference monitor is the set of traces that
correspond to executions in which the reference monitor does not block
any operation. This set is a trace property, because whether the reference
monitor blocks an operation in a trace depends only on the contents of that
trace (specifically, the preceding operations in that trace). Moreover, this
trace property is safety; the set of finite sequences that end in an operation
the reference monitor blocks constitutes the “bad thing”. We conclude:

Law. All reference monitors enforce trace properties that are safety.

This law, for example, implies that a reference monitor cannot enforce
an information flow policy, since (as discussed in Box 2) information flow is
not a trace property. However, the law does not preclude using a reference
monitor to enforce a policy that is stronger and, by being stronger, implies
that the information flow policy also will hold. But a stronger policy will
deem insecure some executions the information flow policy does not. So such
a reference monitor would block some executions that would be allowed by a
defense that exactly enforces information flow. The system designer is thus
alerted to a trade-off—employing a reference monitor for information flow
policies brings overly conservative enforcement.

The above law also suggests a new kind of run-time defense mecha-
nism [6]. For every trace property Ψ that is safety, there exists an automa-
ton mΨ that accepts the set of traces in Ψ [2]. Automaton mΨ is a reference

9



S1 if MΨ(“S1”) 6= OK then halt
S2 S1

S3 =⇒ if MΨ(“S2”) 6= OK then halt
S4 S2

... ...

original inlined-reference monitor

Figure 1: Inlined reference monitor example

monitor for Ψ because, by definition, it rejects traces that violate Ψ. So
if code MΨ that simulates mΨ is invoked before every instruction in some
given program S, then the result will be a new program that behaves just
like S except it halts rather than executing an instruction that violates pol-
icy Ψ. This is depicted in Figure 1, where invocation MΨ(x) simulates the
transition that automaton mΨ makes for input symbol x and repeatedly
returns OK until automaton mΨ would reject the sequence of inputs it has
processed. Thus, the statement

if MΨ(“Si”) 6= OK then halt (1)

in Figure 1 immediately prior to a program statement Si causes execution to
terminate if next executing Si would violate the policy defined by automaton
mΨ—that is, if executing Si would cause policy Ψ to be violated.

Such inlined reference monitors can be more efficient at run-time than
traditional reference monitors, because a context switch is not required each
time an inlined reference monitor is invoked. However, an inlined reference
monitor must be installed separately in each program whose execution is
being monitored, whereas a traditional reference monitor can be written
and installed once and for all. The per-program installation does mean
that inlined reference monitors can enforce different policies on different
programs, an awkward functionality to support with a single traditional
reference monitor. And per-program installation also means that code (1)
inserted to simulate mΨ can be specialized and simplified, thereby allowing
unnecessary checks to be eliminated for inlined reference monitors.

3.2 Law: Attacks and Obfuscators

We define a set of programs to be diverse if all implement the same function-
ality but differ in their implementation details. Diverse programs are less
prone to having vulnerabilities in common, because attacks often depend on

10



memory layout and/or instruction sequence specifics. But building multiple
distinct versions of a program is expensive.3 So system implementors have
turned to mechanical means for creating sets comprising diverse versions of
a given program.

For mechanically-generated diversity to work as a defense, not only must
implementations differ (so they have few vulnerabilities in common), but the
differences must be kept secret from attackers. For example, buffer overflow
attacks are generally written relative to some specific run-time stack layout.
Alter this layout by rearranging the relative locations of variables as well
as the return address on the stack, and an input designed to perpetrate an
attack for the original stack layout is unlikely to succeed. But if the new
stack layout were known by the adversary, then crafting an attack again
becomes straightforward.

Programs to accomplish such transformations have been called obfus-
cators. An obfuscator τ takes two inputs—a program S and a secret key
K—and produces a morph, which is a program τ(S,K) whose semantics is
equivalent to S but whose implementation differs from S and from morphs
generated with other keys. K specifies which exact transformations are ap-
plied in producing morph τ(S,K). Note that since S and τ are assumed
to be publicly known, knowledge of K would enable an attacker to learn
implementation details for successfully attacking morph τ(S,K).

Different classes of transformations are more or less effective in defend-
ing against the various different classes of attacks. This correspondence is
important when designing a set of defenses for a given threat model, but
knowing the specific correspondences is not the same as knowing the over-
all power of mechanically-generated diversity as a defense. That defensive
power for programs written in a C-like language has been partially charac-
terized in a set of laws [12]. Each Obfuscator Law establishes, for a specific
(common) type system Ti and obfuscator τi pair, what is the relationship
between two sets of attacks—those blocked when type system Ti is enforced
versus those that cause execution of a morph τi(S,K) to abort for some
secret key K.

The Obfuscator Laws do not completely quantify the difference between
the effectiveness of type checking and obfuscation. But the laws are note-
worthy for a science of cybersecurity because they circumvent the difficult
problem of reasoning about attacks not yet invented. Laws about classes
of known attacks risk irrelevance as new attacks are discovered. By formu-

3There is also experimental evidence [8] that distinct versions built by independent
teams nevertheless share vulnerabilities.

11



lating the Obfuscator Laws in terms of a relation between sets of attacks,
the need to identify or enumerate individual attacks is avoided. To wit, the
class of attacks that type-checking defends against is not known and not
given, yet the power of obfuscation to defend against an attack can now be
meaningfully conveyed relative to the power of type-checking.

4 The Science In Context

A science of cybersecurity would build on knowledge from several existing ar-
eas of computer science. The connections to formal methods, fault-tolerance,
and experimental computer science are nuanced; they are discussed below.
However, cryptography, information theory, and game theory are also likely
to be valuable sources of abstractions and laws. Finally, the physical sci-
ences surely have a role to play—not only in matters of physical security
but also for understanding unconventional interfaces to real devices that at-
tackers might exploit (as exemplified by the cold boot attacks mentioned in
section 2.1).

Formal Methods. Attacks are possible only because a system we de-
ploy has flaws in its implementation, design, specification, or requirements.
Eliminate the flaws and we eliminate the need to deploy defenses. But even
when the systems on which we rely aren’t being attacked, we should want
confidence that they will function correctly. The presence of flaws under-
mines that confidence. So cybersecurity is not the only compelling reason
to eliminate flaws.

The focus of formal methods research is on methods for gaining confi-
dence in a system by using rigorous reasoning, including programming logics
and model checkers.4 This work has been remarkably successful with small
systems or small specifications. It is used by companies like Microsoft to
validate device drivers and Intel to validate chip designs. It is also the engine
behind strong type-checking in modern programming languages (for exam-
ple, Java and C#) and various code-analysis tools used in security audits.

Further developments in formal methods could serve a science of cyber-
security well. However, to date, work in formal methods has been based
on trace properties or something with equivalent expressive power. This
foundation allows mathematically elegant characterizations for whether a

4Other areas of software engineering are concerned with gaining confidence in a system
through the use of experimentation (for example, testing) or management (for example,
strictures on development processes).

12



Satisfies and Refinement (Box 3)

A program S can be modeled as a trace property ΣS containing all
sequences of states that could arise from executing S, and a specific
execution of S satisfies a trace property P if the trace modeling that
execution is in P . Thus, S satisfies P if and only if ΣS ⊆ P holds.

We say that a program S′ refines S, denoted S′ � S, when S′ resolves
choices left unspecified by S. For example, a program that increments
x by 1 refines a program that merely specifies that x be increased. A
refinement S′ of S thus exhibits a subset of the executions for S: S′ � S
holds if and only if ΣS′ ⊆ ΣS holds.

Notice that “satisfies” is closed under refinement. If S′ refines S and
S satisfies P , then S′ satisfies P . Also, if we construct S′ by performing
a series of refinements S′ � S1, S1 � S2, ..., Sn � S and S satisfies P
then we are guaranteed that S′ will satisfy P too. So programs can be
constructed by step-wise refinement.

With richer classes of policies, “satisfies” is unfortunately not closed
under refinement. As an example, consider two programs. Program
Sx=y is modeled by trace property Σx=y containing all traces in which
x = y holds in all states; program S∗ is modeled by ΣS∗ containing all
sequences of states. We have that Σx=y ⊂ ΣS∗ holds, so by definition
Sx=y � S∗. However, program S∗ enforces the confidentiality policy
that no information flows between x and y, whereas (refinement) Sx=y

does not. Satisfies for the confidentiality policy is not closed under
refinement, and step-wise refinement is not sound for deriving programs
that satisfy this policy.

program satisfies a specification and for justifying step-wise refinement of
programs. But trace properties are not adequately expressive for specifying
all confidentiality, integrity, and availability policies, and stepwise refine-
ment is not sound for these richer policies. (A mathematical justification of
this limitation is provided in Box 3 for the interested reader.) So the foun-
dations of today’s formal methods would have to be changed to something
with the expressiveness of hyperproperties—no small feat.

Byzantine Fault-Tolerance. A system is considered fault-tolerant if it
will continue operating correctly even though some of its components exhibit

13



faulty behavior. Fault-tolerance is usually defined relative to a fault model
that defines assumptions about what components can become faulty and
what kinds of behaviors faulty components might exhibit. In the Byzantine
fault model [10], faulty components are permitted to collude and to perform
arbitrary state transitions. A real system is unlikely to experience such
hostile behavior from its faulty components, but any faulty behavior that
might actually be experienced is, by definition, allowed with the Byzantine
fault model. So by building a system that works for the Byzantine fault
model, we ensure that the system can tolerate all behaviors that in practice
could be exhibited by its faulty components.

The basic recipe for implementing such Byzantine fault-tolerance is well
understood. We assume that the output of every component is a function of
the preceding sequence of inputs. Each component that might fail is replaced
by 2t+1 replicas, where these replicas all receive the same sequence of inputs.
Provided that t or fewer replicas are faulty, then the majority of the 2t+ 1
will be correct. These correct replicas will generate identical correct outputs,
so the majority output from all replicas is unaffected by the behaviors of
faulty components.

A faulty component in the Byzantine fault model is indistinguishable
from a component that has been compromised and is under control of an
attacker. We might thus conclude that if a Byzantine fault-tolerant system
can tolerate t component failures then it also could resist as many as t
attacks—we could get security by implementing Byzantine fault-tolerance.
Unfortunately, the argument oversimplifies, and the conclusion is unsound.

• Replication, if anything, creates more opportunities for attackers to
learn confidential information. So enforcement of confidentiality is
not improved by the replication required for implementing Byzantine
fault-tolerance. And storing encrypted data—even when a different
key is used for each replica—does not solve the problem, if replicas
actually must themselves be able to decrypt and process the data they
store.

• Physically-separated components connected only by narrow-bandwidth
channels are generally observed to exhibit uncorrelated failures. But
physically separated replicas still will share many of the same vul-
nerabilities (because they will use the same code) and, therefore, will
not exhibit independence to attacks. If a single attack might cause
any number of components to exhibit Byzantine behavior then little
is gained by tolerating t Byzantine components.

14



What should be clear, though, is that mechanically-generated diversity
creates a kind of independence that can be a bridge from Byzantine fault-
tolerance to attack tolerance. The Obfuscation Laws discussed in section 3.2
are a first step in this direction.

Experimental Computer Science. The code for a typical operating
system can fit on a disk, and all of the protocols and interconnection that
comprise the Internet are known. Yet the most efficient way to understand
the emergent behavior of the Internet is not to study the documentation
and program code—it is to apply stimuli and make measurements in a con-
trolled way. Computer systems are frequently too complex to admit pre-
dictions about their behaviors. So just as experimentation is useful in the
natural sciences, we should expect to find experimentation an integral part
of computer science.

Even though we might prefer to derive our cybersecurity laws by logical
deduction from axioms, the validity of those axioms will not always be self-
evident. We often will work with axioms that embody approximations or
describe models, as is done in the natural sciences. (Newton’s laws of mo-
tion, for example, ignore friction and relativistic effects.) Experimentation
is the way to gain confidence in the accuracy of our approximations and
models. And just as experimentation in the natural science is supported
by laboratories, experimentation for a science of cybersecurity will require
testbeds where controlled experiments can be run.

Experimentation in computer science is somewhat distinct from what is
called “experimental computer science” though. Computer scientists vali-
date their ideas about new (hardware or software) system designs by building
prototypes. This activity establishes that hidden assumptions about real-
ity are not being overlooked. Performance measurements then demonstrate
feasibility and scalability, which are otherwise difficult to predict. And for
artifacts that will be used by people (for example, programming languages
and systems), a prototype may be the only way to learn whether key func-
tionality is missing and what novel functionality is useful.

Since a science of cybersecurity should lead to new ideas about how
to build systems and defenses, the validation of those proposals could re-
quire building prototypes. This activity is not the same as engineering a
secure system. Prototypes are built in support of a science of cybersecurity
expressly to allow validation of assumptions and observation of emergent
behaviors. So, a science of cybersecurity will involve some amount of exper-
imental computer science as well as some amount of experimentation.

15



5 Concluding Remarks

The development of a science of cybersecurity could take decades. The
sooner we get started, the sooner we will have the basis for a principled set
of solutions to the cybersecurity challenge before us. Recent new federal
funding initiatives in this direction are a key step. It’s now time for the
research community to engage.

Acknowledgments

An opportunity to deliver the keynote at an NSF/NSA/IARPA workshop on Science
of Security in Fall 2008 was the impetus for me to start thinking about what shape
a science of cybersecurity might take. The feedback from the participants at that
workshop as well as discussions with the other speakers at a summer 2010 Jasons
meeting on this subject was quite helpful. My colleagues in the NSF “TRUST”
Science and Technology Center have been a valuable source of feedback, as have
Michael Clarkson and Riccardo Pucella. I am grateful to Carl Landwehr, Brad
Martin, Bob Meushaw, Greg Morrisett, and Pat Muoio for comments on an earlier
draft of this paper.

About the Author

Fred B. Schneider joined the Cornell University faculty in 1978, where he is now
the Samuel B. Eckert Professor of Computer Science. He also is the Chief Scientist
of the NSF “TRUST” Science and Technology Center, and he has been Professor
at Large at the University of Tromso since 1996.

A fellow of the AAAS, ACM, and IEEE, Schneider was granted a D.Sc. hon-
oris causa by the University of Newcastle-upon-Tyne in 2003. He was awarded
membership in Norges Tekniske Vitenskapsakademi (Norwegian Academy of Tech-
nological Sciences) in 2010 and the U.S. National Academy of Engineering in 2011.
Schneider serves on the Computing Research Association’s board of directors and
is a council member of the Computing Community Consortium, which catalyzes
research initiatives in the computer science. He is also a member of the Defense
Science Board and the NIST Information Security and Privacy Advisory Board. A
frequent consultant to industry, Schneider co-chairs Microsoft’s TCAAB external
advisory board on trustworthy computing.

References and Further Reading

[1] Bowen Alpern and Fred B. Schneider. Defining liveness. Information Process-
ing Letters, 21(4):181–185 (1985).

[2] Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness. Dis-
tributed Computing, 2(3):117–126 (1987).

16



[3] Michael Clarkson and Fred B. Schneider. Hyperproperties. Journal of Com-
puter Security, 18(6):1157–1210 (2010).

[4] Michael Clarkson and Fred B. Schneider. Quantification of integrity. Proceed-
ings 23rd IEEE Computer Security Foundations Symposium (Edinburgh, UK,
July 2010), 28–43.

[5] Danny Dolev and Andrew C. Yao. On the security of public key protocols.
IEEE Transactions on Information Theory IT-29:2, 198–208 (1983).

[6] Ulfar Erlingsson and Fred B. Schneider. IRM enforcement of Java stack inspec-
tion. Proceedings 2000 IEEE Symposium on Security and Privacy (Oakland,
California, May 2000), IEEE Computer Society, Los Alamito, California, 246–
255.

[7] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson,
William Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum,
and Edward W. Felten. Lest we remember: Cold boot attacks on encryption
keys. Proceedings 2008 USENIX Security Symposium (San Jose, CA, July
2008), USENIX Association, 45–60.

[8] J. C. Knight and N. G. Leveson. An experimental evaluation of the assump-
tion of independence in multiversion programming. IEEE Transactions on
Software. Engineering 12(1):96–109 (Jan. 1986).

[9] Leslie Lamport. Proving the correctness of multiprocess programs. IEEE
Transactions on Software Engineering, 3(2):125–143 (1977).

[10] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals
problem. ACM Transactions on Programming Languages 4(3):382–401 (July
1982).

[11] Peter G. Neumann, quoted in Gina Kolata. “The Key Vanishes: Scientist
Outlines Unbreakable Code” New York Times, Feb. 20, 2001.

[12] Riccardo Pucella and Fred B. Schneider. Independence from obfuscation: A
semantic framework for diversity. Journal of Computer Security 18(5):701–749
(2010).

[13] Fred Schneider. Enforceable security policies. ACM Transactions on Informa-
tion and System Security 3(1):30–50 (2000).

17


