
Seeking Trust Through
Specification, Verification, Evaluation, and Analysis

A Voting Machine Example

Warren A. Hunt, Jr. and Sandip Ray
Department of Computer Sciences
University of Texas at Austin
1 University Station M/S C0500

Austin, TX 78712-0233.

Email: �hunt,sandip�@cs.utexas.edu
Web: http://www.cs.utexas.edu/users�hunt,sandip�

HCSS 2006

HUNT AND RAY

Introduction

How can we increase the the confidence in correct and secure
executions of commercial off-the-shelf systems?

� Design details cannot be disclosed to protect IP.

� Requirement specifications are informal and ambiguous.

� Simulation and testing cannot catch all bugs.

� Security-sensitive designs must conform to further regulatory checks.

Our goal is to have a more formal definition of a buyer/seller
process to enable uniform specification and analysis of system
designs.

HCSS 2006 1

HUNT AND RAY

Talk Outline

� Buyer-Seller Paradigm

� Defining Specifications

� Formal definitions of netlist implementations

� Mechanical Reasoning

� Validation

� Computational Property Checks

� Concluding remarks

HCSS 2006 2

HUNT AND RAY

Buyer/Seller Process

Design

Theorem

Proof

Specification

Security /
Review

Regulatory
Approval

Seller

Verifier

Evaluation

IP

Buyer

The buyer/seller process must unambiguously specify each relationship.

HCSS 2006 3

HUNT AND RAY

Current Buyer/Seller Process

How does a Buyer get exactly what is desired and nothing else?

� Current specification are text, graphs charts.

� Designs are programs, netlists, IP, etc.

� Some testing.

This process, although sometimes considered rigorous, doesn’t
provide a repeatable, mechanical procedure to verify the suitability,
security, and correctness of a delivered design. Nor does this
approach provide a rigorous evaluation procedure.

HCSS 2006 4

HUNT AND RAY

Current Buyer/Seller Process

� Buyer: Can you build (+ x y) ?

� Seller: No. We can build (rem (+ x y) (expt 2 64)).

� Buyer: Hmm. I guess that is OK. Later, much later...

� Seller: We have your system. We want it certified. Here is our theorem.

(implies
(and (natp x) (natp y))
(equal (rem (+ x y) (expt 2 64))

(bv-to-nat (bv-adder (nat-to-bv x 64)
(nat-to-bv y 64)))))

HCSS 2006 5

HUNT AND RAY

Buyer/Seller Adder Diagram

A

B

+ S

a

b

bv−adder s

Secret World

nat−to−bv
bv−to−nat

� Buyer: What are bv-to-nat and nat-to-bv ?

� Seller: They are the usage instructions.

This diagram also identifies some of the problems when attempting
to purchase third-party IP.

HCSS 2006 6

HUNT AND RAY

New Buyer/Seller Dialogue

� Buyer: We want a design that satisfies these terms.

(acceptable-design ’bv-adder netlist)

(implies (and (natp x) (natp y))
(equal (rem (+ x y) (expt 2 64))

(bv-to-nat (se ’bv-adder
(list (nat-to-bv x 64)

(nat-to-bv y 64))
nil netlist))))

� Seller: You are specifying part of our practice.

� Buyer: Yes, a third party must be able to mechanically certify our purchase.

HCSS 2006 7

HUNT AND RAY

Product Acceptance and Regulatory Requirements

� Buyer: Since you choose not to reveal your design, we must have a neutral
third-party to complete our transaction, especially if it requires evaluation.Therefore,
we also want a design that satisfies these two formulas.

(security-properties-check ’bv-adder netlist)

(evaluation-properties-check ’bv-adder netlist)

� Seller: Wow. Can you send us the check codes?

� Buyer: We will provide you with our check codes;
however, the evaluators may choose to use their own check codes

� Seller: We will not know when we are done.
How can we price our product? Have you under-specified?

HCSS 2006 8

HUNT AND RAY

Our Thesis

A computational logic and mechanical reasoning technology provide a
foundation for rigorously capturing different facets of the buyer/seller
communication.

� Buyer’s specification can be formally defined.

� Seller’s implementation can be unambiguously described.

� Mechanical reasoning can be used to verify correspondence.

� Different environmental constraints can be checked by simulation.

� Many regulatory properties can be checked with computation.

HCSS 2006 9

HUNT AND RAY

Our Thesis

A computational logic and mechanical reasoning technology provide a
foundation for rigorously capturing different facets of the buyer/seller
communications.

� Buyer’s specification can be formally defined.

� Seller’s implementation can be unambiguously described.

� Mechanical reasoning can be used to verify correspondence.

� Different environmental constraints can be checked by simulation.

� Many regulatory properties can be checked with computation.

All these operations can be uniformly performed within the same
formal framework.

HCSS 2006 10

HUNT AND RAY

Our Enabling Technology: ACL2

We use ACL2 to model, design, specify, and verify computing
systems.

� ACL2 is a formal logic.

� we model specifications and implementations in this logic.

� ACL2 has an automated proof checker.

� this is used to certify implementation conformance.

� ACL2 is a programming language.

�We can simulate formal designs, write analysis tools, etc.

In this talk, we illustrate the application of the buyer/seller process using
ACL2 to develop a voting machine netlist design.

HCSS 2006 11

HUNT AND RAY

Talk Outline

� Buyer-Seller Paradigm

� Defining Specifications

� Formal definitions of netlist implementations

� Mechanical Reasoning

� Validation

� Computational Property Checks

� Concluding remarks

HCSS 2006 12

HUNT AND RAY

Specifications

Traditionally specifications are described in informal English or
with charts and diagrams.

The machine is in one of states :ready, :locked, and :frozen, and has a counter for
each candidate. It responds to the following user actions:

:vote At the :ready state, the voter performs a :vote action to tentatively select a
candidate. The system records the vote, but does not change state.

:reset The voter can change her mind by performing :reset. This clears the tentative
selection above.

:commit Once this action is selected, the system records the vote and transits to the
state :locked.

:unlock The :unlock action is performed by a polling official after a vote has been cast
and the voter has left. The machine then changes from state :locked to :ready.

:freeze The :freeze action is performed at the end of polling. The machine then
provides a tally of votes.

HCSS 2006 13

HUNT AND RAY

Specifications

Traditionally specifications are described in informal English or
with charts and diagrams.

The machine is in one of states :ready, :locked, and :frozen, and has a counter for
each candidate. It responds to the following user actions:

:vote At the :ready state, the voter performs a :vote action to tentatively select a candidate. The system records the vote,
but does not change state.

:reset The voter can change her mind by performing :reset. This clears the tentative selection above.

:commit Once this action is selected, the system records the vote and transits to the state :locked.

:unlock The :unlock action is performed by a polling official after a vote has been cast and the voter has left. The machine
then changes from state :locked to :ready.

:freeze The :freeze action is performed at the end of polling. The machine then provides a tally of votes.

Such descriptions are

� ambiguous

� not readily amenable to mathematical reasoning.

HCSS 2006 14

HUNT AND RAY

Voting Machine Front Panel

Joe User

Aunt Acid

RESET

COMMIT

UNLOCK

FREEZE

POLLING
OFFICIAL

VOTER

HCSS 2006 15

HUNT AND RAY

Operational Specification Definition

We formalize specifications by a small-step operational model.

(defun s-init () (>_ :status :ready ...))

(defun spec (s i)
(let ((status (status s)) (c0 (candidate0 s))

(c1 (candidate1 s)) (opcode (opcode i)))
(case opcode (:vote (case status (:ready (case (candidate i)

(0 (>s :tvote0 1
:tvote1 0))

...))))
(:commit (case status (:ready (>s :candidate0 (+ c0 (tvote0 s))

:candidate1 (+ c1 (tvote1 s))
:status :locked))

...))
(:unlock (case status (:ready (>s :tvote0 0

:tvote1 0))
...))

(:freeze (>s :status :frozen
:tally ...)))))

HCSS 2006 16

HUNT AND RAY

Operational Specification Definition

We formalize specifications by a small-step operational model.

� Precisely describe machine behavior for each state/action
combination.

� Specification is executable, allows simulation.

� Essential for validation: specifications of complex artifacts are
complex.

HCSS 2006 17

HUNT AND RAY

Talk Outline

� Buyer-Seller Paradigm

� Defining Specifications

� Formal definitions of netlist implementations

� Mechanical Reasoning

� Validation

� Computational Property Checks

� Concluding remarks

HCSS 2006 18

HUNT AND RAY

Netlist Implementations

We formalize netlists via deep embedding.

� Netlists are described as constants in the logic.

� Enables the uniform use of theorem proving and other analysis tools.

� Avoids overloading logic in hardware description.

Traditionally, hardware implementations are described using languages
like VHDL and Verilog.

� Any reasonable subset is too complex for effective formalization.

Our answer is the DE Hardware Description Language.

HCSS 2006 19

HUNT AND RAY

DE Language Features

Hierarchical, occurrence-oriented language
Modules defined hierarchically as a list of sub-module occurrences.

Deeply embedded in ACL2
ACL2 predicate checks syntactically well-formed netlists.
Execution semantics modeled by an interpreter.

Two-pass evaluation
First pass computes the outputs and the second pass computes next

states.

Compact Core Semantics Definition
Four ACL2 functions (100 lines of formal definitions).

HCSS 2006 20

HUNT AND RAY

DE Semantics Definition

Function se computes the values of the output wires in a single pass.

(mutual-recursion
(defun se (fn ins sts n)
(if (primp fn) (se-primp-apply fn ins sts)
(let ((m (assoc-eq fn n)))
(if (atom m) nil

(assoc-eq-values (md-outs m)
(se-occ (md-occs m) (pairlis$ md-ins ins)

(pairlis$ md-sts sts)
(delete-eq-module fn n)))))))

(defun se-occ (occs w-alst s-alst n)
(if (endp occs) w-alst
(let* ((occ (car occs))

(ins (assoc-eq-values (occ-ins occ) w-alst))
(sts (assoc-eq-value (occ-name occ) s-alst)))

(se-occ (cdr occs)
(append (pairlis$ (occ-outs occ) (se (occ-fn occ) ins sts n)

w-alst)
sts n)))))

HCSS 2006 21

HUNT AND RAY

DE Semantics Definition

Function de evaluates the next state in a second pass.
(mutual-recursion
(defun de (fn ins sts n)
(if (primp fn) (de-primp-apply fn ins sts)
(let ((m (assoc-eq fn netlist))

(n-n (delete-eq-module fn n)))
(if (atom m) nil

(assoc-eq-values md-sts
(de-occ (md-occs m)

(se-occ (md-occs m)
(pairlis$ (md-ins m) ins)
(pairlis$ (md-sts m) sts) n-n)

(pairlis$ (md-sts m) sts) n-n)))))

(defun de-occ (occs w-alst s-alst n)
(if (endp occs) w-alst
(let* ((occ (car occs))

(ins (assoc-eq-values (occ-ins occ) w-alst))
(sts (assoc-eq-value (occ-name occ) s-alst)))

(de-occ (cdr occs) (acons (occ-name occ) (de (occ-fn occ) ins sts n) w-alst)
s-alst n)))))

HCSS 2006 22

HUNT AND RAY

Voting Netlist in DE
(defconst *vnlst*

’((vote (op0 op1 op2 candidate)
(sout0 sout1 out00 out01 out02 out03 out10 out11 out12 out13)
(votes stat)
((stat (sout0 sout1) status (op0 op1 op2))
(votes (out00 out01 oout02 out03 out10 out11 out12 out13)

cmtvote (candidate commit reset))
...))

(status (op0 op1 op2) (sout0 sout1)
(s0 s1)
(...))

(cmtvote(candidate commit reset-)
(out00 out01 out02 out03 out10 out11 out12 out13)
(vote0 vote1)

((vote0 (out00 out01 out02 out03) 4-bit-ctr (commit0 reset-))
(vote1 (out10 out11 out12 out13) 4-bit-ctr (commit1 reset-))
(g2 (ncandidate) not (candidate))
(g0 (commit0) and (commit ncandidate))
(g1 (commit1) and (commit candidate))))

(4-bit-ctr (incr reset-) (out0 out1 out2 out3)
(h0 h1 h2 h3)
...)))

HCSS 2006 23

HUNT AND RAY

Some Observations

Deep embedding allows us to accurately formalize gate-level hardware
artifacts.
We use co-simulation to validate the formal model against fabricated

designs.
Executability of formulas is essential for this purpose.

DE provides a rich enough language to model interesting hardware while
still having simple semantics.
Simplicity is essential in the context of mechanical reasoning.

HCSS 2006 24

HUNT AND RAY

Talk Outline

� Buyer-Seller Paradigm

� Defining Specifications

� Formal definitions of netlist implementations

� Mechanical Reasoning

� Validation

� Computational Property Checks

� Concluding remarks

HCSS 2006 25

HUNT AND RAY

Formal Correspondence

To verify that the netlist satisfies the specification, we need a notion of
correspondence between state machines.
We use a simple commutative diagram.

HCSS 2006 26

HUNT AND RAY

Formal Correspondence

To verify that the netlist satisfies the specification, we need a notion of
correspondence between state machines.

state
Spec

state
Spec

refinement
map

refinement
map

I−step

S−step

DE−stateDE state

HCSS 2006 27

HUNT AND RAY

Formal Correspondence

To verify that the netlist satisfies the specification, we need a notion of
correspondence between state machines.

state
Spec

state
Spec

refinement
map

refinement
map

I−step

S−step

DE−stateDE state

(defthm commutative
(implies (and (good-state s) (good-input s i))

(equal (rep (de ’vote s i *vnlst*))
(spec (rep s) (map-input i)))))

HCSS 2006 28

HUNT AND RAY

Formal Correspondence

(defthm commutative
(implies (and (good-state s) (good-input s i))

(equal (rep (de ’vote s i *vnlst*))
(spec (rep s) (map-input i)))))

The implementation and the specification machines are thus in lock-step
for each good input.
good-state is a state invariant and good-input is an

environmental constraint.

The notion of correspondence is generic and uniform.
Used for microprocessor verification, concurrent systems, etc.

[Note: In other more general contexts we might need to account for
stuttering as well.]

HCSS 2006 29

HUNT AND RAY

Talk Outline

� Buyer-Seller Paradigm

� Defining Specifications

� Formal definitions of netlist implementations

� Mechanical Reasoning

� Validation

� Computational Property Checks

� Concluding remarks

HCSS 2006 30

HUNT AND RAY

Importance of Validation

Checking specification conformance is not sufficient!

HCSS 2006 31

HUNT AND RAY

Importance of Validation

Checking specification conformance is not sufficient!

Does the specification reflect the requirements?
Is the refinement mapping correct?
Are the environmental constraints practical?

HCSS 2006 32

HUNT AND RAY

Importance of Validation

Checking specification conformance is not sufficient!

Does the specification reflect the requirements?
Is the refinement mapping correct?
Are the environmental constraints practical?

These questions can be answered by validation of the formal
models by simulation.

� This is the verifier’s job (in addition to certification of the theorem).

� To achieve this, executability must be tightly integrated with the formal logic.

� ACL2, which is a subset of Common Lisp, provides high-performance execution.

HCSS 2006 33

HUNT AND RAY

Validation on Voting Machine

Simulation was used to check input constraints.

A simple bug: If reset is pressed twice it clears all the votes.

� To prove commutative, the predicate good-input rules out this case.

� Simulation can check if such input constraints are valid.

Note: Practical constraints might be more complex.

To facilitate validation in practice ACL2 provides several features for high performance
execution, e.g., single-threaded objects, guards, etc.

� Such features have been used in processor verification by AMD, IBM, Rockwell, etc.

HCSS 2006 34

HUNT AND RAY

Talk Outline

� Buyer-Seller Paradigm

� Defining Specifications

� Formal definitions of netlist implementations

� Mechanical Reasoning

� Validation

� Computational Property Checks

� Concluding remarks

HCSS 2006 35

HUNT AND RAY

Regulatory Properties

Regulatory properties are of a different nature than functional
specifications.

� Does the system contain hidden states?

� Are there trapdoors?

� Does it preserve privacy properties?

� ...

We have the full power of theorem proving to formalize and prove
these properties.

� However, in some cases, we want a static property check by computation.

�We want to design such checkers within the same formal framework.

HCSS 2006 36

HUNT AND RAY

A Simple Regulatory Property

The state bits for one candidate of the does not depend on those
for the other candidate.

To check this property, we mark, for each state bit, the state bits it
depends on.

� Logically this is cone-of-influence reduction.

HCSS 2006 37

HUNT AND RAY

A Simple Regulatory Property

To check this property, we mark, for each state bit, the state bits it
depends on.

The semantics of DE makes it simple to write such checkers.

� Change the primitive evaluators so that instead of evaluating state values they mark
the corresponding components.

The property can now be checked by computation.

HCSS 2006 38

HUNT AND RAY

Talk Outline

� Buyer-Seller Paradigm

� Defining Specifications

� Formal definitions of netlist implementations

� Mechanical Reasoning

� Validation

� Computational Property Checks

� Concluding remarks

HCSS 2006 39

HUNT AND RAY

Conclusion

Formal logic can provide the basis to make the buyer/seller process
rigorous and trustworthy.

� Theorem proving, simulation, semi-formal analysis, all have a role.

� All the activities can be performed within a unified framework.

HCSS 2006 40

HUNT AND RAY

Conclusion

Formal logic can provide the basis to make the buyer/seller process
rigorous and trustworthy.

� Theorem proving, simulation, semi-formal analysis, all have a role.

� All the activities can be performed within a unified framework.

The need for a uniform framework is being increasingly realized.

� The common criteria is a direct response to this need.

HCSS 2006 41

HUNT AND RAY

Conclusion

Formal logic can provide the basis to make the buyer/seller process
rigorous and trustworthy.

� Theorem proving, simulation, semi-formal analysis, all have a role.

� All the activities can be performed within a unified framework.

The need for a uniform framework is being increasingly realized.

� The common criteria is a direct response to this need.

We believe the process can be facilitated by

� Formal, operational, executable specifications

� Deeply embedded design implementations with formal language semantics.

� The use of a computational logic to uniformly allow reasoning, simulation, and
analysis on the same design artifact.

HCSS 2006 42

HUNT AND RAY

Buyer/Seller Process

Design

Theorem

Proof

Specification

Security /
Review

Regulatory
Approval

Seller

Verifier

Evaluation

IP

Buyer

The buyer/seller process must unambiguously specify each relationship.

HCSS 2006 43

